
Understanding End-to-End Performance: Testbed and Primary Results

Jia Wang, Yu Zhang, Srinivasan Keshav

Abstract—As the Internet infrastructure evolves to include Quality of Ser-
vice (QoS), a lot of work have been done on how to allocate network re-
sources to satisfy the QoS requirements of IP flows. Less attention is being
paid on mapping the network QoS specifications, e.g., network delay and loss
rate, to the (perceived) end-to-end performance of user applications, e.g.,
the latency of retrieving a Web page. In this paper, we study the impact of
the network QoS on the perceived end-to-end performance of user applica-
tions. We first propose a generic testbed using a combination of simulation
and emulation technics. It can be used to evaluate the end-to-end perfor-
mance of user applications in different network environments. Next, we use
this testbed in studying the effect of network QoS metrics on the perceptual
quality of various user applications. In this paper, we focus on estimating the
latency of Web retrieval under given packet delay and loss rate and derive
an accurate and efficient TCP short connection performance model.

I. INTRODUCTION

The Internet is emerging as the single networking infrastruc-
ture that carries the data, audio, and video traffic. It has long
been recognized that this convergence requires the Internet to
provide corresponding QoS guarantees to user applications. With
the emergence of many Internet QoS models [1] [2] [3], an inter-
esting research issue arises, that is, how to map network QoS
metrics to the performance observed by the user applications. In-
ternet QoS models are typically defined in terms of bounds on
network performance metrics such as bandwidth, delay, delay jit-
ter and loss rate. However, the notion of service quality in these
models, in terms of network performance metrics, is not the ulti-
mate service quality delivered to end users, such as the retrieval
latency of a Web page experienced by a user. We need to bridge
the gap between network layer performance and the correspond-
ing application layer performance.

We begin our study with designing a new generic experimental
testbed. The testbed is a combination of emulation and simula-
tion. The composite setting provides a simple and accurate ex-
perimental environment to study the behavior of the effect of net-
work performance metrics on the applications. We study the end-
to-end performance of various user applications on the testbed.
Due to the space limitation, we focus on estimating latency of
Web retrieval. We propose a new TCP short connection perfor-
mance model which estimates the retrieval latency of a HTTP re-
quest given the requested file size and the network delay and loss
characteristics apriori. In our study, the network performance is
modeled by network delay and loss rate. We also assume that the
losses are random and path symmetric.

Section II describes our testbed setting. Section III studies
the Web performance under different network performance met-
rics and proposes a new model to estimate the latency of Web
retrieval. Section IV addresses related work in the literature. We
conclude our work in Section V.

Jia Wang is with AT&T Lab - Research, Florham Park, NJ, USA; Yu Zhang is
with Cisco Systems, Inc., CA, USA; Srinivasan Keshav is with Ensim Corp., CA,
USA. The work was done at Cornell University.

Application
entity

Application
entity

Virtual Link

Fig. 1. The network model.

Client

Server Entrapid

m1

m0

eth1eth1

eth2 et
h2

172.16.4.2 172.16.4.3

172.16.5.3

17
2.

16
.5

.3

w

lady pdt

Fig. 2. The testbed setting: machine lady runs application entities and machine
pdt runs the Entrapid.

II. EXPERIMENTAL TESTBED SETTING

Our experimental environment is modeled as two components:
the application entities (e.g., Web browsers and Web servers) and
the network connecting them (Figure 1). The rationale behind is
that, from the point of view of the applications, the network be-
tween two application entities can be abstracted as a virtual link
with its characteristics defined by the network performance met-
rics. Correspondingly, our testbed consists of a simulated net-
work using the Entrapid simulator [8] and real implementation
of applications connected to the simulated network using the Re-
alNet technology in the Entrapid. This composite setting has two
advantages: (i) Simplicity. We eliminate the need to modify, re-
compile, and relink applications with the network simulator; (ii)
Accuracy. Since the implementation of applications is not mod-
ified, the behavior of the applications is exactly as it would be
were it running on an actual network.

Figure 2 shows the testbed setting. We denote each Ethernet
interface by its IP address. The testbed consists of two PCs (run-
ning Linux 2.0.34.) connected by two Ethernet cables with En-
trapid simulator running on one and the application entities run-
ning on the other. We use Entrapid to simulate the network en-
vironment expected to examine. Inside the Entrapid, two virtual
machines, m� and m�, and a virtual link w connecting m� and
m� are created to simulate the network. We bind each virtual ma-
chine to a network interface (i.e., m� to the interface 172.16.4.3
and m� to the interface 172.16.5.3). We also bind the application
entities, which are running on the other PC, to specified network
interfaces. For instance, we bind the application client to the in-
terface 172.16.4.2 and bind the application server to the interface
172.16.5.2.

The routing tables at the network interfaces of these two ma-
chines are configured in such a way that all packets exchanged
between the application entities are enforced to go through the
virtual link w. For example, a client HTTP request will traverse
the interface 172.16.4.2, interface 172.16.4.3, virtual machine
m�, link w, vitual machine m�, interface 172.16.5.3, interface
172.16.5.4 and arrives at the server. The server’s reply will tra-
verse all the way back to the client. By tuning the delay and
loss characteristics of the link w, we simulate different network
environment of interest and study user applications performance.



0

50

100

150

200

250

0 0.5 1 1.5 2 2.5 3 3.5 4

(a) Delay vs. Offered Load 

D
el

ay
 (

m
s)

Offered Load

mean delay
delay std. dev.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.5 1 1.5 2 2.5 3 3.5 4

Droprate
(b) Packet Loss Rate vs. Offered Load

Offered Load

P
ac

ke
t 

L
o

ss
 R

at
e

Fig. 3. The observed network performance metrics (mean packet size = 512
bytes): (a) mean and variance of packet delay vs. offered load, (b) packet
loss rate vs. offered load.

III. ESTIMATING WEB PERFORMANCE

We study the Web performance under different network char-
acteristics using the testbed described in Section II. The goal
of our experiments is to study the behavior of HTTP flow in the
face of various network delay and loss characteristics. We con-
sider the high network offered load as a major contributor to the
increasing network delay and loss rate and focus on the effect of
the network offered load on the Web retrieval latency.

A. Methodology

We use a simple HTTP browser as the Web client and Apache
1.3.4 as the Web server. Both the HTTP requests and responses
will go through the virtual link in the Entrapid, which simulates
a network of specific delay and loss characteristics. The user
perceived performance of Web browsing is mainly measured by
the retrieval latency of a HTTP request, defined as the period
between the time the request is issued and the time the entire
response message is received. In our study, we use the transfer
time of the underlying TCP[15] connection as an approximation
of the retrieval latency. The observed network performance under
various network offered load is shown in Figure 3.

Each experiment includes multiple trials under a specific net-
work configuration and Web page size to achieve high stability
(i.e., error � ��) of the results. In each trial, the client retrieves
a file (without embedded objects) of a fixed size from the server.
The Web client opens up a new TCP connection for the requested
file. The actual transfer size on the TCP connection is approxi-
mately the file size. We deliberately set the file size to capture the
typical transfer size of the underlying TCP connection for Web
retrieval, in order to illustrate the typical retrieval latency experi-
enced by the user. We choose the file sizes� to be 3KB and 10KB
for HTTP/1.0 and 30KB for HTTP/1.1, respectively.

B. Experimental results

We vary the network offered load (normalized by the network
bandwidth) in the range of �� � ���� and measure the result-
ing retrieval latency. We observe that the effect of the network
offered load on the retrieval latency of a file is a combination of
that of the packet delay and the loss rate. We decouple the effects

�In generic HTTP/1.0 [4], the client opens up a new TCP connection to retrieve
each object embedded in a Web page, which results in the median and average
transfer sizes to be � � �KB and � � ��KB, respectively [5]. In HTTP/1.1, a
persistent TCP connection can be used to retrieve several objects [7]. Pipelining
allows the client to pipeline all the requests for the embedded objects in a page
and the server to pipeline all the corresponding responses. The resulting average
transfer size of a TCP connection, which can be roughly estimated as the average
size of all the data on a web page, becomes �� � ��KB [12].

of the packet delay and the loss rate by examining their individual
effects and the correlation between them.

Figure 4(a) shows that the retrieval latency heavily depends on
the network conditions. As the network offered load increases,
both the packet delay and the loss rate increase, which results in
a rapid growth of the object retrieval latency. Figures 4(b) and
(c) show the individual effects of the packet delay and the loss
rate on the object retrieval latency, respectively. The latency in-
creases approximately linearly with the increasing of the mean
packet delay, but much more drastically with that of the loss rate.
As the loss rate increases, the file transfer subjects to more se-
vere TCP retransmission and congestion control to avoid insta-
bility. The increasing number of retransmissions and retransmis-
sion timer backoffs lead to a superlinear growth of the retrieval
latency, which is the total time needed to deliver all the request
and response packets.

In addition, we observe that the effect of the offered load on the
retrieval latency is approximately a straightforward summation
of the individual effects of the packet delay and the loss rate. In
other words, for a certain network offered load ld, the resulting
retrieval latency r�ld� is approximately the sum of the latency
r��pd�ld�� caused by the packet delay pd�ld� corresponding to
the offered load ld and the latency r��lr�ld�� caused by the loss
rate lr�ld� corresponding to the offered load ld. It implies that
the effects of the packet delay and the loss rate can be decoupled
and studied individually.

C. Modeling TCP performance

Wealth of evidence suggests that TCP connections for HTTP
requests are short, often around 10KB and often suffer high
packet loss rates in the neighborhood of 5� [5]. We focus on
deriving a TCP short connection model� to provide a quantita-
tive explanation of the experimental results shown above. Our
model is motivated from [5].

C.1 Analytical model

The data transfer can be modeled as an initial connection es-
tablishment handshaking, followed by alternating phases of slow
start and RTO runs, where an RTO run is a series of successive
retransmission timeouts for one packet [5]. The transfer time is
t � thandshk � tRTO � txfer, where thandshk, tRTO , txfer are
the time spent on handshaking, timeouts, and slow start.

C.1.a Effective packet loss rate p. Assume a TCP receiver
that implements delayed acknowledgment sends one ACK for
roughly every b �b � �� packets. A data packet appears to be
lost in two cases: (i) the data packet gets lost (or overly delayed);
(ii) the data packet is delivered successfully, but its ACK (sent as
a separate packet or piggybacked) gets lost (or overly delayed).
The sender cannot distinguish these two cases and both of them
can potentially trigger a retransmission timeout. Suppose each
data packet triggers an ACK packet, the effective packet loss
rate� (i.e., the timeout probability) is p � pl � pl � �� � pl�,

�Our development and evaluation of the TCP short connection model are pri-
marily based on the TCP specification of Linux 2.0.34.
�Due to delayed acknowledgment, a data packet does not necessarily trigger

an ACK, hence the computation of the exact effective packet loss rate is very
complicated. However, we can use p � pl � pl � �� � pl� as a reasonable
approximation.



0

20

40

60

80

100

120

140

160

180

200

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(a) Latency vs. Offered Load 

La
te

nc
y 

(s
ec

)

Offered Load

file size 3KB

file size 30KB
file size 10KB

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50 60 70 80

(b) Latency vs. Delay

Delay (ms)

La
te

nc
y 

(s
ec

)

file size 3KB

file size 30KB
file size 10KB

0

20

40

60

80

100

120

140

160

180

0 0.05 0.1 0.15 0.2 0.25

(c) Latency vs. Packet Loss Rate

La
te

nc
y 

(s
ec

)

Packet Loss Rate

file size 3KB

file size 30KB
file size 10KB

Fig. 4. The Web retrieval latency: (a) retrieval latency vs. offered load, (b) retrieval latency vs. packet delay, (c) retrieval latency vs. packet loss rate.

3 6 12 24 48 96 120

IT0

6 12 24 48 96 120

2*IT0 4*IT0 8*IT0 k*IT0

2*IT0 4*IT0 k*IT0

120

120

(p,0,3) (p,0,6) (p,0,12) (p,0,24) (p,0,48) (p,0,96)
(p,0,120)

(p
,0

,6
)

(p,0,2*IT0) (p,0,4*IT0) (p,0,k*IT0)

(p
,0

,1
2)

(p
,0

,2
4)

(p
,0

,4
8)

(p
,0

,9
6)
(1-p,1,0)

(p
,0

,2
*IT

0)

(p
,0

,4
*IT

0)

(p
,0

,k*
IT

0)
(p,0,120)(1-p,1,0)

(1-p,1,0)

(1-p,1,0)

(1-p,1,0)

(1-p,1,0)

(1-p,1,0)

(1-p,1,0)

(1-p,1,0)

(1-p,1,0)

(1-p,1,0)

(1-p,1,0) (1-p,1,0) (1-p,1,0) (1-p,1,0) (1-p,1,0)

(1-p,1,0) (1-p,1,0)

(1-p,1,0)

(1-p,1,0)

(p,0,IT0)
(1-p,1,0)

(p,0,120)

(p,0,rto)

start

first-send node resend node p: effective packet loss rate

(1
-p

,1
,0

)

IT0: Initial RTT-based RTO value

Fig. 5. The evolution of RTO value in the data transfer phase.

where pl is the packet loss rate. We use the effective packet loss
rate p throughout the estimation in this paper. Let data be the
number of data segments to transfer, l be the number of losses
during transferring this amount of data, w be the initial cwnd for
the data transfer phase, RTT be the round trip time, and T � be
the average start RTO value of an RTO run, then the effective
loss rate is p � l��data� l�. Thus, l � p � data���� p�.

C.1.b Estimating tRTO . The tRTO is the time spent on timeout
during the data transfer phase. For the sake of simplicity, we ig-
nore fast retransmission and fast recovery, and simplify delayed
acknowledgment as the rule of generating one ACK per two seg-
ments. The probability that a particular loss will incur a retrans-
mission timeout can be estimated as follows [5]. If p � �, then

Q�p� � �; if p � �, then Q�p� � min��� 	�
q

�
�bp �. Therefore,

the number of retransmission timeouts experienced by a flow is
n � l �Q�p�. We take the loss rate p as the probability that RTO
occurs for a send, so the number of RTOs in an RTO run is a
geometric distribution with a mean of ����� p�, and the number
of RTO runs, denoted by u, is u � n

�

��p

� l �Q�p� � ��� p�.

The evolution of RTO value (in Linux 2.0.34) is depicted as a
state transaction diagram in Figure 5. Each node stands for a data
sending (i.e., transmission or retransmission). The value associ-
ated with each node is the RTO value used to set the retransmis-
sion timer for that data sending. The start point corresponds to
the first transmission of the first packet with the RTO timer set to
3 seconds. Associated with each edge is a tuple (prob, num pkt,
time), where prob is the probability of taking this edge, num pkt
is the number of packets delivered by taking this edge and time is
the time added to the total timeout time by taking this edge. Each
node with the RTO value rto can take one of two edges:
Timeout edge (p, 0, rto). With probability p, the packet fails to be
delivered and a timeout occurs. The rto will be added to the total
timeout time. Upon a timeout, the RTO value doubles (i.e., re-
transmission timer exponential backoff). So the value associated
with the node pointed to by this edge is � � rto.

Send-success edge (1-p, 1, 0). With probability �� p, the packet
is delivered successfully, and the total timeout time remains the
same. Two cases need to be distinguished. (i) The packet de-
livery succeeds on its first attempt. Upon receiving an ACK for
this packet, the sender performsRTT estimation and updates the
RTO value. Therefore, the RTO value for the end node of this
edge should be an RTT -based RTO value IT�. (ii) The packet
delivery succeeds after more than one attempts. According to
Karn’s algorithm [10], the ACK for this packet does not trigger
RTT estimation and RTO update. The RTO value for the end
node of this edge is still rto. We determine which case a node
is in when it takes a send-success edge by examining the edge
through which it is reached. If the edge is a send-success edge,
the node is a first transmission of a packet (first-send node de-
picted as a circle in Figure 5) and it is in Case (i). If the edge is a
timeout edge, the node is a retransmission (resend node depicted
as a dot in Figure 5) and it is in Case (ii).

Since the maximum RTO value is clamped down at 120 sec-
onds, the “doubling chain” of RTO value is finite. A typical
RTO run starts from a first-send node, followed by one or more
timeout edges and resend nodes, and ends with a send-success
edge and a first-send node. T� is the RTO value associated with
the start node in an RTO run. For simplicity, we assume that
srtt � RTT � � � delay and mdev � srtt

� . Since the mini-
mum RTO value is specified to be 200ms in Linux, the RTT -
based RTO value is a constant max�srtt�
�mdev� ���ms� �
max�	 � srtt� ���ms� � max�� � delay� ���ms�.

However, it is hard to get the analytical form of tRTO . If
we can compute the expected duration of a single RTO run tu,
then by using the expected number of RTO runs u, we can
approximate tRTO as u � tu. Let T�m denote the first RTO
value for an RTO run of data packet m, tum denote the ex-
pected duration of this RTO run. Our further analysis on Fig-
ure 5 shows that T�m � f�T��m����, tum � E�h�T�m�, and

tu � �
data

dataP
m��

tum, where f and h are non-linear functions. So

tRTO � E�g�T��� T��� � � � � T��data�, where g is a complicated
non-linear function, and T��� T��� � � � � T��data are random vari-
ables whose distributions are unknown.

In principle, once we have the evolution graph of the RTO
value, given the number of data segments to send, denoted by
data, we can compute tRTO as follows. Let P denote the set
of all paths with the sum of num pkt of all edges along each
path equal to data. Each path represents a possible way timeouts
occur during the data transfer. So the expected timeout time for
the data transfer is

tRTO �
X

path p � P

the probability of taking p � the timeout time spent on p



�
X

path p � P

�Y
prob of edges along p

�
�

�X
time of edges along p

�

In effect, this is equivalent to the simulation approach, which
is usually used when we are interested in computing � �
E�g�X�� X�� � � � � Xn�, where g is some specified function, but
it is not possible to analytically compute �. Using this approach,
we generate sufficiently many combinations of X�� X�� � � � � Xn,
compute the corresponding g�X�� X�� � � � � Xn�, and use the av-
erage of these function values as an estimate of � [16]. In our
case, we don’t have analytical form of the function g, but we
can compute the function value using Figure 5. By simulating a
whole run of Figure 5 sufficiently many time (where a run starts
with sending the first packet and ends when number of data
packets are sent successfully), and measuring the RTO time in
each run, we effectively generate sufficiently many combinations
of T��, T��, � � �, T��data, and compute g�T��, T��, � � �, T��data�.
We can use the average RTO time per run as a reasonable esti-
mate for tRTO . By using this simple and efficient approach, we
are able to avoid the complexity of real TCP simulator, and work
around the intricacy of deriving a pure analytical model as well.

C.1.c Estimating thandshk. We take timeouts during handshak-
ing into account and model handshaking time as a special case
of data transfer phase. Figure 6 shows the 3-way handshaking on
the TCP connection for a Web retrieval session. The case when
no packet is lost during this phase is depicted in Figure 6(a).
The Web client initiates the connection establishment by send-
ing a SYN packet to the Web server. On receiving the SYN,
the server sends its own SYN with an ACK for the client’s SYN
piggybacked (i.e., the SYN/ACK packet). When the SYN/ACK
reaches the client, it triggers a separate ACK packet from the
client to the server. At this point, the client enters into ESTAB-
LISHED state. It sends out the first data packet (the HTTP re-
quest) to the server with the ACK for the server’s SYN piggy-
backed. Only when the server receives the ACK for its SYN
either piggybacked or sent as a separate packet, will it enter into
ESTABLISHED state and start to send data packets. In Linux
2.0.34, the first SYN and SYN/ACK packets are both sent with
the retransmission timer set to 3 seconds, while the ACK packet
is sent without any retransmission timer set and sent only once.

Retransmission (and possible backoff) happens when there is
packet loss. Whenever the SYN packet or the SYN/ACK packet
gets lost, it will be retransmitted and the retransmission timer
keeps backing off until it is finally delivered (Figure 6(b) and
(c)). If the last ACK packet gets lost, the client counts on the
first data packet sent to the server to piggyback the ACK. As
usual, the data packet may be retransmitted several times before
it reaches the server (Figure 6(d)). Thus, we estimate thandshk as
thandshk � thsxfer�thsRTO, where thsxfer is the transfer time
of the packets during handshaking, and thsxfer � ����RTT and
thsRTO is the time spent on timeout during this phase.

We can view the 3-way handshaking phase as the concate-
nation of two special data transfer phases whose tRTOs can
be efficiently estimated by simulation. The first phase is
a reliable transfer of the client’s SYN packet, including the
(re)transmissions of SYN and SYN/ACK. Let thsRTO� denote
the timeout time in the first phase. It can be computed as tRTO
in a data transfer phase for one data packet with the effective loss

rate p � pl � pl � �� � pl�. The second phase can be one of
two cases: (1) with probability �� � pl�, it is a successful trans-
mission of the ACK packet, with the timeout time equal to 0; (2)
with probability pl, it is a loss of the ACK packet, followed by the
(re)transmissions of the first data packet of the client until it suc-
cessfully arrives at the server. Let thsRTO� denote the timeout
time in this case. It can be computed as tRTO in a data transfer
phase for one data packet with the effective loss rate p � pl (since
only the first data packet not its ACK need to be successfully de-
livered). Finally, the timeout time in the handshaking phase is
thsRTO � thsRTO� � pl � thsRTO�.

C.1.d Estimating txfer. In our model, txfer is estimated in
a way similar to that proposed in [5] except the initial cwnd of
the data transfer phase. Since the slow start phase are alternating
with RTO runs, the number of slow start phases is v � u � �.
The average data sent per phase is e � data�l

v
. Consider the

progress of TCP in slow start mode in terms of rounds whose
durations are equal to one RTT . Let cwndi be the cwnd of the
sender at the beginning of round i. cwnd i is a geometric series
with ratio r � � � �

b
.

In Linux 2.0.34, the initial cwnd depends on the result of
the slow start and congestion avoidance during handshaking.
When the TCP connection is initialized, cwnd is one MSS and
ssthresh is some very large number. With probability ��� p��,
no loss happens to SYN and SYN/ACK packets during hand-
shaking, cwnd becomes two MSS and ssthresh remains the
same for both the client and the server when they start send-
ing data packets. Once either SYN or SYN/ACK ever gets lost,
cwnd becomes one MSS and ssthresh becomes zero upon the
retransmission timeout and cwnd remains one MSS till the end
of handshaking. Thus the initial cwnd size w (measured by the
unit of MSS) is w � ��� p�� � �� ��� ��� p��� � �, and txfer
can be estimated as txfer � v � logr �e�r � ���w � �� � RTT .

C.2 Performance

We examine accuracy the new model and compare with the
model in [5] (referred as Model C) and measurement results. Due
to the space limitation, we only provide an outline of the results,
interested readers can refer to [17] for details.

Figure 7 shows the estimations of the transfer time of a fixed-
size file for varying network offered load. The curve mea-
sure is the measured latency curve as in Figure 4. The curves
Model C low and Model C high are both latency estimated us-
ing Model C with same RTT � � � delay, number of data
packets data � file size + HTTP header size

�	
� , initial cwnd w � �,
measured T�, but different effective packet loss rates, i.e., p � pl
and p � pl � pl � �� � pl�, respectively	 . The curve new
model is the latency estimated by our new model. We observe: (i)
the absolute error of the estimated latency when the offered load
� ��� is relatively small for both models; (ii) the new model is
more accurate than Model C in all the cases; (iii) Model C under-
estimates the latency due to the underestimation of the effective
loss rate; (iv) Model C with corrected effective loss rate overes-
timates due to the inaccurate modeling of the clamp-down timer

�Model C low actually refer to the model in [5]. We also plotted the results of
Model C by using the correct effective loss rate model (referred as Model C high)
to examine its effect on estimating HTTP retrieval latency.



Client Server

t t

SYN

SYN/ACK

SYN

SYN/ACK

ACK

(c)

3 sec

3 sec

ESTABLISHED

ESTABLISHED

Client Server

t t

SYN

SYN/ACK

ACK

1st DATA/ACK

1st DATA/ACK

(d)

3 sec

ESTABLISHED

ESTABLISHED

Client Server

t t

SYN

SYN/ACK

ACK

(a)

ESTABLISHED
ESTABLISHED

Client Server

t t

SYN

SYN/ACK

ACK

(b)

SYN

3 sec

ESTABLISHED

ESTABLISHED

Fig. 6. Four cases of the 3-way handshaking: (a) no packet loss, (b) the SYN packet is lost, (c) the SYN/ACK packet is lost, (d) the last ACK is lost.

0

10

20

30

40

50

60

70

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(a) Latency vs. Offered Load (file size = 3KB)

La
te

nc
y 

(s
ec

)

Offered Load

measure
model C low

model C high
new model

0

20

40

60

80

100

120

140

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(b) Latency vs. Offered Load (file size = 10KB)

La
te

nc
y 

(s
ec

)

Offered Load

measure
model C low

model C high
new model

0

50

100

150

200

250

300

350

400

450

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(c) Latency vs. Offered Load (file size = 30KB)

La
te

nc
y 

(s
ec

)

Offered Load

measure
model C low

model C high
new model

Fig. 7. Offered load vs. retrieval latency: (a) file size = 3KB, (b) file size = 10KB, (c) file size = 30KB.

[5]. We also examine the file transfer time when the loss rate = 0
and delay varies, and delay = 0 and loss rate varies. We observe
that the new model over-performs Model C in all the cases.

In summary, we observe that the new model provides an accu-
rate estimation of the retrieval latency and out-performs Model C
[5] in all the cases. Comparing to the measurement results, when
loss rate is high (i.e., � ���), the new model overestimates for
small transfer sizes (i.e., � 3KB) and underestimates for large
transfer sizes (i.e., � 30KB), but fits well with moderate transfer
sizes (i.e., � 10KB). We explain the reason in [17].

IV. RELATED WORK

Previous work on study network performance and its effect on
applications relies on purly simulation (e.g., NS simulator [14])
or real measurements. Our testbed is a combination of simulation
and emulation, which is novel in this field to our best knowledge.
No similar approach has been proposed in previous work. On
modeling TCP performance, most of the existing TCP perfor-
mance models analyze the steady-state throughput of long bulk-
transfer TCP connection with or without packet loss[6] [9] [11]
[13]. The only model of TCP short connection performance is
proposed in [5]. We have shown that our new model is more
accurate than the one proposed in [5].

V. CONCLUSIONS

In this paper, we designed a novel composite testbed which is
a combination of simulation and emulation. The former gives us
manageability and efficiency by allowing us to impose changing
network characteristics of various network environments, such as
LAN, WAN, and wireless networks directly and easily, without
sacrificing accuracy. The latter gives us great flexibility by al-
lowing us to hook various kinds of applications to the simulated
network as easily as in a real network environment.

We use this testbed to study the end-to-end performance of
various user applications. We focus on estimating the Web re-
trieval latency. We show that the retrieval latency increases lin-
early with the packet delay but nonlinearly with the packet loss
rate. To provide a quantitative explanation, and to estimate the

latency of Web retrieval given the requested file size, we develop
a TCP short connection performance model which estimates the
transfer time of the requested file size on the underlying TCP
connection. Our experimental results show that the new model is
more accurate than the existing model [5].

REFERENCES

[1] Y. Bernet et al., A framework for differentiated services, Internet Draft
�draft-ietf-diffserv-framework-02.txt�, Feb. 1999.

[2] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, An
architecture for differentiated services, Internet RFC 2475, Dec. 1998.

[3] R. Braden, D. Clark and S. Shenker, Integrated services in the Internet
architecture: an overview, Internet RFC 1633, June 1994.

[4] T. Berners-Lee, R. Fielding, and H. Frystyk, Hypertext transfer protocol -
HTTP/1.0, Internet RFC 1945, May 1996.

[5] N. Cardwell, S. Savage, and T. Anderson, Modeling TCP Latency, Proc.
of Infocom’00, 2000.

[6] S. Floyd, Connections with multiple congested gateways in packet-
switched networks, part 1: one-way traffic, ACM Computer Communi-
cations Review, 21(5), Oct. 1991.

[7] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee, Hypertext
transfer protocol - HTTP/1.1, Internet RFC 2068, Jan. 1997.

[8] X. Huang, R. Sharma, and S. Keshav, The ENTRAPID protocol develop-
ment environment, Proc. of Infocom’99, Mar. 1999.

[9] A. Kumar, Comparative performance analysis of versions of TCP in a local
network with a lossy link, IEEE/ACM Trans. on Networking, 6(4), Aug.
1998.

[10] P. Karn and C. Partridge, Improving round-trip time estimates in reliable
transport protocols, Proc. of ACM Sigcomm’87, pp. 2-7, August 1987.

[11] T. V. Lakshman and U. Madhow, The performance of TCP/IP for networks
with high bandwidth-delay products and random loss, IEEE/ACM Trans.
on Networking, June 1997.

[12] B. A. Mah, An empirical model of HTTP network traffic, Proc. of Info-
com’97, Apr. 1997.

[13] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, The macroscopic behavior
of the TCP congestion avoidance algorithm, ACM Computer Communi-
cations Review, 27(3):67-82, July 1997.

[14] UCB/LBNL/VINT Network Simulator - ns (version 2),
http://www.isi.edu/nsnam/ns/.

[15] J. Postel, Transmission control protocol, Internet RFC 793, Sept. 1981.
[16] S. M. Ross, Introduction to Probability Models (6th Edition), pp598-599,

Academic Press, 1997.
[17] Y. Zhang, J. Wang, and S. Keshav, The implication of network perfor-

mance on service quality, Technical Report TR99-1754, Department of
Computer Science, Cornell University, July 1999.


