
1

Detection and Repair of Faulty Access Points
H.J. Pan and S. Keshav

School of Computer Science, University of Waterloo
Waterloo, ON, Canada, N2L 3G1

Abstract—In large-scale infrastructure wireless networks several access
points (APs) may be unusable at any given moment in time. Unlike com-
pletely failed APs, whose failure can be detected by probes to their wired
interface, an AP with a faulty wireless interface or whose antenna has been
accidentally shielded can only be diagnosed by the actual use of the wire-
less interface for data communication. We present several algorithms that
detect such failed access points by online analysis of AP usage logs. In par-
ticular, we demonstrate that we can exploit device mobility to detect faulty
APs. We also present efficient heuristics to select a path for a technician
to repair failed access points. We evaluate our algorithms using actual log
files from an infrastructure network at Dartmouth College. We find that
our best algorithm is able to detect nearly 90% of failed access points sim-
ply by processing log files. Compared to a naive approach, our algorithm
has more than six times fewer false positives. We are also able to construct
tours that are up to an order of magnitude more effective that a straightfor-
ward greedy approach. Our algorithms require no modifications to either
APs or devices. We believe that these properties make our work immedi-
ately applicable to real-world scenarios.

I. I NTRODUCTION

There has been a recent upsurge in the deployment of IEEE
802.11-based large-scale wireless infrastructure networks. Sev-
eral encompass entire cities or large geographical areas (up to
700 square miles in a notable example) . Detecting failed APs in
such large-scale infrastructure wireless networks, where at any
given point in time one or more access points may be unusable,
is a difficult problem. For instance, in a network with, say, 4000
APs, with a failure rate of 1%, 40 APs would be faulty at any
time. Some of these may be in highly trafficked areas where a
failed AP would inconvenience many people. Moreover, a faulty
AP may respond to status probes to its wired interface, yet may
have a faulty or accidentally blocked radio preventing its use by
mobile devices: such failures can only be diagnosed by the use
of the wireless interface for data communication. However, it is
both inconvenient and expensive to have a device walk or drive
by every AP just to monitor the wireless interface. We, there-
fore, believe that detection of failed APs is an interesting and
challenging open problem.

In this paper, we study implicit detection of access point fail-
ure by leveraging device mobility to improve detection. We also
present heuristics to compute a path that a technician should take
in order to repair the faulty APs.

We assume that there is a central location or management
server that collects usage logs when a mobile device enters (and
potentially when it exits) an access point. Such logs record ei-
ther 802.11 MAC-level association and dissociation requests or
reassociation requests in the Inter-Access Point Protocol (IAPP)
[9]. We call each such request areport. Existing APs already
support such logging, and multi-year traces of log files are pub-
licly available, for instance from Dartmouth College [5]. In the

This research was supported by grants from the National Science and Engi-
neering Council of Canada, the Canada Research Chair Program, Nortel Net-
works, Sun Microsystems Canada, Intel Corporation, and Sprint Corporation.

unlikely eventuality that APs do not support this feature, we as-
sume that the mobile sends a short message with its own ID and
the MAC address of the AP to a network operation centre (NOC)
every time it enters an AP. We hope to detect failed APs, with
high probability, by analyzing these logs. Note that because this
is a passive approach,we do not require any modifications to
existing clients or APs.

Our contributions are threefold. First, no reports may be re-
ceived from a particular AP either because it is faulty or because
no mobile happened to go past that AP. Any passive diagno-
sis algorithm needs to distinguish between these situations. We
present a novel technique that exploits device mobility to aid
faulty AP diagnosis. We show that this technique far outper-
forms a naive approach in terms of false positives.

Second, once we know which APs are likely to have failed,
we need to send a technician to diagnose and potentially re-
pair these APs. Ideally, the technician should be able to visit
all failed APs. But, for wide-area deployments, or those that
cover large metropolitan areas, this may be impossible. So, we
would like to construct a tour that is shorter than some predeter-
mined maximum but diagnoses as many of the ’popular’ APs as
possible. Such multi-objective tours are known to be NP-hard
[4]. Therefore, we need heuristics to generate efficient tours.
We present a best-in-class approach to multi-objective tour con-
struction that efficiently solves the AP touring problem.

Third, we show that probabilistic approaches, that measure
and correlate transition rates between APs, appear to be infeasi-
ble, because of the non-stationarity of the device mobility pro-
cess.

Section II presents the system model. Section III describes
several algorithms to detect failed access points by online analy-
sis of AP usage logs. In Section IV and V, we present our heuris-
tic for tour generation based on the Ellipse algorithm [3]. We
evaluate our algorithms using actual log files from an infrastruc-
ture network at Dartmouth College in Section VI. We present
related work in Section VII and conclude in Section VIII.

II. SYSTEM MODEL

We assume that the system hasN access points indexed
by i and M mobiles. Time is quantized into fixed length
time periods of arbitrary duration; typically about an hour. Let
A(t, i) be 1 if the network operations center has heard a report
from AP i during time periodt, 1 ≤ t ≤ T , whereT is the most
recent time period. For example, if the operations center re-
ceives 7 reports from AP 5 during time period 23,A(23, 5) = 1.
Let Path(j, k) denote the ID of thekth AP encountered by mo-
bile hostj on its path (more than one AP may be encountered
during a single time period). For instance, if mobile 2 consecu-
tively visits AP 4 and AP 7, thenPath(2, 1) = 4, Path(2, 2) =
7. Note thatA(t, i) andPath(i, j) can be passively computed

2

from the set of reports received by the network operations cen-
tre.

III. FAILURE DETECTION ALGORITHMS

In this section, we present three algorithms that use theA and
Path arrays to compute the set of failed APs. In the sequel,
p(t, i) denotes the probability of APi being up (i.e. not faulty)
at the end of time periodt.

A. Naive Algorithm

This memoryless straw man algorithm simply marks all APs
not heard from in the current time period as being faulty. In other
words, p(T, i) = A(T, i). This naive algorithm allows us to
benchmark the performance of more sophisticated algorithms.

B. Dynamic Bayesian (DB) Algorithm

We now extend the naive algorithm to take history into ac-
count. Intuitively, the longer we haven’t heard from an AP, the
greater the probability that it is faulty. Our approach is a vari-
ation of the well-known Dynamic Bayesian approach [11]. For
this approach, we require a prior distribution on the probability
that an AP is faulty, denoted byf0. The probability that an AP
is up at each time period is initially assigned a value of 1, that
is, ∀i, p(0, i) = 1. At time periodt, if we havent heard from
AP i, we reduce its probability of not being faulty by a factor of
1 − f0. At time T , we computep(T, i) by updating the current
value ofp i.e. p(T − 1, i) as shown below.

if A(t, i) = 0, then p(t, i) = p(t-1, i)*(1-f0)
if A(t, i) = 1, then p(t, i) =1

C. Anomalous Paths (AnP) Algorithm

The two algorithms presented above do not use path infor-
mation. We now describe how to exploit device mobility i.e.
path information, for fault detection. In Section VI, we show
that this technique substantially improves on the previous two
algorithms.

Recall that the usage logs allow us to recover the path of APs
traversed by each mobile device. The union of these paths, col-
lected over a sufficiently long period of time, allows us to com-
pute theneighbor graph1 [9], an undirected graph where ver-
tices represent APs and an edge connects links vertexi to vertex
j if APj follows APi in some path. Given a neighbor graph col-
lected over say, a few months time, we can use observed path
fragments to detect anomalous paths that suggest AP outages.

For example, consider three access points A, B, and C that are
located adjacent to each other in a long hallway with no exits
(Figure 1).

A B C

Figure 1: The simple case

A and B are neighbors in the neighbor graph and we expect
these two APs to appear after each other in the path ofevery
mobile terminal that traverses the hallway. So if a path fragment

1Unlike the work cited here, where neighbors are defined by means of an
IAPP reassociation relationship, we call AP A and B neighbors if any mobile
has associatedor reassociated with AP B after having been associated with AP
A

from a mobile has one of the two APs but not its successor, we
can guess that the successor AP is faulty. For instance, if we see
a path fragment ’AC’, we can guess that B is faulty.

Determining which AP is faulty is easy when mobile paths
are constrained and each AP has a unique successor. However,
we can still make a good guess even if successors are not unique.
Consider the situation in Figure 2.

A B C

D

E

Figure 2: A harder case

Here, both B and D can follow A, so A does not have a unique
successor. Nevertheless, if we see a path fragment ’AC’, we can
guess that B is faulty.

This form of inference requires every successor of every node
to have one or more unique successors i.e. the graph should be
tree-like. However, graphs may have cycles. Consider Figure 3.

A B C

Figure 3: An undetectable case

Here, both ’ABC’ and ’AC’ are valid paths. If we see ’AC’
we cannot say anything about the status of B. Therefore, a fault
at B isundetectableusing our approach.

However, we can still make inferences if we augment topo-
logical analysis with presence data. Consider Figure 4.

A

B

C

D

E���
���

���
�

HHH
HHHH

HHH

H
HHH

HHH
HHH

���
���

���
�

Figure 4: The general case

Suppose we see a path fragment ’AE’. We can infer that one
of B,C, or D is faulty. If, in the past time period we have pres-
ence reports from C and D, we can eliminate them to determine
that B is likely to be faulty.

We now formalize the definition of the anomalous path algo-
rithm. The algorithm proceeds in two phases. In the observation
phase, the neighbor graph is constructed. We define the neigh-
bor graphG(V,E) as a graph where each vertex corresponds
to an AP, and there is an edge between two verticesA andB,
denotedA− B, if a mobile associates with these two APs con-
secutively during the observation period. If the observation pe-
riod is long enough, the neighbor graph will include all possible

3

neighbor transitions. However, note that, due to failures and re-
pairs during the observation period, there are likely to be spuri-
ous edges in a real-life neighbor graph. Unfortunately, these are
unavoidable. In practice, it will be necessary to remove these
spurious edges explicitly; for the purposes of our analysis, we
will assume that this has been done.

During the detection phase, in each time period, for all the
M mobiles, we examine path fragments that lie within that time
period. If a path fragment has a transitionA → B such that
A− B is not an edge inG, then we form thecandidate set C,
C = {V : A − V ∈ G andV − B ∈ G }. Next, we pruneC
by removing allV ∈ C, s.t. A[T, V] = 1. We declare all the
APs left in C as being faulty. As a refinement, to prevent too
many false positives, we do not declare any AP to be faulty if
C has more than a threshold number of elements. This general
algorithm is sufficient to detect anomalies of the form described
in Figures 1, 2 and 4, but not 3.

D. Markovian approach

Anomalous-path based fault detection fails when we have a
situation similar to that in Figure 3, where an P has a link to a
neighbor as well as to that neighbor’s neighbor. Nevertheless, in
such cases, changes in link traversal rates might still give some
indication of faults.

In Figure 3, suppose that, over a long observation period, we
find that of 100 mobile users who come to AP A, 80 associate
next with B, and 20 associate next with C. If B were to fail, then
all 100 would associate next with C, allowing us to detect B’s
failure.

Indeed, it is tempting to model the neighbor graph as a
Markov chain, with the APs corresponding to Markov states and
transitions between APs modeled as Markov transition probabil-
ities. Then, a fault could be detected by the discrepancy between
the observed transition rate and the underlying Markov chain.

Unfortunately, this approach has a problem both subtle and
insidious. Fundamentally, the issue is that the transition from
one AP to another is heavily time dependent. For example, in
Figure 3, if AP A is in a classroom, and its neighbors B and C
are in another classroom and in a residence hall respectively, the
rate of transition to B will be higher during class hours than after
hours. In general, the transition rates from one AP to another
may depend in detail on the time of day, day of week, and week
of year.

How can this be modeled? We believe that are only two op-
tions. One would be to compute transition probabilities for each
set of time period clusters that have ’similar’ behavior. So, for
instance, we could model ’working’ and ’non-working’ times
and so on. Each would have its own associated Markov chain.
The second approach would be to measure transitions over suf-
ficiently long intervals, so that the measured rates average out
temporal variations. This way, the transition probabilities would
be (nearly) time-independent.

However, both approaches have insuperable problems. With
the first approach, we need to cluster neighbor graph transitions
measured over some time interval based on their similarity. This
is easier said than done. For example, when we clustered the
Dartmouth data set by day of week, we found that Mondays
during the term break are very different from Mondays during

TABLE I

MEAN AND STANDARD DEVIATION AS A FUNCTION OF AVERAGING

INTERVAL

Averaging interval Mean Standard
Deviation

1 hour 7.18 12.43
2 hours 7.18 10.96
3 hours 7.18 10.15
4 hours 7.18 9.42
5 hours 7.18 9.20
6 hours 7.18 8.84
1 day 7.18 6.35

term. Moreover, clustering time periods from Mondays during
terms is not enough: if a holiday lies on a Monday, it looks
more like a weekend! Using such time-based chains also leads
to a problem of circularity: we create clusters based on usage,
then try to find the cluster that most closely describes the current
observation. Clearly, this approach is infeasible.

With the second approach, to get time-independent probabil-
ities, i.e. transition probabilities with low coefficients of vari-
ation, we need to measure transitions over a time scale long
enough to accommodate all short-term time dependencies. For
instance, if we were to measure transition probabilities over pe-
riods of a day or week, we would not be affected by the end-
of-day time dependency. However, there we find that in real
data sets, there are variations with respect to time of day, day
of month, and month of year. To take all these into account, we
need to average over a period of a year or more. But then, to see
if the observed transition rate matches the long term rate (in or-
der to detect faults), we need to measure the transition rate over
similar intervals. This means that, if we are measuring tran-
sition probabilities over a year, we will have to wait a year to
detect a fault! This is far too long a time in practice, ruling out
this approach also.

We illustrate this phenomenon quantitatively using Table I.
This shows the mean and standard deviation of observed transi-
tion rates between two selected access points on the Dartmouth
campus [5] when these statistics are computed over successively
longer time periods. In all cases, the means and standard devia-
tions are computed for a 3-month long trace. Note that when the
statistics are computed over a short observation period, the sys-
tem is not stationary over the duration of the time period, so the
standard deviation is huge. The standard deviation decreases
with increasingly longer observation periods. However, even
with time periods of a day, a 95% confidence interval would al-
low a large variation in the observed rate before it was marked
as being incompatible with the long term rate. This defeats our
goal of fault detection.

We conjecture thatall probabilistic approaches, where prob-
abilities are viewed as limiting distributions of statistics, are
unusable in fault detection in heavily time-dependent systems,
such as those that arise from user mobility in infrastructure wire-
less AP networks. This is a strong result that rules out entire
classes of approaches. Indeed, the only approaches that can
work are those that do not presume time-invariance and essen-

4

tially observe anomalies over short time windows, such as those
described in Section III.A-III.C.

IV. TOURING

We now turn our attention to the problem of correcting failed
APs. At the end of each time period, our algorithms mark one or
more APs as being potentially faulty. At this point a technician
has to go to each AP and diagnose it.

In what order should the APs be checked? A naive solution
is to visit APs in random order. A better solution would try
to minimize an objective function, such as the total length of the
tour; a variant of the classic Traveling Salesman Problem (TSP).
We model tour construction in terms of a generalized version
of the TSP called multi-objective touring [4]. The intuition is
that we want to prioritize diagnosing and/or repairing APs that
are heavily used because an outage on these APs causes more
disutility to mobile devices than an AP that is rarely used. The
tour, therefore, ought to minimize both the length of the tour as
well as visit ’popular’ APs.

We make this more concrete by defining theweight of an AP
as the mean number of occurrences of the AP during a time pe-
riod. Given a set of APs represented by a neighbor graph, where
link lengths represent the time taken to walk or drive on that
link, we wish to construct a tour that simultaneously maximizes
the weight of a tour and minimizes its link cost.

This definition has the following problem: if an AP is faulty,
but with low weight, it may never be visited, because it will be
pre-empted by other APs with heavier weights. Consequently,
we wish to increase the weight of an AP the longer it is faulty.
This is done as follows: we definedowntime(i) as the number
of time periods APi has not been visited after it has been de-
clared to be faulty. The adjusted weight of APi is calculated as:
adjustedweight(i) = w1 ∗ downtime(i) + weight(i) where
w1 is a tuning parameter.

V. THE MULTI -OBJECTIVE TOURING PROBLEM

We now formally define the multi-objective touring problem.
We are given a neighbor graph corresponding to all the APs, po-
tentially enhanced with additional waypoints (such as staircases
and building entries and exits) that must be traversed in going
from one AP to another. A node has a location in 3-dimensional
space. Both edges and nodes have weights. The weight of an
edge is the cost of traversing the edge in time units. The (ad-
justed) weight of a node is defined in Section IV. We are also
given a set of nodes that must form part of the tour, these corre-
spond to the APs that have been declared faulty.

We wish to find a tour that starts and ends at the origin node
and that simultaneously maximizes the sum of the node weights
and minimizes the tour length.

We assume that a technician takes a fixed amount of timeR
to diagnose and/or repair a failed AP – this is approximately
constant because an AP that fails diagnostic tests can simply be
replaced with a new one. We also assume that we have a fixed
upper boundTmax on the maximum length of a tour.

It has been shown that this problem, also calledorienteering,
is NP-complete [4]. However, many heuristics have been pro-
posed in the literature. We adapt the ellipse approach proposed
in [3] with minor modifications, as sketched below. We chose

this heuristic because independent evaluation has shown this to
have the best performance of known heuristics [7]. We compare
this approach with two greedy touring heuristics: Highest score
first (GS) and Nearest-faulty-AP next (GD). In GS, we start at
the origin and use the shortest path to go visit faulty APs in or-
der of decreasing score until we run out of time (i.e. the tour
time exceedsTmax). In GD, we start at the origin, and go to the
closest faulty AP, and so on, until we run out of time.

A. The Ellipse Algorithm

The ellipse heuristic for orienteering [3] proceeds in several
phases. In the first or initialization phase, an ellipse with foci at
the start and end points and major axis of sizeTmax is drawn
on the plane. Points outside the ellipse trivially cannot be in the
final solution and are eliminated. Then, starting from the origin,
several alternative solutions are constructed using a greedy ap-
proach. The best of these is the initial solution, and the others
are designated as alternates.

In the second phase, the initial solution is improved by swap-
ping two points at a time between it and one of the alternate
solutions (’two-point exchange’). When this shows no further
improvement,one point movementsare used in an attempt to
further improve the solution. A ’clean-up’ procedure then tries
to shorten the solution using the well-known 2-opt approach.

In the third phase, we move a small number of points greedily
from the solution to one of the alternates (reinitialization) and
repeat all three phases. The algorithm terminates after a fixed
number of repetitions.

It has been found that this heuristic produces paths that are
very close to optimal, and with low computational overhead. We
now describe three modifications made to this algorithm to suit
our problem context.

First, in [3] the graph is assumed to be complete. However,
the neighbor graph is not complete. Therefore we first convert
the neighbor graph to a complete graph by calculating Dijkstra
shortest paths from every vertex to all other vertices, and setting
the edge cost between a pair of vertices to their shortest path
cost. That is, if the shortest path from APi to AP j has weight
w, in the modified graph the edge weightW [i, j] = w. We
call this modified complete graphG′. The rest of the algorithm
runs onG′ instead ofG. Interestingly, the triangle inequality,
required by [3], also holds inG′. To see this, assume the triangle
inequality does not hold inG′. Then there exist 3 APs A, B, and
C such thatW (A,B) + W (B,C) < W (A,C). But W (A,C)
is the weight of the shortest path from A to C, so there cannot
be a path with less total weight, implying a contradiction.

As a second modification, instead of choosing points inside
an ellipse, we select APsi that satisfy the following condition:
W (origin, i) + W (i, origin) + R ≤ Tmax.

Our third and final modification is to include the re-
pair/diagnosis timeR in the length of a path. So, for instance,
the cost of a path from AP A to AP B to AP C would be
W (A,B) + W (B,C) + 3 ∗R.

VI. EVALUATION

We now turn our attention to a quantitative evaluation of
fault detection and touring algorithms. We first compare three
competing algorithms for fault detection: Naive (N), Dynamic

5

Bayesian (DB), and Anomalous Path (AnP). We then compare
three competing algorithms for touring: ellipse-based multi-
objective algorithm (OP), and two greedy approaches, highest-
score-first (GS), and nearest-faulty-AP next (GD).

A. Data sets

In order to evaluate fault detection and touring algorithms, we
need several inputs:
• The neighbor graph of APs
• A method to determine the cost to traverse an edge in the
neighbor graph.
• The time-stamped log of association and reassociation re-
quests at each AP.
• The set of APs that are actually faulty (so that we can compare
this with the APs that we detect to be faulty).
• The repair timeR.
• The maximum tour timeTmax

To derive realistic neighbor graphs, edge weights, and associ-
ation logs, we use the data set freely available from Dartmouth
College [5]. This data set represents log messages due to every
802.11 client association, authentication, reassociation, disso-
ciation, and deauthentication in Dartmouth’s wireless network
over a period of nearly four years. The data set also includes the
(x, y, z) position of each access point, where thez coordinate is
the floor where the AP is located.

We chose a 3-month period from Jan 1, 2003 to March 31,
2003 for our analysis. This portion of the trace includes about
540 access points and nearly 14,000 clients, mostly laptops.
Each trace record has a timestamp, the client’s ID, the AP ID,
and the event type. Converting this data into a neighbor graph,
however, in non trivial.

Consider a laptop user who accesses AP A, then shuts down
the laptop, walks across campus, and accesses AP B. Should A
and B be neighbors? If we answer yes, then the edge degree of
each AP is very large (we found a mean edge degree of nearly
65 with this definition of neighbor). With a large edge degree,
however, a neighbor graph loses topological significance. We
therefore restrict the definition of a neighbor to APs with whom
the same client has associated within a 30 minute period, and
whose Euclidean distance is less than 30m, which is the typical
802.11b range. With this restriction, the mean edge degree drops
to a more reasonable value of 12.

To find the edge weights for the Dartmouth neighbor graph,
we could, in principle, examine at the inter-association times
for mobiles that move from one AP to another. However, this
is not accurate because the trace data only has rough estimates
of dissociation times2. Consequently, if a user were to spend
five hours associated with AP A, then associates with AP B, we
do not have an accurate estimate to tell how long it takes to get
from AP A to AP B. To get around this, we use the(x, y, z)
coordinates of the APs to estimate transit times. Recall that
the z coordinate is the floor of a building. We assume that all
buildings are connected at the ground floor. So, the distance be-
tween two APs at locations (x1, y1, z1) and (x2, y2, z2) is given
by (

√
(x1 − x2)2 + (y1 − y2)2 + α ∗ (|z1| + |z2|)), where

2An AP generates a deauthenticate message for a client that has not sent any
message for the past 30 minutes, and the trace assumes that the client disassoci-
ated 30 minutes prior to the deauthenticate message

α is the mean height of a building floor. In our calculations, we
use a value ofα of 4.5m.

In the sequel, instead of using edge transit times, we work
directly with distances, since the transit time is simply this dis-
tance divided by the mean repair person velocity. One distance
unit is equivalent to 18cm.

Finally, we assumeR to be 7000 distance units (the distance
covered by a repair person walking at 5km/hr in 15 minutes)
and varyTmax to compare the effectiveness of different touring
algorithms.

B. Results

To generate faults, we choose one day at random during the
trace duration, choose ten APs at random, then and remove ev-
ery occurrence of the AP in the log files. This roughly simulates
what one would see if the AP had in fact been faulty. We then
measure the fraction of these artificially induced faults detected
by our fault detection algorithms. We repeat this process 50
times, and report the averages across these 50 runs.

We first compare the effectiveness of the three heuristics
(Naive, Dynamic Bayesian, and Anomalous Path) in detecting
faults in Table II. In addition to the algorithms already described,
we show results for two variants of the DB algorithm, corre-
sponding to different values off0, and three variants of the AnP
algorithm. These three variants differ in the choice of threshold
as defined in Section III.C. Increasing the threshold increases
the probability of fault detection, but at the cost of additional
numbers of false positives.

For each algorithm, Table II shows the probability that it de-
tected one of the failed APs. For the N and AnP algorithms, this
is simply the number of failed APs detected divided by 500 (i.e.
50 runs, with 10 APs deleted in each run). For the DB algorithm,
we defineProb(detection) = 1

50 (
∑50

j=1

∑10
i=1(1 − pj(T, i))

wherepj(T, i) is the probability that the DB algorithm declares
AP i to be not faulty at the end of timeT in thejth run. As noted
earlier, some APs are more important than others, so we show
both the probability of detection and the weighted probability,
where the weight of an AP is the number of times it occurs in
the 3-month trace. We also show number of false positives due
to each algorithm. Standard deviations are in parentheses.

We find that both the Naive and the Dynamic Bayesian algo-
rithms can detect all faults even for unpopular APs. The reason
for their success is because they are very conservative, and tend
to guess that an AP is faulty soon after reports stop arriving.
The anomalous path algorithm is only triggered by anomalies,
and so is unable to detect failures that do not cause anomalies.
However, the Naive and Dynamic Bayesian schemes perform
much more poorly in terms of false positives. When there are
ten actual faults, the Naive algorithm reports roughly 400 false
positives (of a population of 539 APs) and the DB algorithm re-
ports around 250 false positives. This makes them unusable in
practice. The anomalous path algorithm reports only between
30 and 45 false positives, on average, depending on the choice
of threshold. The false positives with AnP is due to the large
node degree in the Dartmouth trace.

Note also that variations in the value off0 does not change
DB’s performance very much. We also see that the best results
are for AnP with a threshold of 3. This algorithm detects almost

6

TABLE II

PERFORMANCE OF FAULT DETECTION HEURISTICS

Algorithm Weighted Probability False
Probability Positives

Naive 1 (0.0) 1 (0.0) 409 (62)
DB(f0=0.96) 1 (0.0) 1 (0.0) 248 (74)
DB(f0=0.999) 1 (0.0) 1 (0.0) 207 (74)
AnP(Thresh. 5) 0.89 (.13) .84 (.13) 45 (23)
AnP(Thresh. 3) 0.89 (17) .79 (.19) 35 (17)
AnP(Thresh. 2) 0.84 (.18) .76 (.17) 31 (12)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1 10 100 1000 10000

Sc
or

e

T_max in Distance Units (Log scale)

Max Distance vs Score of Various Algorithms

GD
GS
OP

Figure 5: Performance evaluation of touring algorithms

80% of all faults (and has a weighted detection probability of
0.89), yet has about nine times fewer false positives than Naive
and about five times fewer false positives than DB.

We now compare the performance of the touring algorithms,
as shown in Figure 5. This figure shows, for an example set of
failed APs, the score achieved by the three touring algorithms
as a function ofTmax. We see that the Ellipse heuristic is able
to achieve the maximum score at aTmax value of only around
100, while the GS algorithm achieves it at a value of 400, and
the GD at a value of 2000. Thus, the Ellipse heuristic performs
about four times better than GS, and an order of magnitude bet-
ter than GD. This illustrates the potential gains from careful de-
sign of touring algorithms. Although we have space to present
only a single example, we have seen similar behavior for most
of the other scenarios we studied, with the Ellipse heuristic out-
perfoming GS, and GS outperforming GD in every case.

VII. R ELATED WORK

The problem of fault diagnosis in IEEE 802.11 infrastructure
networks was first proposed by Adya et al [1] in 2004. Their
solution focuses primarily on the use of enhanced clients to
both detect and, to some extent, self-diagnose failures and poor
wireless performance, with the assistance of a diagnosis server.
While the general scope of the problem is the same, our ap-
proach is completely passive, and restricted to diagnosing stuck-
at AP faults. We are not aware of any other work in the area of

implicit detection of 802.11 AP faults.
There is a rich literature on multi-objective touring that is sur-

veyed in [10]. The problem was originally posed by Golden et al
[4]. Many approaches have been proposed to solve it, including
genetic algorithms and ant-colony approaches. The heuristic we
use has been shown to be the best known one [7].

Variations of the orienteering problem (OP) are also well
known. For example, in OP with a time window, each control
point can only be accessed during a specified time period, [6].
This can model situations where certain APs can be accessed
only during some times of the day, perhaps due to security re-
strictions. If more than one service person is available, an ap-
propriate heuristic is suggested in the work on team OP [2].

VIII. D ISCUSSION ANDCONCLUSIONS

Detecting failed access points is a hard problem, and, to our
knowledge, this is the first attempt to solve it. Our contribu-
tions are threefold. First, we present a novel technique that ex-
ploits device mobility to aid faulty AP diagnosis. We show that
this technique far outperforms a naive approach in terms of false
positives. Second, we show that probabilistic approaches, that
measure and correlate transition rates between APs, are infeasi-
ble, because of the non-stationarity of the mobility process. Fi-
nally, we present a best-in-class approach to multi-objective tour
construction that efficiently solves the AP touring problem. We
present a detailed analysis of our algorithms using a real-world
trace. A detailed evaluation on a real-world trace validates our
algorithms and demonstrates that they are viable for immediate
adoption in infrastructure wireless networks.

IX. A CKNOWLEDGEMENTS

The fault detection problem was suggested to us by Victor
Bahl and Lili Qiu at Microsoft Research. We would like to
thank Minkyong Kim and Lily Li for their help in processing
the Dartmouth data sets.

REFERENCES

[1] A. Adya, P. Bahl, R. Chandra, and L. Qiu, “Architecture and Tech-
niques for Diagnosing Faults in IEEE 802.11 Infrastructure Networks,”
in Proc.Mobicom2004, 2004.

[2] I-M Chao I-M, B. Golden, and E. Wasil, “The Team Orienteering Problem,
European Journal of Operational Research, Vol. 88, 1996, pp. 464-474.

[3] I-M Chao I-M, B. Golden, and E. Wasil, A Fast and Effective Heuristic
for the Orienteering Problem,European Journal of Operational Research,
Vol. 88, 1996, pp. 475-489.

[4] B. Golden, L. Levy, and R. Vohra, “The Orienteering problem,”
NavalResearchLogistics, Vol. 35, 1987, pp. 307-318.

[5] D. Kotz et al Dartmouth Data, http://cmc.cs.dartmouth.edu/data/
[6] M. Kantor and P. Rosenwein, “The Orienteering Problem with Time Win-

dows, Journal of the Operational Research Society,Vol. 43, No. 6, 1992,
pp. 629-635.

[7] Y. Liang, S. Kulturel-Konak, and A. E. Smith, ”Meta Heuristics for the
Orienteering Problem,”Proc. 2002 Congress on Evolutionary Computa-
tion, May 2002, Honolulu, Hawaii, pp. 384-389.

[8] A. Medina, A. Lakhina. I. Matta, and J. Byers, “BRITE: An Approach to
Universal Topology Generation, ” Proc. IEEE MASCOTS 201.

[9] A. Mishra, M. Shin, and W.A. Arbaugh, “Context Caching us-
ing Neighbor Graphs for Fast Handoffs in a Wireless Network,” in
IEEEInfocom2004, March 2004.

[10] A. Roberts, “Mathematical Research into the Orienteering Problem,”
http://www.qoa.asn.au/rroc/omaths.html

[11] S. Russell and P. Norvig, “Artificial Intelligence: A modern approach,”
Prentice Hall, Upper Saddle River, New Jersey, 1995.

[12] T. Tsiligirides, “Heuristics Methods Applied to Orienteering,”Journal of
Operational Research Society,Vol. 35, No. 9, 1984, pp. 797-809.

