
1

Naming, Addressing, and Forwarding Reconsidered
S. Keshav

School of Computer Science, University of Waterloo
Waterloo, ON, Canada, N2L 3G1

Abstract— We re-examine the concepts of naming and addressing and
show that names are often confused for addresses because of the phe-
nomenon ofmasquerading. Clearly separating the two allows us devise a
generalized forwarding algorithm and decompose it into a small set of sim-
ple forwarding primitives. We show that forwarding schemes chosen from
a variety of systems and at different layers of the OSI hierarchy can be eco-
nomically expressed using these primitives. We conclude with some ideas
on how efficient implementation of these primitives can therefore be used
to construct complex, yet efficient, forwarding engines.

I. I NTRODUCTION

Naming, addressing, and forwarding are deceptively simple
concepts. Classically, a name identifies an entity, usually in a
human-understandable fashion [3, 5] and its address locates it.
Forwarding is the process by which a switch or router, on re-
ceiving data, uses a routing table to decide where to forward the
data, then actually forwards it. However, on deeper examina-
tion, names and addresses start to look very like each other, and
the apparently straightforward process of forwarding turns out
to be surprisingly complex.

In this paper, we present a simple framework to understand
these concepts and their relationship to each other (Section II-
IV). We use this understanding to motivate the notion of gener-
alized forwarding (Section V) that reconciles concepts in tradi-
tional IP forwarding with the more exotic forms of forwarding
found in peer-to-peer networks and Mobile IP. This leads to the
design of a set of forwarding primitives that can succinctly ex-
press very different forwarding schemes implemented at differ-
ent layers of the OSI hierarchy (Section VI-VII). We conclude
with a sketch of how efficient implementation of these primi-
tives can be used to construct arbitrarily complex, yet efficient,
forwarding engines (Section VIII).

Our contributions are fourfold. First, we provide a simple
conceptual framework to distinguish between names and ad-
dresses. Second, we construct a generalized forwarding algo-
rithm that motivates the choice of a small set of forwarding
primitives. Third, we show how these primitives can be used
to economically describe a variety of forwarding schemes in the
literature. Finally, we identify a set of hardware accelerators that
can be used to improve the performance of a range of forwarding
algorithms.

II. NAMING , ADDRESSING, AND FORWARDING IN

TRADITIONAL NETWORKS

A. The postal network: hierarchy and default routing

The postal network is one of the earliest communication net-
works and it is illustrative to study naming, addressing a for-
warding in its context.

This research was supported by grants from the National Science and Engi-
neering Council of Canada, the Canada Research Chair Program, Nortel Net-
works, Sun Microsystems Canada, Intel Corporation, and Sprint Corporation.

The postal system has no names, only addresses. These cor-
respond to physical locations such as mailboxes and post-office
boxes. Postal addresses are typically assigned hierarchically, so
that the address of a node typically left-extends the address of its
parent node (this rule breaks down at the lowest level of the hi-
erarchy). When followed, this rule allows us to represent all the
children reachable from any node succinctly. For example, all
postal destinations in Waterloo, Ontario, Canada left-extend the
string ”Waterloo, Ontario, Canada”, so they can be referred to
concisely as the aggregate ”*,Waterloo, Ontario, Canada”. Be-
cause of this compact representation, given an item to deliver, a
post office can easily determine whether it should be forwarded
to a child or peer node–if a suffix of the destination address has
a longer match with the address of the child or peer than itself–
or to a parent–otherwise (this is the ’default route’). At the low-
est level, a post office has to maintain and look up an explicit
database of all locally reachable endpoints because the address
aggregation rule does not apply.

We make a few observations about the postal system:
1. The only forwarding information needed at an internal node
are the addresses of its peers and children. This information is
hand-configured without the need for a routing protocol.
2. The ‘default route’ to a parent on an unmatched address al-
lows a post office in Canada to receive a letter addressed, say,
in Japanese, and pass it up the hierarchy to the national post of-
fice, where the only information needed for correct delivery is
that Japanese-addressed letters should be sent to Japan. In other
words, forwarding is correctly accomplished despite the fact that
only the main post office in Canada understands Japanese. This
illustrates the power of default routing.

B. The telephone network: masquerading

The telephone network, in the earliest days, followed the
postal model. A call’s destination phone number (its E.164 ad-
dress) was matched with the local ’exchange number’ or ’area
code’ of a phone exchange to route calls. Indeed, in the early
days, every central exchange in every area code had a one-
hop path to every other area’s central exchange, precisely so
that the forwarding decision involved minimal electromechan-
ical switching logic. Note also that in the early phone network,
the telephone number, or address, was a physical location corre-
sponding to an actual phone instrument.

With the advent of computer-controlled telephone switches,
forwarding logic could be made more complex. A toll-free num-
ber, such as 1 800 555 1212 looks like a phone number. How-
ever, when it is dialed, the local exchange forwards it to the ’800
area’ phone exchange, which then looks up a table to determine
where the call is actually supposed to go to. In other words, the
800 area is really a way to request an additional level of indi-
rection. This indirection table can be changed with the time of



2

day, day of year, or in more complex ways, for instance, to for-
ward calls to one of a set of destination numbers in round robin
fashion at a call center.

Introducing this indirection is conceptually problematic. The
800 number looks like a phone number, i.e. like an E.164 ad-
dress. But it really isn’t an address at all. In fact, it has no
location significance. In this sense, it is aname masquerading
as an address. Surprisingly, this name can be used for routing
(up to a point) just like an address. That is, a local exchange, on
receiving a toll free number, can forward it to the 800 area ex-
change just like a ’regular’ number. The 800 number, or name,
therefore, by masquerading as a regular E.164 address is able
to co-optexisting forwarding mechanisms to its own ends. The
point to take away is that by masquerading names as addresses,
we can re-use legacy forwarding mechanisms, yet add flexibility
by introducing a level of indirection at any point in the forward-
ing path.

C. The Internet: masquerading and tunneling

In the early Internet, like the phone network, things were sim-
ple. Every interface had an IP address, and the network used
routing algorithms to set up forwarding tables, which allowed a
router or gateway to determine the output interface correspond-
ing to an IP address. IP addresses therefore were associated with
specific locations.

With Mobile IP (and NAT), however, things have changed.
With Mobile IP, what looks like an IP address is in fact trans-
lated by the home address agent to another IP address, which is
(hopefully) the actual physical address. This is essentially the
same as what is done for toll free numbers: by masquerading as
regular IP addresses, mobile IP addresses, which really have no
specific location, can co-opt regular IP forwarding.

In addition to masquerading, the Internet also supports tun-
neling. Here, a packet has two addresses: an outer address and
an inner address, much like an envelope inside an envelope. The
network delivers data to destination addressed by the outer ad-
dress, which uses the inner address to further forward the data.

Masquerading and tunneling both co-opt legacy routing, but
differ in one aspect. With masquerading, the final destination
is completely specified by the destination address of a packet
by means of a translation table (though the translation table can
change over time). In contrast, with tunneling, the packet orig-
inator is able to exert some control over the final destination of
the packet by means of an inner address.

We note in passing that NAT, multicast, and anycast addresses
also employ masquerading for their own purposes.

III. L OCATION SPECIFIC AND LOCATION INDEPENDENT

IDENTIFIERS

We have used the term ‘address’ so far without explicitly
defining it. An exact definition raises a conceptual problem. An
800 number or Mobile IP address looks like a ‘regular’ E.164 or
IP address, but it has no location significance, so can we call it
an address at all? Probably not.

We argue that much confusion arises from situations where
names masquerade as addresses. In order to clarify the situation
and distinguish them, we will call them two different things. We

call a handle or character string that is associated with a phys-
ical location a Location Specific Identifier or LSI. In contrast,
we call a handle or character string that is looked up in a table
as a Location Independent Identifier or LII. These are similar
in intent to Universal Resource Locators (URLs) and Universal
Resource Names (URNs) but we have chosen to use other tags
because URLs contain DNS names, which are not location spe-
cific.

Using these terms, we can call a ’regular’ phone number or a
’regular’ IP address as LSIs, and an 800 number or a Mobile IP
address as LIIs. In the same way, your physical postal address
is an LSI, and your name is an LII.

Of course, some LSIs, such as 800 numbers, look syntacti-
cally the same as LIIs, but that does not change their essential
nature: they are simply masquerading. Because, in this fashion,
LIIs canalwaysmasquerade as LSIs, they are a form of informa-
tion hiding. Specifically, one part of the network may contract
with the other to agree to deliver packets addressed by addresses
that appear ostensibly as LSIs. In fact, these addresses may ac-
tually be treated by the endpoint as LIIs, and may be resolved to
a (putative) LSI.

For instance, one could imagine that the toll free service is
provided by a third party. This third party tells the phone com-
pany that it has a geographical area that it covers, that happens to
be assigned the area code 123. Calls starting with the 123 E.164
address, should therefore be sent to the switch responsible for
this area. From the perspective of the rest of the phone network,
the 123 area looks like a regular area, and 123 numbers look
like regular numbers, i.e. LSIs. In fact they are LIIs. This is
how mobile (cell phone) operators can freely interoperate with
wireline networks.

Because this information hiding is fundamental, every hand-
off between service providers can potentially result in an osten-
sible LSI turning out to be an LII. There is no way to legis-
late against it or prevent it! Therefore, every identifier must be
treated as if it could be an LII unless otherwise proven. We con-
clude that data delivery may require multiple translations from
an LII to a series of one or more masqueraded LIIs finally to an
LSI. At this LSI, tunneled LSIs or LIIs can be extracted to make
additional forwarding decisions. This process is explained in
more detail next.

IV. LII TO LSI TRANSLATION

By definition, LIIs are not location specific, so it is not possi-
ble to deliver data addressed by an LII. In order actually deliver
data, is is necessary, at some point, to translate from an LII to a
LSI. This requires a lookup in a translation table. Where is the
translation table? Its location can be specified in one of three
different ways.

A. Explicit pointer to a translation table

In this case, the sender specifies the LSI or LII of the trans-
lation table corresponding to a data packet’s LII. The destina-
tion ID therefore requires two components: the LII to which
the packet is destined, and a way to get to the translation table,
which is itself either an LSI or an LII.

We now have a problem of recursion. If the translation table’s
location is specified by an LII, then we need yet another transla-



3

tion table to get the LSI corresponding to it. Therefore, at some
point, the translation must be accomplished using one of the two
methods described next. We note in passing that the technique
of specifying an explicit pointer to a translation table, though
conceptually valid, is not actually used in any system known to
us.

B. Implicit determination of translation table

The second technique to translate an LII to an LSI is to im-
plicitly determine the LSI location of the translation table, by
convention. The table can be local or non-local. For instance, a
web browser implicitly knows that URL LII should be resolved
to an LSI (an IP address) using the non-local Domain Name Sys-
tem. The location of the DNS table is found by configuring its
LSI on the local host: this LSI is given to the host at the time
of IP address assignment using DHCP, or hand-configured in the
local file system. Armed with this LSI, the browser can translate
the LII to an LSI (which may itself require several indirections).

We now make some observations about this process.

1. the resolution of the LII may result in an LII masquerading as
a LSI, such as a mobile IP address or when using call forward-
ing in the telephone network. In this case, the translation from
the masquerading LSI to actual LSI is also done implicitly, using
the translation table located at the location indicated by the mas-
querading LII. For example, one could translate from DNS name
(LII) to a mobile IP address (LII masquerading as LSI). When
the data gets to the destination specified by the masquerading
LII, it is translated to an actual LSI. This translation may also be
delegated to an in-line middlebox that promises to deliver data
to the LSI, but actually does a translation mid-stream, and gener-
ates another LSI. Indeed, this is the way toll free numbers work:
there is no need for the call to actually be given to an end system
– the middlebox that intercepts the LII implicitly performs the
translation.
2. another way to implicitly define a translation table is to use
an address schema tag. For instance, strings of the form a.b.c.d
are immediately recognized as a FQDN, and sent to DNS for
resolution. One can imagine that tags such as I3:GUID can be
used to indicate that I3 servers should be used to resolve the LII
to an LSI.
3. Another implicit translation mechanism is to use an under-
lying broadcast mechanism. A node simply broadcasts the LII
along with its own LSI and wait for the appropriate node to re-
ply with its LSI. This is how the IP to MAC resolution using
ARP works in a LAN; the MAC address is the LSI, and the IP
address (LII) is translated to this LSI using ARP. (We have an
interesting situation here, in that an IP address is an LSI that
can be used for forwarding outside of its own subnet, but within
it, while still identifying a physical interface, cannot actually be
used for forwarding data!) A MAC address is also an LSI, but
it cannot be used for routing (at least scalably) outside of a sub-
net. Broadcast does not scale, so it can only be used for small
networks.
4. LIIs may be explicitly resolved to other LIIs. This allows a
considerable degree of flexibility as described in [1].

TABLE I

SOME WELL-KNOWN ADDRESSING SCHEMES

Scheme Comment
Regular telephone LSI
number
Toll-free number LII masquerading as LSI;

implicitly resolved by a
middlebox to an LSI

Ethernet address LSI in the context of a
LAN and LII outside it.
Can’t be resolved outside LAN

Regular IP LII resolved by broadcast
in the context of a

address LAN and LSI outside it.
Mobile IP address LII masquerading as LSI;

implicitly resolved by a home
address agent to an LSI

Public IP address Usually an LSI, but sometimes
and port pair an LII, masquerading as LSI,

implicitly resolved by a NAT
middlebox to an LSI

FQDN LII, implicitly resolved using
DNS servers to an LSI

I3 id LII, implicitly resolved by I3
server (middlebox) to an LSI

HTTP-based URL LII, resolved using DNS
to an LSI or masquerading LSI

C. Default routing

The third way to translate an LII to an LSI is to use default
routing. Essentially, the resolver gives up, and simply passes on
the LII to someone else, who is better informed, i.e. a default
next-hop resolver. This is akin to, but not the same as, default IP
routing entries. In default IP routing, the default route is for un-
known LSIs; here, default routing is for unknown LII schemas.

Table I explains some well-known schemes in terms of LSI,
LIIs, and the translation mechanism.

V. GENERALIZED FORWARDING

Our analysis thus far allows us to construct a generalized for-
warding algorithm as follows:

On packet arrival, a node checks if the address is an LII (line
2 below). If so, the LII is resolved to one or more LSIs (3). If
the node itself is one of the destinations (6), then it checks if the
packet is tunneled (7). If so, the top LSI is popped off, and the
packet is re-injected into the forwarding engine (8-9).

If the node is not a destination, the LSI is looked up the next
hop interface in the forwarding table 11). If the next hop for
the LSI can be found in the forwarding table, then the packet is
forwarded on the output interface corresponding to the next hop
(13). If the LSI cannot be found in the forwarding table, it is
sent on the default next-hop interface for unknown LSIs(15).

If the address is an LII, one of three cases hold. Either it has
an LII or LSI of the translation table (18-23), or the node knows
(by convention) how to resolve the LII (25-26), or it gives up



4

and sends the LII to the default next hop resolver(28).

1 forward(packet) {
2 if(destination is LII)
3 LSIs = resolve(packet.LII)
4 else
5 LSI = packet.LSI
6 if(this.LSI matches LSI(s))
7 if(tunneled packet)
8 pop(packet.LSI)
9 forward(packet)
10 else
11 lookup LSI(s) in forwarding table
12 if output_interface found
13 send packet(s) on output_interface
14 else
15 send packet to default next hop
16 }

17 resolve(LII){
18 if(explicit table specified for LII)
19 if(table identifier is an LII)
20 table_LSI = resolve(LII.table_LII)
21 else
22 table_LSI = LII.table_LSI
23 return(lookup(table_LSI, LII))
24 else
25 if(LII schema known)
26 return(schema.resolve(LII))
27 else
28 return(LSI of default resolver)
29 }

Note that, because forwarding engines are stateful,every
packet can potentially update the forwarding table state. This
fact will be used later to construct dynamic forwarding tables:
we have left it out of the description above in the interests of
clarity. We have also left out the insertion of a packet into a
tunnel, showing only how a tunneled packet can be forwarded.
Both dynamic tables are tunnel insertion are show in more detail
in the examples in Section VII.

VI. FORWARDING PRIMITIVES

Examining the generalized forwarding algorithm, we note
that we can describe the forwarding process with a small set
of primitives. We need to be able to lookup LII to LSI transla-
tions (line 23) and output interfaces (line 11) in local or remote
tables, send packets on an interface (line 15), and, in some cases
drop them. We also need ways to update our translation tables to
deal with dynamic translation tables, such as those used in NAT.
Finally, we need a few helper functions to copy a packet, pop a
header (line 8), or create a hash of selected packet headers. This
motivates the following set of forwarding primitives.
d.layer.parameter : This extracts a parameter from the speci-
fied layer in a packet’s header.
d.data : This refers to the payload of the packet.
send(d, interface) : This sends the packet calledd on the in-
terface identified by the second parameter.
drop(d:) This drops packetd.
d1 = copy(d): This creates a copy of packet d in d1.
h = hash(value ): This computes a hash of the value using a
standard hash function, such as MD5.
value = pop(d):
push(d, value ): These remove and add headers to a packet.
value = l.lookup(table, key ):
value = g.lookup(table, key ): This primitive translates from
an LII to another LII or an LSI using a table that is either local
or non-local (i.e. global).
l.update(table , key , value ):

g.update(table , key , value ): These update a local or global
mapping from a key to a value. If the key is not already present,
it is added to the system. If the key exists, its value is modified.
For simplicity, we will assume that keys are very large, so that
key uniqueness is trivial. This allows us to update LII to LII or
LII to LSI mappings.

VII. U SING THE PRIMITIVES

We now use primitives described in the previous section to
succinctly describe some well-known systems.

A. Internet packet forwarding: The base case and MAC broad-
cast

A packet’s output interface is determined by the longest pre-
fix match of the destination address in the local forwarding ta-
ble. This table has the output interface corresponding to each
network number (IP address aggregate), and default route for
unknown addresses. If the destination address is the in the same
subnet as the node, then a data-link level MAC broadcast needs
to be done using ARP to resolve the MAC address of the desti-
nation.

We describe the Internet forwarding process as follows:

if(d.ip.dst.subnet is this.subnet for this.interface)
mac = arp_resolve(d.ip.dst, this.interface)

// details of broadcast elided
send(d, this.interface)

else
out_if = l.lookup(fwd_table, d.ip.dst)

// returns the default out_if if ip.dst is
// not in the fwd_table

send(d, out_if)

In subsequent descriptions, in the interests of space, we will
leave this code fragment, only resolving to the level of an IP
destination.

B. Mobile IP: Masquerading and tunneling

Mobile IP uses a combination of masquerading and tunneling.
If a Home Address Agent (HAA) recognizes an IP address as a
masqueraded address, it resolves this address to the LSI of the
care-of-agent, and tunnels the data to the care-of-agent (COA),
which delivers the packet to the actual destination.

//at HAA, check for masquerading, then tunnel
if(coa_IP = l.lookup(HAA_table, d.ip.dst))

push(d, coa_IP)
forward(d)

else //this packet wrongly delivered to the HAA
drop(d)

//at COA, pop packet destination off
if(this.IP is d.ip.dst)

pop(d)
next_IP = d.ip.dst

C. ATM: Separate call setup and header translation

In ATM, the call setup packet is forwarded just like a normal
datagram. On call accept, the local translation table is updated,
and it is used to translate data headers on subsequently arriving
cells.

if(d.ATM.vci is control VCI) //control pkt
// elide details of AAL
if(d.Q.2931.type is SETUP)

// setup temporary state
if(d.Q.2931.type is CONNECT)



5

// make temporary state permanent
out_port = l.lookup(fwd_table, d.Q.2931.dst)
send(d, next_port)

else
d.ATM.vci = l.lookup(xlation_table, {d.ATM.vci, in_port})

// in_port is the port on which the cell arrived
out_port = l.lookup(xlation_table, {d.ATM.vci, in_port})
send(d, out_port)

D. Email: Global lookup

Email forwarding is done by looking up the destination in the
global DNS system which uses one or more MX records to re-
turn the DNS names of the responsible servers. These have then
to be looked up using A records in DNS to return IP addresses.
The code at the originating mail server is the following:

dst_servers = g.lookup(dns_mx, d.smtp.dst)
dst_server = highest priority item in dst_servers
dst_IP = g.lookup(dns_a, dst_server)

An application level mail gateway follows essentially the
same logic, except that the lookups may use tables other than
DNS.

E. HTTP Cache: Dynamic forwarding table

To demonstrate dynamic lookup table updates, as well as the
use of hashes for lookup, we now describe the actions at a web
cache. Essentially, the cache looks up the URL in a GET request
in a local table to see if it has the result. If so, the result is
returned. Otherwise, the request is sent to the origin server and
the reply is both returned and cached.

request(d) {
result = l.lookup(hash(d.http.URL), cache)
if (result is null)

out_if = l.lookup(fwd_table, d.ip.dest)
send(d, out_if) //send to origin

else
out_if = l.lookup(fwd_table, d.ip.src)
send(result, out_if)

}

response(d) {
l.update(cache, hash(d.HTTP.URL), d.data)
out_if = l.lookup(fwd_table, d.ip.dst)
send(result, out_if)

}

F. NAT: Dynamic tables and header translation

NAT manipulates packet headers both on the incoming and
outgoing paths. When getting a packet from the NATted side,
we check if the translation exists. If it doesn’t the translation ta-
ble is updated to map a TCP port to the incoming IP address and
incoming source port, otherwise the previously stored assign-
ment is reused. In the other direction, we lookup on destination
port and swap values. Note that the code below assumes that
we can look up the NAT table using either a hash of the IP/TCP
4-tuple or the incoming TCP port to return either the NAT port
or a IP/port pair respectively.

global_nat_port = 1025

outgoing(d) {
if (nat_port = l.lookup(hash(d.ip.dst, d.tcp.dst_port,

d.ip.src, d.tcp.src_port)), NAT_table is null)
// not seen this before

global_nat_port = global_nat_port + 1
// update NAT tables

l.update(NAT_table, hash(d.ip.dst, d.tcp.dst_port,
d.ip.src, d.tcp.src_port),

{d.ip.src, d.tcp.src_port, global_nat_port})

d.ip.src = this
d.tcp.src_port = global_nat_port
out_if = l.lookup(fwd_table, d.ip.dst)

send(d, out_if)
else

d.ip.src = this
d.tcp.src_port = nat_port
out_if = l.lookup(fwd_table, d.ip.dest)
send(d, out_if)

}
incoming(d) {

{ip, port} = l.lookup(NAT_table, d.dst_port)
d.ip.dst = ip
d.tcp.dst_port = port
out_if = l.lookup(fwd_table, d.ip.dst)
send(d, out_if)

}

G. I3: Using distributed hash tables and combining routing
with resolution

In I3, atrigger stored in a distributed hash table (DHT) maps
an I3 id (an LII) to one or more I3 ids or one or more IP desti-
nations (putative LSIs). Packets from an I3 endpoint, that may
contain a stack of one or more I3 ids, are tunneled to the clos-
est I3 server, which extracts the top I3 id and uses this to for-
ward the packet. An I3 server first checks if the trigger cor-
responding to this I3 id is stored locally. If so, the trigger is
accessed to retrieve either another id or the set of IP destina-
tions. Otherwise, the packet is forwarded to the I3 server that is
closer to the server that actually has the mapping using the local
fingertable. This process is described below, based closely on
Figure 3 in [6]. Note that we do not describe tunneling, since
the forwarding path is identical to regular IP packet forwarding.
Also, note that the finger table lookup shown here converts a
g.lookup into an l.lookup, so, in effect, we’re showing how to
implement g.lookup.

i3_recv(d){ // forwarding action for packet d
id = d.i3stack.top
if (l.lookup(local_hash_table, id) is null)

//someone else handles it
i3_forward(d)
return

pop(d.stack)
set_t = l.lookup(trigger_table, id)

// find all matching triggers
if (set_t is null)

if (d.i3stack is null)
// no triggers match; no ids in stack

drop(d)
return // packet is dropped

else
i3_forward(d)
// no triggers but one id still

in stack, so use it to forward
while(set_t != null)
// forward packets for each matching trigger

t = set_t.top
d1 = copy(d) // each trigger creates a copy
push(d1.hdr.i3stack, t.id)

// t’s id is pushed on d1’s stack
i3_forward(d1)

}

i3_forward(d){
id = d.i3stack.top
if (id is IP address)

out_if = l.lookup(fwd_table, id)
send(d, out_if)

else
next_IP = l.lookup(finger_table, id);
out_if = l.lookup(fwd_table, next_IP)
send(d, out_if)

}



6

DOA [7] is similar to I3 it its use of globally-unique ID stacks,
and its ability to resolve UIDs to other UIDs. The resolution
algorithm shown above, with small modifications, also describes
DOA.

H. Dynamic Source Routing: Flooding for path discovery

In dynamic source routing [2], packet transmission is pre-
ceded by flooding, where the control packet header accumulates
a route to the destination. The destination uses this accumulated
route to reply to the initiator who can then use a source route to
reach the destination. The description below does not include
the optimizations presented in [2].

initiate_flood() {
for each out_if

d.dsr.src = this.ip
d.dsr.dst = destination
d.dsr.seq = seq++ // set sequence number
send(d, out_if)

}

incoming_flood_packet(c) {
// if this flood has been recently seen, drop it
if (l.lookup(dsr_table, hash(d.dsr.src,

d.dsr.seq)) is not null)
drop(d)

// prevent loops
if (this.ip is in d.dsr.route)

drop(d)
// this node is the destination, so reply
if (d.dsr.dst is this.ip) {

d1 = copy(d) //copy the incoming route
next_hop = d1.hdr.route
push(d1.hdr.route, this) //add yourself to end
out_if = l.lookup(fwd_table, next_hop)
send(d1, out_if)

} else {
d.route += this
for each out_if // flood

d.dsr.dst = destination
send(d, out_if)

}

VIII. R ELATED WORK

The notion of location-dependent and location-independent
identifiers is well known in the literature. Reference [7] has
a comprehensive survey of past work in the area of location-
independent identifiers such as those used in I3 [6] and HIP [4].

Our work is closest in spirit to Delegation Oriented Archi-
tecture [7]. Like DOA, we focus in the process of identifier
resolution. However, unlike DOA, we do not propose a new
location-independent identifier scheme, but, instead categorize
existing identifiers as location dependent or location indepen-
dent, examine masquerading and study the effect of resolution
on the forwarding process. Moreover, we decompose the gener-
alized forwarding algorithm into primitives, and the use of these
primitives to describe other algorithms. This allows us to pro-
pose hardware accelerators that would help not only DOA, but
also other forwarding schemes.

IX. FUTURE WORK

The forwarding primitives described in Section VI can be
used in at least three ways. First, they provide single concep-
tual framework to study forwarding in a number of diverse ap-
plication areas. This enables the design of much more complex
forwarding schemes. Second, using a uniform set of primitives
allows schemes developed in one application area to be applied

elsewhere. For instance, the use of masquerading as in Mo-
bile IP may be equally applicable in Web caches that provide
anonymity. Finally, reducing complex forwarding functionality
to a few primitives makes it feasible to contemplate hardware
support for these primitives. Unlike past efforts, this hardware
can be shared by a large number of forwarding schemes at vari-
ous levels of the protocol stack. Accelerators can be used for:
1. Information extraction from the headers. This can be
aided by simple hardware parsers that, on packet receipt, pre-
load registers with appropriate sections of packet headers and
hashes of specified fields.
2. Packet copying. This can be a heavy overhead for applica-
tion layer tunnels. Hardware can be used to create a copy of
packet as it is received. A pointer to the packet copy, subse-
quently massaged by an application, can be used to efficiently
create tunnels.
3. Local lookups. Local lookups can be speeded up using
ternary CAMs.
4. Pushing and popping packet headers.These can be accel-
erated either with a dedicated system call or with hardware.
In future work, we plan design hardware accelerators that can
be used by a wide range of forwarding schemes.

X. CONCLUSIONS

Naming and addressing have long been conceptually prob-
lematic. We propose a simple technique to distinguish be-
tween them using the concepts of location-specific and location-
independent identifiers. A careful consideration of the trans-
lation process from location-independent to location-specific
identifiers allows us to construct a generalized forwarding algo-
rithm. The generalized forwarding algorithm is composed from
a set of forwarding primitives. We show that the same primitives
are sufficient to capture a wide range of forwarding schemes.
This suggests that acceleration of these primitives could be ben-
eficial to them all.

Our contributions are fourfold. First, we provide a clean con-
ceptual framework to distinguish between names and addresses.
Second, we construct a generalized forwarding algorithm that
motivates the choice of a set of forwarding primitives. Third,
we show how the forwarding primitives can be used to econom-
ically describe a variety of forwarding schemes in the literature.
Finally, we identify a set of hardware accelerators that can be
used by a range of forwarding algorithms.

REFERENCES

[1] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S. Shenker,
I.Stoica and M. Walfish “A Layered Naming Architecture for the Inter-
net”, Proc. ACM SIGCOMM 2004, Sept. 2004.

[2] D. B. Johnson, D. A. Maltz, and J. Broch. “DSR: The Dynamic Source
Routing Protocol for Multi-Hop Wireless Ad Hoc Networks.” in Ad
Hoc Networking, edited by Charles E. Perkins, Chapter 5, pp. 139-172,
Addison-Wesley, 2001.

[3] P. Mockapetris and K.J. Dunlap, “Development of the Domain Name Sys-
tem, Proc. ACM SIGCOMM 1988, Stanford, August 1988.

[4] R. Moskowitz and P. Nikander “Host Identity Protocol Architecture,”
draft-moskowitz-hip-arch-05 IETF draft (work in progress), Sep. 2003.

[5] J.F.Shoch “Inter-network Naming, Addressing, and Routing,” 17th IEEE
Computer Society Conference, Washington DC Sept. 1978.

[6] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, S. Surana, “Internet Indirec-
tion Infrastructure,” Proceedings of ACM SIGCOMM, August, 2002.

[7] M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan, R. Morris, S.
Shenker, “Middleboxes No Longer Considered Harmful,” 6th Usenix
OSDI, San Francisco, CA, December 2004.


