
LEGUP: Using Heterogeneity to Reduce the Cost of Data
Center Network Upgrades

Andrew R. Curtis, S. Keshav and Alejandro Lopez-Ortiz
Cheriton School of Computer Science

University of Waterloo
{a2curtis, keshav, alopez-o}@uwaterloo.ca

ABSTRACT
Fundamental limitations of traditional data center network
architectures have led to the development of architectures
that provide enormous bisection bandwidth for up to hun-
dreds of thousands of servers. Because these architectures
rely on homogeneous switches, implementing one in a legacy
data center usually requires replacing most existing switches.
Such forklift upgrades are typically prohibitively expensive;
instead, a data center manager should be able to selectively
add switches to boost bisection bandwidth. Doing so adds
heterogeneity to the network’s switches and heterogeneous
high-performance interconnection topologies are not well un-
derstood. Therefore, we develop the theory of heterogeneous
Clos networks. We show that our construction needs only as
much link capacity as the classic Clos network to route the
same traffic matrices and this bound is the optimal. Placing
additional equipment in a highly constrained data center is
challenging in practice, however. We propose LEGUP to de-
sign the topology and physical arrangement of such network
upgrades or expansions. Compared to current solutions, we
show that LEGUP finds network upgrades with more bisec-
tion bandwidth for half the cost. And when expanding a data
center iteratively, LEGUP’s network has 265% more bisec-
tion bandwidth than an iteratively upgraded fat-tree.

1. INTRODUCTION
Most current data center networks use 1+1 redundancy in

a three-level tree topology, which provides inadequate bisec-
tion bandwidth to achieve agility—the ability to assign any
server to any service. This reduces server utilization when
workloads vary rapidly because dynamic reallocation of ser-
vices to servers is impractical, so a service is assigned enough
servers to handle its peak load. Recent work has addressed
this problem by providing enormous bisection bandwidth for
up to hundreds of thousands of servers [2, 10, 12, 13, 29].
However, these solutions assume homogeneous switches, each

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM CoNEXT 2010, November 30–December 3 2010, Philadelphia, USA.
Copyright 2010 ACM 1-4503-0448-1/10/11 ...$5.00.

with a prescribed number of ports. Therefore, adopting these
solutions in a legacy data center often comes at the cost of
replacing nearly all switches in the network and rewiring it.
This is wasteful and usually infeasible due to sunk capital
costs, downtime, and a slow time to market.

The goal of our work is to allow a data center operator to
incrementally add equipment to boost bisection bandwidth
and reliability without needing to throw out their existing
network. However, this results in the creation of heteroge-
neous data center network topologies, which have not been
sufficiently studied in past work. Therefore, we provide the
theoretical foundations of heterogeneous Clos networks. Our
construction is provably optimal in that it uses the minimal
amount of link capacity possible to meet the hose traffic con-
straints, which accounts for any traffic matrix supported by
the top-of-rack switch uplink rates. Previous work has only
considered heterogeneous interconnection networks under a
different traffic model [27], which is not applicable to data
center networks; we discuss the differences in Sec. 8. To
our knowledge, our construction is the first topology that
achieves optimality for the hose traffic constraints while sup-
porting switches with heterogeneous rates and numbers of
ports.

We then construct a system we call LEGUP to design
network upgrades and expansions for existing data centers.
LEGUP aims to design an upgraded network that is real-
izable in a highly constrained data center, while maximiz-
ing performance by building a heterogeneous Clos network
from existing and new switches. Supporting heterogeneous
switches allows LEGUP to design upgrades with significantly
more bisection bandwidth than existing techniques for the
same dollar cost, which includes the costs of new switches
and rewiring the network.

Our key contributions are:
• Development of theory to construct optimal heteroge-

neous Clos topologies (§4).
• The LEGUP system to design legacy data center net-

work upgrades and expansions with maximal perfor-
mance, defined here as agility, reliability, and flexibil-
ity, subject to a budget and constraints of the existing
data center (§3). LEGUP reuses existing networking
equipment when possible, minimizes rewiring costs,
and selects the location of new equipment.
• We evaluate LEGUP by using it to find network up-

grades for a 7,600 server data center based on the Uni-

versity of Waterloo’s School of Computer Science data
center (§6). LEGUP finds a network upgrade with nearly
three times more bisection bandwidth for the same dol-
lar cost as a fat-tree or naive scale-out upgrades. LEGUP
outperforms other upgrade approaches even when spend-
ing half as much money. We also find that when adding
servers to a data center in an iterative fashion, the net-
work found by LEGUP has 265% more bisection band-
width than a similarly upgraded fat-tree after the num-
ber of servers is doubled.

Before describing LEGUP and our results, we describe
background material (§2). We end with a discussion of our
work (§7), related work (§8), and conclusions (§9).

2. BACKGROUND
The switching fabric of most existing data center networks

(DCNs) is a 1+1 redundant tree with three levels: the top-of-
rack (ToR) switches connect to a level of aggregation switches
which connect to a core level made up of either switches or
routers. The core level is connected to the internet using edge
routers. This architecture has two major drawbacks—poor
reliability and insufficient bisection bandwidth—besides many
other minor problems, as detailed by Greenberg et al. [10,
11].

These limitations have been the focus of much recent work
and researchers have proposed a variety of topology con-
structions. Some current DCN proposals are based on clas-
sic network topologies such as fat-trees [2], the Clos net-
work [10], and hypercubes [29]. Others employ novel re-
cursive constructions [1, 12, 13]. These proposals, however,
have a common feature: they are highly regular and require
homogeneous switches, each with a prescribed number of
ports. This makes it nearly impossible to implement them as
an upgrade to an existing data center without replacing most
switches in the network because each configuration scales to
a maximum number of end-hosts. Once that limit is reached,
most switches must be replaced with a higher radix (number
of ports) switch to support additional servers.

High DCN bisection bandwidth is of primary importance
due to the unpredictable nature of DCN traffic. The studies
of DCN traffic to date demonstrate that DCNs exhibit highly
variable traffic [4, 10, 18]. The traffic matrix (TM) in a DCN
shifts frequently and its overall volume changes dramatically
in short time periods. Over longer time periods, DCN traffic
shows a clear diurnal pattern: traffic peaks during the day
and falls off at night (see, e.g., [14]).

Given these traffic patterns, an ideal DCN should be able
to feasibly route all traffic matrices (TMs) that are possible
given the uplink rates of the servers. That is, no link should
ever have higher utilization than 1, no matter the server-
to-server traffic matrix. The set of TMs allowed under this
model is known as the hose traffic matrices and was intro-
duced in the context of provisioning virtual private networks
[7]. We find it more convenient to deal with the ToR-to-ToR
traffic matrix, which aggregates the servers connected to a

ToR switch into a single entry. We denote the sum of uplink
rates on a ToR switch i by r(i) and call this the rate of the
switch.

3. LEGUP OVERVIEW
LEGUP guides operators when upgrading or expanding

their data center. To achieve this goal, LEGUP solves a net-
work design optimization problem that maximizes perfor-
mance subject to a budget and the data center’s physical con-
straints. We define data center network performance more
precisely next (§3.1), and then give details about the inputs,
constraints, and outputs of LEGUP (§3.2). We end this sec-
tion by giving an overview of the optimization engine used
by LEGUP (§3.3).

3.1 Optimization goals
LEGUP designs a network upgrade that maximizes per-

formance, which we define it to be a weighted, linear com-
bination of the following metrics:

Agility Rather than focusing on bisection bandwidth, as
previous work has done, we focus on the more general con-
cept of agility, which we define to be the maximal constant
pa such that the network can feasibly route all hose traffic
matrices (denoted by D) in pa · D, where each hose TM
D ∈ D is multiplied by the scalar pa. Here, pa can be in-
terpreted as the fraction of servers that can send/receive at
their maximum rate regardless of the destination/source and
regardless of the TM. A network with no oversubscribed
links has an agility of 1. As an example, consider a network
consisting of a two switches, each attached to 48 servers at
1Gbps and a single 10Gbps port that connects the switches.
The agility of this network is 10/48. More generally, if we
have n servers attached to the first switch and m attached
to the second, then we have the agility of the network is
min{1, 10/min{n,m}}. Here, we divide by the minimum
of the two values because the hose TMs do not allow any
server to send or receive more than 1Gbps of traffic, that
is, even if there are 48 servers attached to one switch and 1
server attached to the other, the maximum receiving rate of
lone server is 1Gbps so no more than that will ever cross the
connecting 10Gbps link.

Flexibility We say that a δ attachment point, is an un-
used port such that that attaching a 1 unit (in this paper, this
is 1Gbps) uplink device to this port does not decrease the
network’s agility to less than δ. Then, a network is (pf , δ)-
flexible if it has pf distinct δ attachment points when the
attachment points are filled according to some rule (e.g., by
greedily assigning devices to the attachment point that low-
ers agility the minimal amount). As an example, again con-
sider our two switch network, except now assume all 48 of
each switch’s 1Gbps ports are free. If we take δ = 0.5, then
the flexibility of this network is 68, achieved by attaching
48 servers to one switch and 20 to the other. If we attach an

additional server to the second switch, then the agility drops
to 10/min{21, 48} which is less than 0.5.

Reliability Reliability is the number of link or switch fail-
ures needed to partition the ToR switches, which we denote
by pr. This model corresponds to the failure of a switch or
port or a cable cut. As an example, the complete graph on n
vertices has a reliability of n− 1 because every edge neigh-
boring a vertex must be removed in order to partition the
complete graph. The worst case reliability is that of a tree:
removing a single node or edge partitions it.

These metrics measure distinct aspects of a network. Agility
and reliability are related—increased reliability can increase
agility—however, two networks can have the same agility
with completely different reliability metrics since link speeds
can vary by orders of magnitude. Similarly, high agility is a
prerequisite to high flexibility, but switches also must have
unused ports for a network to be flexible. We have defined
these metrics so that they are computable in polynomial time;
we will describe how to compute each later when describing
LEGUP’s details in Section 5.

3.2 Inputs, Constraints, and Outputs
As input, LEGUP requires a budget, a list of available

switches and line cards, and a data center model. The bud-
get is the maximum amount of a money that can be spent
in the upgrade, and therefore acts as a constraint in the op-
timization procedure. The available switches are the details
and prices of switches that can be purchased. Relevant de-
tails for a switch include its ports and their speeds, line card
slots (if a modular switch), power consumption, rack units,
and thermal output. Details of a line card are its ports, price,
and a list of interoperable switches.

Providing a model of the existing data center is optional,
and even when provided, can include varying levels of detail.
A complete model includes the full details of the network
plus the physical arrangement of racks, the contents of each
rack, and the power and thermal characteristics of equipment
in the racks. Additionally, thermal and power constraints can
be included in this description, e.g., the equipment in each
rack cannot draw more than 10 kW of power. Details of the
existing network includes information about its switches and
their locations. Therefore, the per rack physical constrains
that LEGUP models are thermal, power, and free rack slots.
If details of the existing switches are provided, they will be
considered for use in the upgraded network. LEGUP will
find a solution, if one exists, that meets the physical con-
straints given and will minimize the number and length of
cable runs.

As output, LEGUP gives a detailed blueprint of the up-
graded network. This includes its topology and a selection of
switches and line cards to obtain. If a data center model was
included in the input, LEGUP also outputs the rack where
each aggregation switch should be placed and a wiring dia-

Required input:
Existing DCN &

switch types

Optional input:
Physical DC details

Output:
DCN design &
physical layout

Branch and Bound Enumeration

Bounding
function Feasibility check

Physical mapping
of aggregation switches

Core switch
selection

Figure 1: Overview of the LEGUP optimization engine.

gram that specifies each cable run between ToR and aggre-
gation switches.

3.3 The LEGUP optimization engine
We now give a high level overview of the engine em-

ployed by LEGUP. The optimization problem solved by LEGUP
maximizes the sum of agility, reliability, and flexibility, weight-
ing each metric by a multiplier selected by the user. This is
a difficult optimization problem and is made harder by the
large number of constraints (e.g., energy, thermal, space, and
cabling).

LEGUP only designs tree-like networks, which is desir-
able in a data center because many DCN load balancing,
routing, and addressing solutions require a tree-like network,
e.g., [2, 10, 25]. However, the theory of heterogeneous tree-
like topologies has not been previously developed, and we
wish to use heterogeneity to reduce the cost of network up-
grades. Therefore, we develop the theory of heterogeneous
Clos networks in the next section, which are tree-like net-
works. The reasoning behind this decision is that that a tra-
ditional 1+1 redundant DCN topology is already a Clos net-
work instance (albeit a 1+1 redundant topology is a Clos
instance that does not have the agility and reliability typ-
ically associated with Clos networks). Despite adding het-
erogeneous switches, DCN addressing and routing solutions
can be used on our constructions with no or minor modifica-
tions; we discuss this further in Sec. 7.

We assume that all servers already connect to a sufficient
ToR switch, but that the aggregation and core levels of the
network need to be upgraded. Given a set of aggregation
switches, the optimal set of core switches is somewhat re-
stricted in a heterogeneous Clos network, so LEGUP ex-
plores the space of aggregation switches using a branch and
bound optimization algorithm.

Branch and bound is a general optimization algorithm that
finds an optimal solution by enumerating the problem space;
however, it achieves efficiency by bounding, and therefore
not enumerating, large portions of the problems space that
cannot contain an optimal solution. Our branch and bound
differs slightly from the standard implementation because
we enumerate over only the aggregation switches, so we
must introduce additional steps to find a set of core switches;
Figure 1 depicts our design.

In our context, the problem space is all possible sets of
aggregation switches given the available switch types given
as input. We need to build a tree of candidate solutions, i.e.,
the set of aggregation switches used in the network. We call
this tree the solution tree. Each node in the solution tree is
labeled by the set of aggregation switches it represents; the
root’s label is empty. A node is branched by giving it a child
for each switch type; the label of the child is the label of its
parent plus the switch type the child represents. A solution
is a complete solution when its aggregation switches have
enough ports to connect the ToR switches with a spanning
tree.

A complete solution only describes the set of aggrega-
tion switches in the network and does not account for the
core switches nor the physical layout of the network. Given
a complete solution, we find the min-cost mapping of solu-
tion’s aggregation switches to racks (full details of LEGUP’s
handling of complete solutions are given later in §5) and then
find the min-cost set of core switches to connect the aggre-
gation switches to. Once this is complete, we add the cost of
the core and physical mapping into the cost of the solution
to determine if it is still feasible, i.e., it is not over budget;
additionally, we check to make sure no physical constraints
(e.g., thermal and power draw) are violated in the physi-
cal mapping phase. Unlike standard branch and bound, we
continue to branch complete solutions because a solution is
complete here whenever it can connect all the ToR switches;
however, adding more aggregation switches to a complete
solution will always improve its performance (but may vio-
late some constraints).

Before checking for feasibility; however, a candidate so-
lution is bounded to check if it, or any of its children, can
be an optimal solution. A candidate is bounded by finding
the maximal agility, flexibility, and reliability possible for
any solution in its subtree. A candidate solution with a lower
bound than the optimal complete solution is trimmed, that is,
it is not branched because its subtree cannot possibly contain
an optimal solution. We delay the details of our particular
bounding function until Section 5.1.

3.4 Why naive solutions aren’t enough
To motivate our design of LEGUP, we briefly address the

need for algorithms more sophisticated than standard heuris-
tics, e.g., a greedy algorithm. We identify three key weak-
nesses of existing heuristics that LEGUP addresses:

1. Standard techniques don’t take physical constraints into
account, and therefore might not return a feasible solu-
tion. LEGUP finds a feasible solution if one exists.

2. Algorithms that greedily add switches with the mini-
mum bandwidth to price ratio will always reuse exist-
ing switches. This might not be the optimal network
configuration. LEGUP only reuses switches when it’s
beneficial to do so.

3. Cabling and switch costs need to be accounted for. We
are unaware of any simple algorithms that take both

r
(l-2) stage

1
(l-2) stage

m1
core

IO switches

1 n nr

m

rr

m

. . .

. . .

(a) Physical realization

r
(l-2) stage

1
(l-2) stage

1 n nr

. . .

m m

(b) Logical topology
Figure 2: An l-stage Clos network. Each IO switch here is a subnetwork
with l− 2 stages. In (b), each logical edge represents m physical links and
the logical root represents m switches, each with r ports.

these costs into account.

Our implementation of LEGUP’s branch and bound algo-
rithm uses depth-first search and when it branches a solution
tree node, and it orders the children so that they are sorted
by bandwidth to price ratio. As a result, the first solutions
explored by the branch and bound are the solutions that a
greedy algorithm considers. We have found this to increase
the number of trimmed subtrees dramatically since the first
complete solutions tend to have good, though not optimal,
performance.

4. THEORY
Our implementation of LEGUP designs heterogeneous Clos

networks, so we develop this theory before describing the
details of LEGUP’s implementation. Before presenting our
heterogeneous Clos construction (§4.2), we briefly review
the standard Clos network.

4.1 The Clos network
A 3-stage Clos network [5], denoted by C(n,m, r), is

an interconnection network where the first stage, made up
of input switches, consists of r switches, each with n in-
lets and m uplinks. Symmetrically, the third stage consists
of r output switches, each with n outlets and m downlinks.
The second stage then is m switches, each with r links to
first-stage switches and r links to third-stage switches. We
call the switches in the middle stage the core switches. We
refer to the links from a stage to a higher stage as uplinks
and the links from a stage to a lower stage as downlinks. A
folded Clos network places input and output layers top of
each other, which we use in this paper, and when doing so,
the input and output switches are the same devices, so we
refer to them as input/output (IO) switches.

The recursive nature of Clos network means that we only
have to deal with 3-stage Clos networks. An l-stage Clos
network is recursively composed of 3-stage Clos networks.
In an l-stage Clos network, each input and output switch is
replaced by an (l − 2)-stage network. An example is shown
in Figure 2(a). As a result, any algorithm or theorem that
applies to a 3-stage Clos network applies to an l-stage Clos

4 4 16 16 64 64

x1 x2

rate =

4

8 8 56 56

4 8 88 8

(a)

4 4 16 16 64 64

x1 x2

rate =

4

8

x3

24 244

88 8 8

32 32

8

(b)
Figure 3: Two logical topologies for IO nodes with uplink rates {4, 4, 16, 16, 64, 64}). Despite the different number of root nodes, each of these topologies is
optimal. There is also an optimal logical topology for these IO nodes with a single root node (as implied by Lemma 1).

x2

4 4 16 16 64 64rate =

x1

. . .

Figure 4: The physical realization of the logical topology shown in Fig. 3(a).
Here, the logical root x2 is realized by 8 switches (not all drawn for clarity),
the thin links are unit capacity, the medium, green links are a bundle of 2
unit capacity links, and the thick, blue links represent 7 unit capacity links.

networks by applying it to the outermost 3-stage network
first, and then recursively applying it to the (l − 2)-stage
subnetworks. As such, we always deal with 3-stage networks
in this paper, but our results can be generalized to an l-stage
Clos networks in a straightforward manner.

4.2 Constructing heterogeneous Clos networks
We separate logical topology design (§4.2.1) from the prob-

lem of finding a physical realization (§4.2.2). A logical topol-
ogy in this context is a forest of trees where the leaves of
these trees are IO nodes and each root node represents a set
of core switches. If a root node x represents m switches in
the physical realization, then a logical edge (i, x) between x
and an IO switch i represents m physical links—one from i
to each of them switches represented by x. For example, the
logical topology of a Clos network has a single logical root
that has each IO node as its child; this is illustrated in Fig-
ure 2(b). The capacity of a logical edge indicates the band-
width its physical links need to sum to so that the network
can feasibly route all hose TMs., e.g., the logical edge (i, x)
described just above has capacity m.

The logical topology design problem is to find a suitable
set of root nodes, the neighbors of each root node, and the ca-
pacity of the edges between IO nodes and root nodes. First,
we show in Lemma 1 how to find the root nodes and the
edges between IO nodes and roots such that the logical topol-
ogy is optimal, i.e., it uses the minimal amount of link capac-
ity necessary and sufficient to feasibly route the hose TMs
possible given the rates of the IO nodes. Finally, we show in
Theorem 2 how to assign capacities to the logical edges. A
set of IO

Given a logical topology, we then need to find a set of

switches that realize each of its root nodes. As the logical
topology is a forest, we can consider each tree in it sepa-
rately, so our approach here is to find the switches of each
root node individually. Theorem 3 shows that we can do this
in such a way that we use the same amount of link capacity
as the lower bound for feasibly routing the hose TMs.

4.2.1 Logical design
We are concerned with the design of logical topologies

that use the minimal link capacity necessary and sufficient
to feasibly route all hose TMs (i.e., the logical topology is
optimal), and we make the assumption that a physical net-
work can be realized using the same amount of switching
capacity as the logical topology. We lift this assumption in
the next section when we show how to find such physical
realizations.

To support heterogeneous ToR switches, we do not require
that each switch has n inlets and outlets as required by the
classic Clos construction. Instead, we let each IO switch i
have a rate, denoted by r(i), which is the sum of its downlink
rates (e.g., in a homogeneous network, the rate of each IO
switch is n). Each logical edge (i, x) between an IO node i
and logical root x has a capacity c(i, x), which is the sum of
physical link rates that (i, x) represents. A logical topology
has optimal edge capacity if the sum of edge capacities is
equal to the sum of node rates.

We are now ready to give our logical design results, start-
ing with a characterization of the roots and their neighbors
in optimal logical topologies.

LEMMA 1. Let T be a logical topology with IO nodes
I = {1, . . . , k}, and let x1, . . . , xl be the root nodes of T .
Let Xp denote the set of IO nodes neighboring root node xp

such that X1 = I and X1 ⊃ · · · ⊃ Xl. Whenever all edges
of T have positive capacity, we have that T feasibly routes
all hose TMs with optimal edge capacity if, for all xp, such
that 2 ≤ p ≤ l,

r(i) >
∑

j∈Xp−1−Xp

r(j) for all i ∈ Xp

and |Xl −Xl−1| ≥ 2.

PROOF. All proofs have been omitted due to space con-
straints. See the full version of this paper [6] for details.

The following results are implied by this lemma:

• whenever r(1) = · · · = r(k), the optimal logical topol-
ogy has a single root node, and
• no matter the rates of each IO node, a logical topology

with a single root node is optimal, i.e., a logical topol-
ogy can always use fewer root nodes than it’s allowed
by Lemma 1 and be optimal.

Two optimal logical topologies for a set of IO nodes are
shown in Figure 3.

This lemma identifies the available logical topologies for
a set I of IO nodes, but it does not determine the capacities of
each logical edge. Our next result shows how capacity can be
assigned to the logical edges of T to feasibly route all hose
TMs. The intuition underlying this theorem is that the root
xp and its children (the IO nodes) form a disjoint spanning
tree. We provision the spanning tree rooted at x1 first, and
then move to the next root node’s spanning tree. Every unit
of capacity that is provisioned to x1 is a unit that does not
have to be routed through x2, . . . , xl, so we subtract off the
previously allocated capacity from the edges to x2, . . . , xl.

THEOREM 2. Let T , x1, . . . , xl, X1, . . . , Xl, and I be as
in Lemma 1, and let X0 = ∅ and Xl+1 = ∅. We have that
T can feasibly route all hose TMs using optimal capacity if
and only if

c(i, xp) =

{∑
j∈Xp−Xp+1

r(j) if i ∈ Xp+1,

r(i)−
∑

j∈I−Xp
r(j) otherwise

for all 1 ≤ p ≤ l and all i ∈ I .

We give an example of an optimally provisioned logical
topology in Figure 3(a). Note that for the IO nodes given in
Figure 3(a), an optimal logical topology could have 1, 2 (as
shown), or 3 root nodes. This theorem prescribes the amount
of capacity needed in a logical topology, yet it is flexible in
assignment of this capacity across logical edges.

4.2.2 Physically realizing a logical node
We now show how to find a physical realization of a log-

ical node. Here, we are given a logical root and a set of IO
nodes, and we want to find a set of switches that realizes the
core node.

Each IO switch has a set of uplink ports, which may have
multiple speeds. To simplify our presentation, we separate
IO nodes with multiple uplink port speeds into separate switches,
so that each IO switch has a single uplink port speed. This
does not lead to a loss of generality because we can recom-
bine the separated switches later. So, each IO switch i has
a single uplink port speed, denoted by p(i). We assume that
an IO switch i has at least dr(i)/p(i)e ports; otherwise, no
realization that can feasibly route all hose TMs exists.

We realize logical root x with a set I of IO nodes as its
children. We use X to denote the set of switches that make
up logical node x. Let m(i) = dc(i, x)/p(i)e, where c(i, x)
is the capacity of the logical edge (i, x) as before. Here,m(i)
is the number of physical uplinks i has to x. We use P (r) to

denote the set of all switches of I with p(i) = r, and I(x)
denotes the set of IO nodes neighboring root x.

Now, we determine how many switches comprise X and
how many ports each has. Let mmin = minj∈I(x){m(j)}.
The core switches that realize x and the IO nodes I(x) form
a complete bipartite graph, so we have |X| = mmin. Each
core switch in X must have at least mmin · |P (r)| ports
with speed r, for each port speed r, and each i ∈ I(x)
has dm(i)/mmine uplinks to each switch in X . An optimal
physical realization of the logical topology in Figure 3(a) is
drawn in Figure 4.

The following shows our construction is optimal.

THEOREM 3. A physical realizationG constructed as de-
scribed above of a logical tree T with root node x and IO
nodes I with c(i, x) minimized according to Theorem 2 can
feasibly route all hose TMs.

Further, if c(i, x) and m(i) are evenly divisible by p(i)
and mmin respectively for all i ∈ I , then the amount of link
capacity used by this physical realization matches the lower
bound of any interconnection network that can feasibly route
all hose TMs.

In the above theorem we claim that our construction needs
only as much link capacity as any other interconnection net-
work that can feasibly route all hose TMs. An interconnec-
tion network is a network where nodes with positive rate
(i.e., r(i) > 0) never directly connect to other nodes with
positive rate, that is, all nodes connect to switches. A corol-
lary to a result of Zhang-Shen and McKeown [30] is that any
switching network with node rates r(1), . . . , r(n) can feasi-
bly route all hose TMs iff the total link capacity is at least∑

1≤i≤n 2 r(i). This bound is matched by, for example, a
homogeneous 3-stage Clos network when all IO switch rates
are equal. Our construction matches this bound without any
restrictions on IO switch rates.

5. LEGUP DETAILS
We now describe the details of LEGUP’s optimization

engine. Recall that the optimization engine solves a maxi-
mization problem by performing a branch and bound explo-
ration of the aggregation switches. In this section, we fo-
cus on the handling of complete solutions, i.e., the candidate
solutions with enough aggregation ports to connect all ToR
switches with at least a spanning tree. Given a complete so-
lution S = {s1, . . . , sk}, where each si represents a switch,
LEGUP does the following:

1. Bounds the cost of S (§5.1).
2. If S’s bound is lower than the best complete solution

found so far, S is trimmed and it is not branched.
Otherwise, the feasibility of S is determined by:

• selecting a min-cost set of core switches (§5.2);
and
• finding a physical mapping of the aggregation switches

to the data center’s racks (§5.3).

3. If S is determined infeasible (due to a budget or phys-
ical model constraint violation), then it is trimmed.
Otherwise, the performance of S is computed (§5.4),
the best complete solution is updated, and S is branched.

We use wa, wf , and wr to denote the weights a our per-
formance metrics agility, flexibility, and reliability respec-
tively, so the overall performance of a solution S is p(S) =
pawa + pfwf + prwr where pa, pf , and pr have been nor-
malized by their maximal values. We show how to find these
maximal values in (§5.4). Throughout, whenever we use one
of these, we assume it has been normalized.

5.1 Bounding a candidate solution
Our bounding function estimates each performance met-

ric individually and then returns the weighted sum of the
estimates. Because it is used to trim solutions and we are
maximizing performance, it must overestimate the best pos-
sible solution in the candidate solution’s subtree. Given a
candidate solution S, we bound each metric of S is found as
follows.

Agility and flexibility Agility and flexibility are coupled,
so we bound them simultaneously, i.e., we bound waba +
wfbf . We begin by finding the maximum agility the remain-
ing budget allows, that is, we find bmax

a by first greedily
adding the switch with the highest sum of port speeds to cost
ratio of all the available switch types to S until the cost of
S is over-budget (note that this makes use of any existing
switches that are not included in S as they have no cost).
Since this bound is an overestimate, we do not worry about
actually being able to realize the topology, so we aggregate
the bandwidth of switches in S, and we use r(S) to denote
their aggregate bandwidth, i.e., the sum of their port speeds.

We combine all levels of switches into single logical nodes,
that is, we have one a core node, aggregation node, and ToR
node, which form a path ToR to aggregation to core. To find
bmax
a , we need to find the maximum possible agility of this

logical topology. Let r(ToR), r(aggr) and r(core) be the
bandwidths of the logical aggregation and core nodes respec-
tively. We observe that r(aggr) = 2/3 r(S) and r(core) =
1/3 r(S) maximizes bmax

a (this is implied by Theorem 2).
Moreover, we have

ba = min
{

1,
r(core)
r(ToR)

,
1/2 r(aggr)
r(ToR)

}
.

We now lower bound bf , denoted by bmin
f . We have bmin

f =
1/2r(aggr)−r(ToR). That is, bmin

f is equal to the amount of
spare bandwidth the aggregation and core nodes can handle
without decreasing agility.

The algorithm we use to maximize waba + wfbf is given
in Alg. 1. Briefly, we maximize the sum by attaching 1 unit
of capacity at a time to either the core or the aggregation
switches depending on which position decreases agility the
least. We repeat this process until waba + wfbf hits a max-
imal point, which is guaranteed to be globally optimal be-

Algorithm 1 — Bound agility and flexibility.

Input: r(core), r(aggr), r(ToR), bmax
a , and bmin

f

Output: ba, bf

begin
ba = bmax

a

bf = bmin
f

r(cToR) = 0
until the following does not increase waba + wf bf do

if r(cToR) < r(ToR) then
r(core) = r(core) + 1
r(aggr) = r(aggr)− 2
r(cToR) = r(cToR) + 1

else
r(aggr) = r(aggr)− 1
r(ToR) = r(ToR) + 1

bf = bf + 1

ba = min{1, r(core)
r(ToR)

,
1/2r(aggr)

r(ToR)
}

end

cause it is the sum of two linear functions.

Reliability We make two observations that upper bound
S’s reliability. We have that br is at most:

• 1/2 the number of ports on any s ∈ S; and
• the number of open ports on any ToR switch.

We therefore set br to the maximum of these two values.

5.2 Finding a set of core switches
To find the min-cost core switches, we need to solve two

sub-problems: finding an optimal logical topology (§5.2.1),
and then finding the min-cost switches that realize that topol-
ogy (§5.2.2).

5.2.1 Selecting a logical topology
Theorem 2 allows for a wide range of logical topologies

that can optimally connect a set of aggregation switches. We
observe, however, that a logical topology with k logical core
nodes can always be made to have k − 1 logical core nodes
by stacking switches, that is, by combining multiple switches
with l ports in total into a single switch with at least l ports.
Moreover, if no physical realization of a logical topology
with k core nodes exists, then there is no physical realization
of a logical topology with k − 1 core nodes. Therefore, we
always maximize the number of logical core nodes in accor-
dance with Lemma 1. We set the capacities of each logical
edge such that they are minimized according to Theorem 2.

5.2.2 Realizing the logical topology
Once we have a logical topology, we need to realize each

logical node. We sketch LEGUP’s realization algorithm and
omit details of handling modular switches due to space con-
straints. The first issue is to determine the ports each aggre-
gation switches should use to connect to ToR switches and
what ones should connect to core switches. Again, we should

have 1/2 the switch’s bandwidth point each direction. We
find aggregation switch down ports (i.e., the ports that con-
nect to ToR switches) by iterating through the ToR switches.
At each ToR switch, we select one of its free ports to use
as an uplink by selecting its free port with the highest speed
such that there is a switch in S with an open port at the same
speed or greater. When multiple such switches in S exist, we
connect this ToR switch to the s ∈ S with the most free ca-
pacity. We repeat this procedure until either 1/2 the capacity
of each switch in S has been assigned to a ToR switch or
until the uplink rate of each ToR switch is equal to its hose
traffic rate.

By Theorem 3, the aggregation switches and logical topol-
ogy dictate the number of core switches and the number and
speeds of ports for each core switch. A core candidate solu-
tion is therefore infeasible if one of the logical nodes cannot
be realized because no switch has enough ports of each rate
required (e.g., the aggregation switches may dictate that each
core switch has 145 10Gbps ports when the largest available
switch has only 144 such ports). Assuming that realizing the
logical topology T is feasible, let x1, . . . , xl be T ’s logical
root nodes. The switches that realize each xi are dictated
by Xi, the aggregation switches that are xi’s children, so
we realize each xi with the min-cost switch that satisfies its
port requirements. This switch assignment is easily found
by comparing each xi’s requirements to the available switch
types.

We can, however, potentially lower the cost of the core
switches by stacking several switches into one physical switch,
e.g., if xi needs to be realized by five 24-port switches, it can
also be realized by a single 120-port switch, potentially at a
lower cost. This switch stacking problem can be reduced to a
generalized cost, variable-sized bin packing problem, which
can be approximated by an asymptotic polynomial-time ap-
proximation scheme [8]; however, their algorithm is compli-
cated and still too slow for our purposes since it must be ex-
ecuted for every complete solution. Instead, we use the well-
known best-fit heuristic [17] to solve stack core switches,
which is known to perform well in practice.

Two issues arise when we stack core switches. First, it
is possible to turn a feasible solution infeasible, e.g., af-
ter stacking switches, the resulting solution may violate a
physical constraint, such as there may not be a rack that has
enough free slots for the larger switch. Second, stacking core
switches can decrease our reliability metric. Therefore, we
save the original set of core switches. If either of these cases
occurs, we revert back to the original set of core switches,
and then continue.

5.3 Mapping aggregation switches to racks and
ToR switches

Now that we have determined the set of switches that
comprise the aggregation and core levels, we need to place
them into racks and connect each ToR switch to aggregation
switches. We assume that the core switches can be centrally

located and that ToR switches are already placed, so we are
only concerned with aggregation switches in this section.

Our mapping algorithm takes as input a set of aggrega-
tion switches, here this is S, and the data center model. If
no model is given, then this stage is skipped. If a network
blueprint is given but no data center model, then the map-
ping assigns each link a unit cost if it is new or modified. The
mapping’s goal is to minimize the cost of the physical layout
of these aggregation switches subject to the rack, thermal,
and power constraints of the data center model; here, cost is
the length of cables needed to connect the ToR switches to
aggregation switches. Even using Euclidean geometry set-
ting and without our additional constraints, this problem is
NP-hard as it can be reduced to a Steiner forest problem vari-
ant, see, for example [16]. Additional complications here
are that the data center model may already have aggrega-
tion switches in place and we would like to use Manhattan
distance instead of Euclidean because cables in most data
centers run above the racks in trays. These trays run above
the rows and cross between rows perpendicularly to the row.

We use a two-phase best-fit heuristic for mapping. The
first phase matches aggregation switches to existing switches
in the data center model, and the second stage finds a best-fit
for all aggregation switches not placed in the first phase. To
speed up the algorithm, we do some preprocessing. The pre-
processing and mapping algorithm details are given in Algo-
rithm 2.

Phase I of our mapping algorithm attempts to replace ex-
isting aggregation switches in the data center model with a
close switch in S. We define closeness as follows for two
switches s1 and s2. We have closeness(s1, s2) = 0 if s1
does not have as many ports as s2 for any speed, when ports
are allowed to operate at any speed less than their line speed,
and closeness(s1, s2) = 1 if s1 has at least as many ports as
s2 for all speeds, again allowing s1’s ports to operate at less
than their max speed (e.g., the closeness of a 24-port 10Gbps
switch and a 24-port 1Gbps switch is 1).

5.4 Computing the performance of a solution
We now address how to compute each of our performance

metrics.
Agility can be found in polynomial time for any network

using linear programming [21]. Here, however, we can use a
faster algorithm. Because we have constructed the network
in accordance with Lemma 1, a node i with rate r(i) must
have at least r(i) of uplink bandwidth to feasibly route all
hose TMs (i.e., for agility to be 1). Specifically, if the uplink
bandwidth of all i’s uplink ports sums to u, then we have
that the network’s agility is at most u/r(i). We can therefore
determine the upper bound on agility imposed at each ToR
and aggregation switch to find the network’s agility.

In general, reliability can be determined using a standard
min-cut algorithm. A heterogeneous Clos network’s relia-
bility is bounded by the number of uplinks from a ToR to
its aggregation switches and an aggregation switches to its

Algorithm 2 — Mapping aggregation switches to racks.

Preprocessing
Input: data center model
Output: lists of racks

begin
for each rack do

find the sizes of its contiguous free rack units, and
the distance to the k nearest ToR switches

Separate the racks into lists R[u] such that the largest
contiguous free rack units of racks in R[u] is u

Sort each list in increasing order of distance to k ToR switches
end

Mapping
Input: data center model M and S
Output: map S → racks

begin
// Phase I
for each switch x ∈ S do

for each aggregation switch y ∈M do
find the closeness of x and y

S′ = ∅
for y ∈M do

Map the closest x ∈ S to y
S′ = S′ ∪ {x}

// Phase II
for each switch x ∈ S − S′ do

Map x to the first rack in r ∈ R[x.U]
Update r’s largest contiguous rack units, and move it to

the appropriate list
end

core switches as observed earlier, so we can compute it more
quickly.

Computing flexibility depends on the rule specified for
attaching new devices to the network. In our implementa-
tion, we greedily attach devices to the open port that reduces
agility the least. Computing flexibility is done by repeating
this process until no more unit bandwidth devices can be at-
tached without reducing agility below δ.

Finding the maximal value of each metric We need to
scale each of our performance metrics to a [0,1] range to
compare them. The maximal agility of any network is 1;
however, we normalize flexibility and reliability by finding
the maximal value of each metric given the budget and using
this for normalization. These upper bounds are found using
our bounding function on an empty candidate solution.

6. EVALUATION
We now evaluate LEGUP by comparing it to other meth-

ods of constructing data center networks. We describe the
data center used for evaluation first (§6.1), and then describe
alternative upgrade approaches (§6.2). Finally, we study the
performance of these approaches with two scenarios: up-
grading our data center (§6.3) and expanding it (§6.4).

ToR switches
Hose uplink rate Uplinks (1, 10 Gbps) No. switches

28 8, 2 50
40 8, 4 80
8 8, 0 40
2 2, 0 20

Aggregation switches
Chassis Line cards Free LC slots No. switches

HP 5406zl 3x 24 1Gbps, 1x 2 10Gbps 2 1
HP 5406zl 4x 4 10Gbps 2 9

Table 1: Existing switches in the SCS data center. In the ToR switch ta-
ble, the hose uplink rate is the maximum rate the switch would like to
send/receive at; the uplink indicates the number of free ports the ToR has
with bandwidth 1 or 10 Gbps; and no. switches indicates the number of such
switches in our input network. In the aggregation switch table, the chassis of
all existing aggregation switches is an HP 5406zl; however, the configura-
tion of line cards (LCs) for some aggregation switches is different as shown
in the line cards column.

6.1 Input
Data center model To test LEGUP on an existing data cen-
ter, we have modeled the University of Waterloo’s School
of Computer Science (SCS) data center. The servers in this
room run services such as web, email, file storage, backup,
and many are used as compute machines by faculty and stu-
dents. To make the upgrade problem more like that in a larger
data center, we have increased the number of racks and servers
in the data center by an order of magnitude. We scaled the
network proportionally, keeping the characteristics of the net-
work invariant. Our analysis of the SCS data center is based
on this scaled version. While the SCS is a small data center,
choosing to study it rather than a made up system allows us
to model a real-world data center with real constraints rather
than synthesizing a model based on what we believe larger
data centers look like.

The scaled-up SCS data center has three rows made up of
205 racks housing a total of 7600 servers, 190 ToR switches,
six aggregation switches, and two core routers. These racks
are arranged into three rows. Row 1 has 85 racks and rows 2
& 3 each have 60 racks.

The SCS data center has grown organically over time and
has never had a clean slate overhaul. As a result, the SCS
data center is a typical small data center with problems such
as the following:

Heterogeneous ToR and aggregation switches: Switches
have a long lifespan in the SCS data center, so the ToR switches
are not uniform. Aggregation switches are all HP 5406zl
switches, though they do not have identical line cards. The
details of the data center’s existing switches are listed in Ta-
ble 1.

Poor air handling: The data center has a single chiller and
it’s located at the end of the rows. Additionally, the hot and
cold aisles are not isolated, resulting in less effective cool-
ing. Because of this, hot-running equipment cannot be con-
centrated at the far end of the rows where it will not receive
much cool air from the chiller. We model this by linearly
decreasing the allowed amount of heat generated per rack

Switch model Ports Watts Price ($)
Generic 24 1Gbps 100 250

48 1Gbps 150 1,500
48 1Gbps, 4 10Gbps 235 5,000

24 10Gbps 300 6,000
48 10Gbps 600 10,000
144 10Gbps 5000 75,000

HP 5406zl chassis n/a 166 2,299
HP line card 24 1Gbps 160 2,669
HP line card 4 10Gbps 48 3,700

Table 2: Switches used as input in our evaluation. Prices are street and
power draw estimates are based on a typical switch of the type for the
generic models or manufacturers estimates, except for the HP 5400 line
cards, which are estimates based on the typical power draw for a 1Gbps or
10Gbps port.

as the racks move away from the chiller. We do not have
thermal measurements for all our input switches, so we ap-
proximate the thermal output of a switch by its power con-
sumption. Full details of our model are in [6].

The data center’s current network is arranged as a tree; each
ToR switch has a single uplink to an aggregation switch and
each aggregation switch has two uplinks to the core routers.
We would like to modify the network so that only outbound
traffic passes through the core routers. Therefore, all network
upgrades must be three-levels, that is, they need to replace
these routers with core switches.

Switch and cabling prices The switches available for use
by the upgrade approaches are shown in Table 2. We assume
that installing or moving links to or from an aggregation
switch costs $50; links from ToR switches to servers are free
to move. Based on our discussions with the data center oper-
ators, we believe this is a conservative estimate based on the
price of cabling and the man-hours needed to install a cable
in an existing data center. Though LEGUP supports charging
for a cable based on its length, we do not use this function-
ality because we are currently unable to estimate the lengths
of cables used by the fat-tree upgrade approach.

6.2 Alternative upgrade approaches
To evaluate the solutions found by LEGUP, we consider

two alternative network upgrade approaches. The first method,
is a naive scale-out algorithm. This algorithm upgrades line
cards in existing modular switches as the budget allows by
purchasing the line card with the least cost to rate ratio.
When there are no more free line card slots, more HP 5406zl
switches are purchased and filled with additional line cards
in the same greedy fashion. This algorithm keeps the core
and aggregation levels homogeneous and uses only 10Gbps
links between the aggregation switches and the core switches
(but uses heterogeneous links to the ToR switches since they
have heterogeneous uplink rates).

The second approach we consider is to build a fat-tree
using 1Gbps links following Leiserson’s construction [23];
the fat-tree was suggested as a low-cost DCN topology by

Comparison of upgrades approaches

Sca
le-o

ut

Fat-t
re

e

LEGUP

Sca
le-o

ut

Fat-t
re

e

LEGUP

Sca
le-o

ut

Fat-t
re

e

LEGUP

Sca
le-o

ut

Fat-t
re

e

LEGUP
0

1

2

3

100K 200K 1000K

Flexibility

500KBudget:

Agility

Reliability

Pe
rf

or
m

an
ce

Figure 5: Performance of the upgrade approaches for various budgets.
Here, we have wa = wf = wr = 1 and δ = 0.10.

Al-Fares et al. [2]. Here, we reuse existing ToR switches.
We deviate from Al-Fares et al.’s strict definition of a fat-
tree by allowing switches in different levels to have different
radices, e.g., the aggregation switches could have 24 ports
and the core switch could have 48 ports. This slight sup-
port for heterogeneity greatly improves the results of the net-
works found in our examples, and is supported under Clos’s
original network construction [5] (which is a generalization
of the fat-tree).

For both these approaches we do not take the physical
constraints of the data center into account. Therefore, it may
not always be possible to construct the networks found this
way. In contrast, LEGUP takes the physical constraints (in
our case thermal and rack space) into account, and so it is at
a disadvantage because its solutions are realizable.

6.3 Upgrading the data center
We first consider upgrading the SCS data center to max-

imize its performance. For this scenario, we set the weights
of each performance metric to be 1 and δ = 0.1.

The performance achieved by our three upgrade approaches
for various budgets is shown in Figure 5. As the chart shows,
for all budgets, LEGUP finds an upgrade with higher agility
and flexibility than the the scale-out or fat-tree approaches.
Moreover, LEGUP always finds a network upgrade with more
agility and flexibility than the other two approaches even
when LEGUP’s budget is half as much as their budgets. Be-
cause the maximal reliability is two (as limited by the ToR
switches with only two uplink ports), all upgrades were able
to achieve this for all budgets.

Interestingly, the naive scale-out approach often outper-
forms the fat-tree. This is largely due to the high number
of cables in the fat-tree, each of which costs $50 to install
here. For example, with a budget of $100K, the fat-tree ap-
proach can only spend roughly $30,000 on switches because
$70,000 is needed for cabling. By taking advantage of 10Gbps
links, LEGUP and the scale-out approach need an order of

Agility as the data center is expanded

0
1200

2400
3600

4800
6000

7200
0.0

0.2

0.4

0.6

0.8

1.0 LEGUP
Fat-tree

Number of additional servers

Ag
ili

ty

Figure 6: Agility as additional racks of servers are added to the data center.
Each point is found by increasing agility as much as possible given a budget
of $300,000 and the previous iteration as the existing network.

magnitude fewer cables.

6.4 Expanding the data center
We now consider expanding a data center network to ac-

commodate additional servers as they are added over time.
Again, we use the SCS data center as a starting point, and
we add 1200 servers to it at a time and find a network for
the expanded data center. Each expansion has a budget of
$300,000, and uses the network found in the previous iter-
ation as input. This budget was selected because it is 10%
of the cost of the servers, assuming a price of $2500 per
server; this cost is in line with recent cost breakdowns for
servers compared to the network [11, 14]. We do not take
the racks’ thermal or constraints into account here because
the assumption is that the data center floor would have to be
expanded for any upgrade of this size. For LEGUP, we set
wa = 1, wf = 5, wr = 1 and δ = 0.10. Because LEGUP
assumes that servers connect to a ToR switches, we use 30
switches with 48 1Gbps and 4 10Gbps ports as ToR switches
for each 1200 server expansion. Doing so uses $150,000 of
LEGUP’s budget each iteration.

The results of our expansion scenario are shown in Figure
6. LEGUP significantly outperforms the fat-tree upgrades.
The fat-tree approach experiences a drop in agility when the
network with 2400 additional servers is expanded by another
1200 servers because the aggregation and core switches of
the +2400 server network are all 24-port switches. To ac-
commodate the additional 1200 servers without lowering agility
even further, its core switches need to be replaced by 48-
port switches. After this change the amount of agility gained
with each addition is less than previously because the 48-
port switches are not as good a value as the 24-port switches.

7. DISCUSSION
Lacking a theoretical foundation to model and analyze

heterogeneous tree-like topologies, a data center manager
has two options to upgrade their network: (1) perform an
expensive forklift upgrade, or (2) add additional switches to

their network using best practices or other rules of thumb.
This second approach would likely either result in a topology
with sub-optimal agility for the money because link capac-
ity would not be able to be used optimally. So, even without
LEGUP, our theory of heterogeneous Clos networks is use-
ful because it describes topologies that can extract maximal
agility from available link capacity, which is useful to guide
the addition of switches.

Moreover, our aggregation switch mapping algorithm given
in Sec. 5.3 solves two challenges that arise even when using
a traditional homogeneous network: where should aggrega-
tion switches be located? And, how to wire ToR and aggre-
gation switches together to minimize cabling costs? We plan
to fully evaluate this algorithm in future work.

And finally, LEGUP is a flexible optimization framework
that can be expanded beyond the scope we have described
here. For example, it is simple to extend LEGUP to account
for switches with oversubscribed backplanes. This can be
done by considering the impact of such switches on agility.
It is also possible to account for other optimization metrics,
such as end-to-end latency, in addition to agility, flexibility,
and reliability. Doing so requires modifications to the bound-
ing function (§5.1), however, and so we leave it to future
work.

So far, we have not addressed operational issues that arise
when heterogeneity is added to a DCN. We address them
now:

• Configuration: We have not accounted for the cost of
reconfiguring a DCN after modifying its topology. Re-
configuration could be expensive and error-prone, es-
pecially if it is performed manually. We expect that this
will become less of a issue as data center management
solutions improve. For instance, PortLand [25] pro-
vides “plug-and-play” functionality for DCN switches
and NOX can be used to centrally manage a DCN [28].
Both of these solutions can support heterogeneous Clos
topologies with minor modifications. As we mentioned
above, LEGUP can be extended—we expect that re-
configuration costs could be added to LEGUP simi-
larly to how rewiring costs are dealt with.

• Routing and load balancing: To prove the optimal-
ity of our heterogeneous Clos construction (§4), we as-
sumed ideal load balancing. This is not achievable in
practice because it requires support for splitting indi-
vidual flows across multiple paths. Nevertheless, close
to optimal load balancing on our constructions can be
achieved, however. Mudigonda et al.’s SPAIN [24] per-
forms multipath load balancing on arbitrary topologies.
Based on their results, we believe SPAIN would be
able to extract close to the full bisection bandwidth
from our topologies. We believe that Multipath TCP
[9] can also extract the full bisection bandwidth from
our constructions based on early results [26].

8. RELATED WORK
Topology constructions Theoretical topology construc-
tions date back to telephone switching networks and a va-
riety of constructions have been proposed, e.g., Clos [5],
Beneš [3], flattened butterfly [20], HyperX [1], hypercube
[29], DCell [13], and BCube [12]. Despite the many topol-
ogy proposals, the only other construction we are aware of
that handles heterogeneous switches is that of Rasala and
Wilfong [27], who gave a strictly nonblocking construction
for networks with heterogeneous IO switches. Our work dif-
fers in two key aspects. First, they dealt with strictly non-
blocking networks whereas our constructions are rearrange-
ably nonblocking in their setting (equivalent to feasibly rout-
ing all hose TMs in our traffic model), so our construction
requires much less link capacity. Second, their constructions
only connect IO switch sets with two types of switches and
they do not support heterogeneous switch port speeds, whereas
our construction supports any number of switch types and
port speeds.

Network design The network design literature is vast, and
algorithms for network design have been widely studied, see,
e.g., [19]. Branch and bound has been used to solve net-
work design problems in past work, for example, [15, 22].
However, existing work does not take the unique constraints
of a data center environment into account. Our work here
is the first to simultaneously support power, thermal, and
rack space constraints. Moreover, other network design al-
gorithms return an arbitrary mesh network. LEGUP returns
only tree-like algorithms so that existing DCN addressing
solutions can be used.

9. CONCLUSIONS
We have shown that heterogeneity can yield significant

cost savings when upgrading or expanding a legacy data cen-
ter. By developing the theory of heterogeneous Clos net-
works, we have given data center managers solid theory to
rely on when designing upgrades. LEGUP performs this net-
work design process by solving a difficult optimization prob-
lem with many constraints. LEGUP finds higher performing
upgrades than existing solutions for less than half the cost.
When incrementally expanding a network, LEGUP finds a
network with 265% more agility than an upgraded fat-tree
after the number of servers in the data center has been dou-
bled.

10. REFERENCES
[1] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber.

Hyperx: topology, routing, and packaging of efficient large-scale
networks. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis (SC ’09), 2009.

[2] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity
data center network architecture. In SIGCOMM, 2008.

[3] V. E. Beneš. Mathematical Theory of Connecting Networks and
Telephone Traffics. Academic Press, 1965.

[4] T. Benson, A. Anand, A. Akella, and M. Zhang. Understanding data
center traffic characteristics. In Proceedings of the 1st ACM

workshop on Research on enterprise networking (WREN), 2009.
[5] C. Clos. A study of non-blocking switching networks. Bell System

Technical Journal, 32(5):406–424, 1953.
[6] A. R. Curtis, S. Keshav, and A. López-Ortiz. LEGUP: Using

heterogeneity to reduce the cost of data center network upgrades.
Technical report, University of Waterloo, 2010.

[7] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K.
Ramakrishnan, and J. E. van der Merive. A flexible model for
resource management in virtual private networks. In SIGCOMM,
1999.

[8] L. Epstein and A. Levin. An APTAS for generalized cost
variable-sized bin packing. SIAM J. Comput., 38(1):411–428, 2008.

[9] A. Ford, C. Raiciu, M. Handley, and S. Barre. TCP extensions for
multipath operation with multiple addresses. IETF, 2009.

[10] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. Maltz, P. Patel, and S. Sengupta. VL2: a scalable and
flexible data center network. In SIGCOMM, 2009.

[11] A. G. Greenberg, J. R. Hamilton, D. A. Maltz, and P. Patel. The cost
of a cloud: research problems in data center networks. Computer
Communication Review, 39(1):68–73, 2009.

[12] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,
and S. Lu. BCube: a high performance, server-centric network
architecture for modular data centers. In SIGCOMM, 2009.

[13] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu. Dcell: a
scalable and fault-tolerant network structure for data centers. In
SIGCOMM, 2008.

[14] U. Hoelzle and L. A. Barroso. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Morgan
and Claypool Publishers, 2009.

[15] K. Holmberg and D. Yuan. A lagrangian heuristic based
branch-and-bound approach for the capacitated network design
problem. Operations Research, 48(3):461–481, 2000.

[16] F. K. Hwang and D. S. Richards. Steiner tree problems. Networks,
22(1):55–89, 1992.

[17] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L.
Graham. Worst-case performance bounds for simple
one-dimensional packing algorithms. SIAM J. on Comput.,
3(4):299–325, 1974.

[18] S. Kandula, S. Sengupta, A. Greenberg, and P. Patel. The nature of
datacenter traffic: Measurements & analysis. In IMC, 2009.

[19] A. Kershenbaum. Telecommunications network design algorithms.
McGraw-Hill, 1993.

[20] J. Kim, W. J. Dally, and D. Abts. Flattened butterfly: a cost-efficient
topology for high-radix networks. SIGARCH Comput. Archit. News,
35(2), 2007.

[21] M. Kodialam, T. V. Lakshman, and S. Sengupta. Maximum
throughput routing of traffic in the hose model. In Infocom, 2006.

[22] E. L. Lawler and D. E. Wood. Branch-and-bound methods: A
survey. Operations Research, 14(4):699–719, 1966.

[23] C. E. Leiserson. Fat-trees: universal networks for hardware-efficient
supercomputing. IEEE Trans. Comput., 34(10):892–901, 1985.

[24] J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. C. Mogul.
SPAIN: COTS data-center ethernet for multipathing over arbitrary
topologies. In NSDI, 2010.

[25] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, and V. Subram. Portland: A scalable fault-tolerant
layer 2 data center network fabric. In SIGCOMM, 2009.

[26] C. Raiciu, C. Pluntke, S. Barre, A. Greenhalgh, D. Wischik, and
M. Handley. Data center networking with multipath TCP. In
Hotnets, 2010.

[27] A. Rasala and G. Wilfong. Strictly non-blocking WDM
cross-connects for heterogeneous networks. In STOC, 2000.

[28] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker. Applying
NOX to the datacenter. In HotNets-VIII, 2009.

[29] H. Wu, G. Lu, D. Li, C. Guo, and Y. Zhang. MDCube: a high
performance network structure for modular data center
interconnection. In CoNEXT, 2009.

[30] R. Zhang-Shen and N. McKeown. Designing a predictable internet
backbone with Valiant load-balancing. In Thirteenth International
Workshop on Quality of Service (IWQoS ’05), 2005.

