
Design Principles for Robust Opportunistic
Communication

S. Keshav
David R. Cheriton School of Computer Science

University of Waterloo, Waterloo, Ontario, Canada
keshav@uwaterloo.ca

ABSTRACT
Several researchers have proposed the use of transient com-
munication opportunities, that is, opportunistic communica-
tion, to reduce the cost of rural communication. We propose
some design principles for robust opportunistic communica-
tion drawing from our experiences in developing and deploy-
ing several practical systems. We conclude with an outline
of some areas for future research.

Categories and Subject Descriptors
H.1.m [Information Systems Applications]: Models and
PrinciplesMiscellaneous

General Terms
Design, Reliability, Experimentation

Keywords
Opportunistic Communication, Rural networking, Develop-
ing regions

1. INTRODUCTION
Rural communication using technologies such as dialup,

VSAT, and long-range wireless networking tend to be low-
capacity, unreliable, and expensive. The seminal DakNet
approach [13] broke with tradition by using transport ve-
hicles to carry data. This approach has been explored by
many others, and has become increasingly relevant to the
field with the proliferation of small, highly-functional wire-
less devices such as smartphones.

Such devices can establish an transient (opportunistic)
wireless connection (between two devices, or between a de-
vice and a wireless access point) that lasts from a few tens
of seconds to a few minutes. Surprisingly, even these short
connection durations, if properly exploited, allow transfers
of several tens of megabytes among the communicating par-
ties [6]. This can enable innovative and useful applications,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NSDR ’10 San Francisco, California USA
Copyright 2010 ACM 978-1-4503-0193-0 10/06 ...$10.00.

such as the distribution of audio and video content amongst
people as they go about their daily routine–in effect, turn-
ing everyday social interactions into a low-cost and efficient
content distribution network [15].

Although the potential for opportunistic communication
has been known for a few years, building robust systems
for opportunistic communication is surprisingly difficult. A
system can be said to be robust to a fault if it can carry out
its desired functionality, albeit with reduced performance,
despite the fault. Robust system design, therefore, requires
us to catalog a set of potential faults, and then prove, either
by analysis or by actual test, that the system is robust to
the fault. The designer of a robust communication system
must anticipate and deal with many potential faults. The
problem here is that, without actual deployment in the field,
the set of possible faults is nearly impossible to determine.

Over the past four years, we have built a series of systems
for opportunistic communication that we have deployed in
the field and tested under realistic conditions. Based on
our experience, we have identified several failure modes for
opportunistic communication. These allow us to prescribe
some principles for designing robust opportunistic commu-
nications, which are the primary focus of this paper.

The paper is laid out as follows. Section 2 presents some
motivating examples of applications that exploit opportunis-
tic communication. Section 3 presents the requirements for a
practical system for opportunistic communication. Section
4 describes the design principles in some detail, as exem-
plified by the Opportunistic Communication Management
Protocol (OCMP). Finally, Section 6 presents our conclu-
sions and directions for future work.

2. SOME APPLICATIONS
In this section, we present three examples of applications

that can use opportunistic communication.
Our prime motivation is the use of opportunistic commu-

nication for rural communications. In this scenario, vehi-
cles equipped with a wireless router and a small on-board
computer exchange data with desktop computers in village
kiosks [13, 18]. Packets transferred from the desktop to the
vehicle are physically carried to other computers that pro-
vide a gateway into the Internet. The first such system
was DakNet, which was built at MIT in in 2001 [13]. More
recently, the VLink system from the University of Water-
loo provides a similar service [21]. The use of opportunis-
tic communication allows low-cost communication in areas
where it is economically infeasible to deploy infrastructure.
Even where such infrastructure exists, opportunistic com-

munication augments traditional communication paths with
a low-cost alternative.

The principles of opportunistic communication embodied
in DakNet can be used even in the developed world. All
smartphones sold today are equipped both with a camera
and a WiFi interface. Suppose that a user can take short
videos using this camera and store it locally. The device
could opportunistically distribute content to similar devices,
as explored in great detail by the Haggle project [15, 14].

A final example of opportunistic communication is to al-
low access to the Internet from moving vehicles [12]. Such
vehicles could gain access to the Internet from roadside wire-
less access points. Symmetrically, content created by the
user of a mobile device could be placed into the infrastruc-
ture. By avoiding onerous charges for data transfer imposed
by cellular providers, this mode of transfer makes it possi-
ble for device users to access rich multimedia content at low
cost. This communication is opportunistic because vehicles
lose connectivity as they move past the access point.

In these examples the use of opportunistic communica-
tion enables applications that could not otherwise be im-
plemented. Therefore, we believe that there is a need to
support robust opportunistic communications for such fu-
ture applications, both in the rural context and elsewhere.

3. REQUIREMENTS
In this section, we describe the requirements for any sys-

tem that provides opportunistic communication. These re-
quirements are derived from a careful consideration of the
system support needed by the three applications presented
in Section 2.

We will assume, as a necessary prerequisite, that the ap-
plications are tolerant to both delay and delay variance.
Otherwise, the applications would not be suitable for op-
portunistic communication in the first place. This is im-
portant: opportunistic communication is not feasible for all
applications. It does not permit real-time communication or
even interactive communication. It is best suited for moving
large amounts of data where cost is a constraint and delay
is not[?]. Examples of such applications are email, delay-
tolerant web-browsing, and content distribution.

Here are the requirements for opportunistic communica-
tion:

• Should not require human intervention: to be useful,
the actual opportunistic communication should not re-
quire active participation of users, who are likely to be
engaged in other activities.

• Should recover from disconnections: Opportunistic com-
munication necessarily implies that disconnections will
be common. The system should recover from such dis-
connections, continuing existing data transfers from
the point where they left off.

• Should be low cost: the system should make use of
unlicensed spectrum when possible, to reduce costs.

• Should be legacy compatible: This allows easy deploy-
ment in legacy infrastructure.

In addition, we believe there are four secondary require-
ments which may not apply in all situations: to minimize

device power usage, maximize use of communication oppor-
tunity, support both single and multi-hop communication,
and provide over-the-air security.

These requirements cannot be met using standard TCP/IP.
For example, on disconnection TCP goes into a series of pro-
gressively longer timeouts, and on reconnection, if the device
acquires a new IP address, the communication state is com-
pletely lost. Moreover, TCP does not have any notion of
communication cost. Therefore, it is as likely to use an ex-
pensive WWAN NIC as a free WLAN NIC. Given a choice
of access points, TCP does not have any criterion by which
to choose one. Of course, these requirements can be met
by careful application design. However, this requires every
application supporting opportunistic communication to im-
plement the same functionality. Our goal instead is to design
a standard set of primitives that can be used by broad class
of applications.

It is difficult to meet these requirements primarily because
of disconnections, which cause changes to every layer of the
protocol stack. For instance, at the link layer, the presence
of disconnections makes rapid WiFi association and agile se-
lection of the data rate imperative. At the network layer,
the routing protocol needs to take into account the fact that
not all links are always available. At the transport layer, re-
liability cannot be achieved by timeouts and retransmission
alone: every packet may need to be replicated for fault-
tolerance. Finally, at the application layer, the API should
encourage a send-and-wait programming style, rather than
the current paradigm of request-reply that arises naturally
from the socket API.

3.1 OCMP
These changes and challenges motivate the design of a

purpose-built protocol architecture for opportunistic com-
munication called Opportunistic Communication Manage-
ment Protocol (OCMP) shown in Figure 1. OCMP is similar
in spirit to the DTN Reference Implementation architecture
[3] and Haggle [15] and is described in detail in [18, 10].
Over the last four years, we have implemented the OCMP
architecture several different times. Our first implementa-
tion only dealt with disconnections and supported only end-
to-end paths [16]. In our second implementation, we added
support for hop-by-hop paths, in particular, where this path
was provided by a bus or a car that carried a router and pro-
vided ‘mechanical backhaul’ [18]. We also added support for
security [20]. Our latest implementation, dubbed VLink,
supports program state persistence across crashes and COs
for USB- and SMS-based paths[21]. In parallel, the architec-
ture has been independently implemented by Bee Networx
Inc., a University of Waterloo spinoff, and is currently being
used in the field. Therefore, we have accumulated a wealth
of experience in developing robust systems for opportunistic
communication. In the next section, we present some design
principles based on this experience.

4. THE DESIGN PRINCIPLES
The principles are categorized according to the correspond-

ing OCMP layer (Figure 1).

4.1 Driver layer

Avoid the wireless fringe

Figure 1: OCMP software architecture

Opportunistic communication frequently uses wireless links
such as WiFi and Bluetooth. These short-range technologies
offer good throughput when the received signal to noise ratio
is high. However, in their so-called “fringe”, the signal-to-
noise ratio is low and frame loss rates are high.

During opportunistic communication, two nodes that are
initially out of range of each other come into range, exchange
frames, and then move out of range again. Control frames–
such as association and authentication request frames–sent
when the nodes just enter each other’s communication range
are likely to be lost, triggering retransmissions and wasted
communication capacity [22, 6]. The problem is exacerbated
by the use of fixed multi-second timeouts in most device
drivers. These timeouts nearly guarantee the loss of pre-
cious seconds of communication opportunity because of lost
control frames.

These problems can be avoid by carrying out communi-
cation only when the the received signal strength is high.
Specifically, we found that loss rates during opportunistic
communication decrease dramatically when the signal-to-
loss ratio is greater than a threshold (which depends on the
data rate), as shown in Figure 2.

The rule, simply, is to initiate transmission only when
the signal strength exceeds this threshold1. We found that,
with this simple rule, throughput achieved during a com-
munication opportunity can nearly double [6]. Note that
this rule cannot be used in static scenarios, where the SNR
may never increase past the threshold. In such cases, auto
rate fallback is a better solution. But, with opportunistic

1The signal strength may deteriorate during a communica-
tion opportunity due to shadowing and multipath interfer-
ence, but this rule still holds.

Figure 2: Loss rate as a function of RSSI

communication, where mobility is a given, and the SNR is
likely to improve as nodes move into range, deferring trans-
mission in the hopes of encountering better SNR is the right
decision.

Avoid performance coupling.

Performance coupling [7] refers to the dramatic decrease
in performance across a good-quality wireless link from a
mobile device to an access point because of the presence of
a nearby mobile device that communicates with the same
access point over a poor quality link. The problem arises
due to 802.11’s automatic selection of data rates. Nodes
distant from an access point (AP) use a lower data rate to
compensate for a lower signal-to-noise ratio on their commu-
nication path. This means that they take longer to transmit

a single bit - up to 54 times slower than the best-possible
bit transmission time in the case of 802.11g. Consequently,
the overall performance of a BSS where some nodes have
a lower communication capacity than others is dominated
by the slower communication paths. This results in a single
‘bad’ node reducing performance for all other nodes.

To avoid this problem, we proposed that an AP service
only those nodes that have good signal strength. This strat-
egy, called MV-MAX [5], results in considerable performance
improvement with only minor changes to the driver layer.
The obvious problem with this solution is that it is unfair to
those devices that are situated in a region with poor signal-
to-noise ratio. However, because devices are mobile, it is
likely that over time every device finds itself in a ‘good’ re-
gion. This is particularly true when dealing with vehicular
opportunistic communication from a roadside access point,
where every vehicle on the road goes through a poor quality
region as well as a good-quality region, so that approximate
fairness is attained.

4.2 Transport layer

Use hop-by-hop TCP.

In a network with opportunistic communication, end-to-end
TCP is usually infeasible [4]. Thus, we need a hop-by-hop
solution for flow and error control. The two obvious so-
lutions are to either use an application-layer erasure code
over UDP or to use TCP. The first solution is clearly more
efficient because an erasure code, unlike TCP, does not con-
flate congestive and channel losses. However, it requires a
custom-built solution for flow control. On the other hand,
TCP provides both flow control and error control. Moreover,
it exercises a heavily optimized and debugged path. Finally,
given that modern WiFi links have very low effective loss
rates (well under 0.15% [6]), we found TCP’s performance
to be more than adequate. Therefore, we chose to go with
hop-by-hop TCP.

4.3 Transport abstraction layer
The transport abstraction layer wraps an end-to-end or

hop-by-hop path over a single NIC with a software Connec-
tion Object (CO).

Avoid wireless networks if possible.

Wireless networks, especially when used by mobile nodes,
tend to be both unreliable and hard to debug. We found that
the same device, moving through the same region of space in
the vicinity of an access point, can experience dramatically
different performance depending on the presence or absence
of other devices and the unpredictable effects of multi-path
interference. It is difficult to build a reliable system when the
capacity of the wireless link can vary by nearly two orders
of magnitude.

After considerable effort in trying to make wireless links
reliable, we ultimately decided to provide, in addition to
wireless links, a USB-memory key based communication path,
where transfer between nodes occurs by physically carrying
a USB-memory key from device to device. This eliminates
problems with wireless networks. Because of the clean sep-
aration of functionality in our architecture, adding this so-
lution required us to only implement a USB CO. The upper
layers are indifferent as to whether communication uses wire-
less COs or the USB CO. Indeed, the USB memory key can

be thought to hold ‘frozen’ packets, that are ‘thawed’ at the
receiver[21].

This solution is far more cumbersome than one that relies
entirely on wireless communication. However, in the con-
text of rural communication, the added delay and loss of
efficiency is minimal. Moreover, we no longer need a com-
puter in a vehicle, greatly reducing costs.

4.4 Session layer

Use multi-copy routing.

A natural consequence of multi-hop opportunistic commu-
nication is that it is impossible to guarantee that a specific
path exists between a source and a destination node. More-
over, node-to-node communication capacity is usually not a
constrained resource. Therefore, instead of sending only a
single copy of a bundle from a source to a destination, it is
better to send multiple copies along more than one path -
an approach called multi-copy routing [8]. Note that this
does not apply for opportunistic communication between a
mobile device and an infrastructure node, such as an access
point.

The first version of our system used reverse path forward-
ing [18]. This is single-copy routing, and turned out to be
efficient, but not sufficiently robust. The simplest approach
to multi-copy routing is flooding. Here, a node gives a copy
of every bundle in its data store to every other node that it
meets. By exploring all possible paths in parallel, flooding-
based routing is very robust. The current version of our
system uses this approach.

The problems with naive flooding is that it is wasteful.
To reduce its overhead, either the number of flooded copies,
or the time-to-live of a packet can be adjusted [19]. Opti-
mally choosing these parameters depending on the degree
of connectivity in the underlying system is an open prob-
lem. Nevertheless, the use of multi-copy routing has been
widely studied [9] and greatly increases the robustness of the
system.

Use death certificates.

When the mobility pattern is unknown, naive flooding,
although costly, is often the only robust solution, and indeed,
the one we have adopted in our work. When node-to-node
communication is cheap, the primary cost of flooding is in
the storage of flooded bundles at intermediate nodes. There
needs to be some way to eliminate these stored copies. One
way is to remove bundles after some period of time, that
is, on a timeout. The problem with this approach is that
it requires setting the timeout value, which can be difficult
to determine. If storage is not constrained, then choosing a
conservative value for the timeout is a reasonable solution.
However, there is a better solution.

Instead of timing out flooded packets, the destination of
a bundle can acknowledge it by sending ‘death certificates’
[2]. These small bundles are also flooded and result in the
removal of the corresponding bundle from the data store of a
receiving node. Death certificates elegantly solve the prob-
lem of when to remove bundles. Moreover, when a sender
receives a death certificate, it also gets a delivery acknowl-
edgement, which is useful.

The use of death certificates leads to the recursive problem
of how to remove the death certificates themselves. This is

easily solved by keeping the size of a death certificate small
and the time-to-live for a death certificate conservatively
large.

Give higher priority to less-replicated data items.

When implementing flooding-based routing, we found that
the same bundle could be transmitted during several com-
munication opportunities. For instance, the arrival of ev-
ery bus to a kiosk would result in the same bundle being
transferred from the kiosk to the bus and vice versa. This
is correct behavior, but results in a subtle denial-of-service
problem: bundles that have not been sent could be queued
behind bundles that have already been sent before, and may
not be transmitted before the end of the communication op-
portunity, leading to persistent starvation.

Our solution is to prioritize those bundles that have been
replicated the least. This avoids starvation and makes it
more likely that they will make it to the destination. In
practice, we store a transmission count with each bundle
in the node database. We then query the database (using
SQL) for all bundles that have been transmitted zero times,
one time, and so on, using the results of these queries to
determine the transmission order.

Use databases to store volatile state.

Both mobile devices and computers in developing regions
can lose power, due to the battery running down, or grid
power outages. On power loss, a typical session layer loses
all program state and cannot known which bundles have
been sent, how often they have been sent, and which bundles
need to be acknowledged. To avoid this problem, the OCMP
session layer maintains all data and state in a database,
treating in-memory tables as a cache. Specifically, every in-
memory table corresponds one-to-one with a database table.
Access method to the tables are then modified so that the
in-memory table and the database table are updated simul-
taneously.

In case the session layer crashes or the mobile device re-
boots, it refreshes all in-memory from the database. This
makes it robust to power failures. We found this approach
to be necessary in dealing with mobile devices and with de-
ployments in developing areas.

This degree of robustness comes at a cost: writes are very
expensive. Moreover, the amount of data that can be sent
during an opportunistic communication is bandwidth lim-
ited by the database access throughput. We believe, never-
theless, that given the deployment environment, this is the
right tradeoff to be made. In cases where the node is known
to have access to reliable power, we can simply modify the
access methods to not make database writes: a minor change
in the code.

4.5 API layer

Use directory-based APIs.

Applications communicate with OCMP using a directory-
based API. Files that need to reach a particular destination
are placed in an ‘upload’ directory along with a metadata file
that contains information that would normally be in a packet
header, such as the destination, whether the file should be
encrypted, and its priority. Any application-specific control
information is also placed in the metadata file.

By using a file system as the communication API, ap-
plication developers do not attempt to use a request-reply
paradigm, which does not work in opportunistic commu-
nication networks. Instead, they adopt a ‘send-and-wait’
approach, which is more appropriate. We found that these
hints to application programmers made it easy for them to
write robust programs in a disconnection-tolerant environ-
ment.

Use hierarchical names

In our first implementation, we named both users and
communication endpoints (i.e., user directories in the file
system at the destination host) using flat names. The idea
was to decouple location semantics from names as advocated
in Reference[1]. This led to two problems. First, it became
impossible to delegate administration of the name space:
by definition, flat names require detailed coordination be-
tween multiple name administrators. Second, the system
became very difficult to debug: examining a packet’s des-
tination field gave no insight into its final destination. For
these reasons, we returned to the well-established notion of
hierarchical names. Indeed, in contrast to numerous propos-
als to to contrary, we suspect that this is the only naming
architecture compatible with the real world.

4.6 Overall

Choose simpler solutions.

The first version of our system used Hierarchical Identity-
Based Cryptography, flat names, Distributed Hash Tables,
and a very general routing protocol [18, 17]. Through a pro-
cess of simplification, we replaced these with PKI, hierar-
chical names, DNS, and bus-and-kiosk-specific routing pro-
tocols respectively. This made our solution far more robust,
though not so ‘exciting’ from a research perspective. In gen-
eral, there is a tension between what we call ‘full buzzword
compliance’ and building a system that actually works. We
have learned to choose the latter.

5. RELATED WORK
The field of low-cost rural communication has grown dra-

matically since the seminal work on DakNet[13]. Instead of
surveying this broad field, we focus on protocol architectures
most closely related to OCMP.

OCMP is a practical implementation of the concepts first
presented by Fall [4]. The work here is most closely related
to two other implementations of the DTN concept: the DTN
Reference implementation [3] and Haggle [15]. Both these
implementations, like OCMP, store bundles in a local data
store and offer both single-hop and multi-hop routing be-
tween nodes. They also incorporate ways to encapsulate
different connection paths and offer support for experiment-
ing with different routing and scheduling strategies.

Our work differs from the DTN Reference implementation
in three significant ways. First, we bind connection objects
to paths. In contrast, the equivalent to a CO, called a ‘con-
vergence layer’, is bound to a protocol type, such as TCP
or UDP. This prevents fine-grained control over scheduling
and routing policies. Second, the reference implementation
uses a socket-like API, instead of the directory-based API.
Finally, the security model for the reference implementa-
tion offers the equivalent of link-level encryption unlike the

seamless end-to-end encryption provided by our architec-
ture. Moreover, it does not support a disconnection-tolerant
mechanism for key distribution and management. Neverthe-
less, many of our ideas are derived from our long experience
with using the DTN reference implementation and we owe
it many insights.

Our work also differs from Haggle in some critical as-
pects. Haggle uses a non-layered architecture, where dif-
ferent agents collaborate with each other to accomplish the
forwarding task. In contrast, our approach uses traditional
layering. Second, Haggle only supports multi-hop paths be-
tween devices and has no support for proxies or the Internet
infrastructure. Finally, Haggle manages all data on behalf of
applications: applications never own data. Again, we take a
more traditional approach, where OCMP is responsible only
for data transfer, not for application-level data management.

Finally, in prior work [11], we discussed discussed de-
sign principles for opportunistic communication using con-
strained communication devices. These principles focussed
on reducing the memory and CPU footprint of opportunistic
communication, topics that complement the much broader
perspective taken here.

6. DISCUSSION
Robust opportunistic communication is essential for rural

communications. Unfortunately, it requires careful attention
to every layer of the protocol stack, as exemplified by our
experiences with OCMP.

There are still many open problems in designing, imple-
menting, and deploying systems based on opportunistic com-
munication. At the link layer, there is a need for agile data-
rate selection algorithms that can exploit the predictable
increase and decrease in signal-to-noise ratio that is char-
acteristic of opportunistic communication. At the trans-
port layer, there is a need for adaptive erasure codes that
are optimized for opportunistic communication. The inter-
action of erasure codes with routing and flow control al-
gorithms is likely to be both a challenging and an fruitful
area of research. At the session layer, a critical problem is
to develop optimal algorithms for multi-copy routing over
temporal graphs, that is, graphs whose topologies are time-
dependant. Finally, at the application layer, there is the
need for non-trivial applications that can exploit opportunis-
tic communication in the rural context.

One non-technical aspect of this work worth mentioning is
that the barriers to adoption of any technology in rural areas
are formidable. Although robust opportunistic communica-
tion may not solve these problems, lack of robust commu-
nication will certainly hinder adoption. It is in this spirit
that we hope share our experiences in the design of robust
opportunistic communication for use by other researchers in
the field.

Acknowledgments
Figure 2 is due to David Hadeller. In particular, I would like
to thank Aaditeshwar Seth, Darcy Kroeker, David Hadaller,
Matei Zaharia, Shimin Guo, Hossein Falaki, Usman Ismail,
Earl Oliver and Mohammad Derakhshani for their many
contributions over the years.

This research was supported by grants from the National
Science and Engineering Council of Canada, the Canada Re-
search Chair Program, Nortel Networks, Sun Microsystems
Canada, Google, Microsoft, Intel, and Sprint.

7. REFERENCES
[1] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy,

S. Shenker, I. Stoica, and M. Walfish. A layered naming
architecture for the Internet. In Proc. ACM SIGCOMM,
2004.

[2] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry.
Epidemic algorithms for replicated database maintenance.
In Proc. PODC, 1987.

[3] M. Demmer, E. Brewer, K. Fall, S. Jain, M. Ho, and
R. Patra. Implementing delay tolerant networking. Intel
Research, Technical Report, IRB-TR-04-020, 2004.

[4] K. Fall. A delay-tolerant network architecture for
challenged internets. In Proc. SIGCOMM, 2003.

[5] D. Hadaller, S. Keshav, and T. Brecht. MV-MAX:
Improving Wireless Infrastructure Access for
Multi-Vehicular Communication. In Proc. CHANTS, 2006.

[6] D. Hadaller, S. Keshav, T. Brecht, and S. Agarwal.
Vehicular opportunistic communication under the
microscope. Proc. MOBISYS, 2007.

[7] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda.
Performance Anomaly of 802.11b. In Proc. IEEE
INFOCOM, 2003.

[8] S. Jain, M. Demmer, R. Patra, and K. Fall. Using
redundancy to cope with failures in a delay tolerant
network. ACM SIGCOMM CCR, 35(4):120, 2005.

[9] E. Jones and P. Ward. Routing strategies for delay-tolerant
networks. http://www.ieice.org/explorer/ITC-
CSCC2008/pdf/p1577 P2-46.pdf,
2006.

[10] S. Keshav. Design Principles for Robust Opportunistic
Communication. University of Waterloo, Technical Report,
CS-2009-35, 2009.

[11] E. Oliver and S. Keshav. Design Principles for
Opportunistic Communication in Constrained Computing
Environments. In Proc. WiNS-DR Workshop, 2008.

[12] J. Ott and D. Kutscher. A Disconnection-Tolerant
Transport for Drive-thru Internet Environments. In
Proceedings of IEEE INFOCOM, 2005.

[13] A. Pentland, R. Fletcher, and A. Hasson. Daknet:
Rethinking connectivity in developing nations. Computer,
37(1):78–83, 2004.

[14] A. Pietiläinen, E. Oliver, J. LeBrun, G. Varghese, and
C. Diot. MobiClique: Middleware for Mobile Social
Networking. In Proc. SIGCOMM WOSN, 2009.

[15] J. Scott, P. Hui, J. Crowcroft, and C. Diot. Haggle: A
Networking Architecture Designed Around Mobile Users. In
Proceeding of WONS, 2006.

[16] A. Seth, S. Bhattacharyya, and S. Keshav. Application
Support for Opportunistic Communication on Multiple
Wireless Networks. In
http://blizzard.cs.uwaterloo.ca/keshav/home/Papers/data/05/ocmp.pdf,
2005.

[17] A. Seth and S. Keshav. Practical Security for Disconnected
Nodes. In Proc. First Workshop on Secure Network
Protocols, 2005.

[18] A. Seth, D. Kroeker, M. Zaharia, S. Guo, and S. Keshav.
Low-cost Communication for Rural Internet Kiosks Using
Mechanical Backhaul. In Proc. MOBICOM, 2006.

[19] T. Spyropoulos, K. Psounis, and C. S. Raghavendra. Spray
and wait: an efficient routing scheme for intermittently
connected mobile networks. In Proc. WDTN, 2005.

[20] S. Ur Rahman, U. Hengartner, I. Ismail, and S. Keshav.
Practical Security for Rural Internet Kiosks. In Proc.
NSDR, 2008.

[21] VLink project, Tetherless Computing Laboratory,
University of Waterloo.
http://blizzard.cs.uwaterloo.ca/vlink.

[22] Z. Zhuang, T. Chang, R. Sivakumar, and A. Velayutham. A
3: application-aware acceleration for wireless data
networks. In Proc. MOBICOM, 2006.

