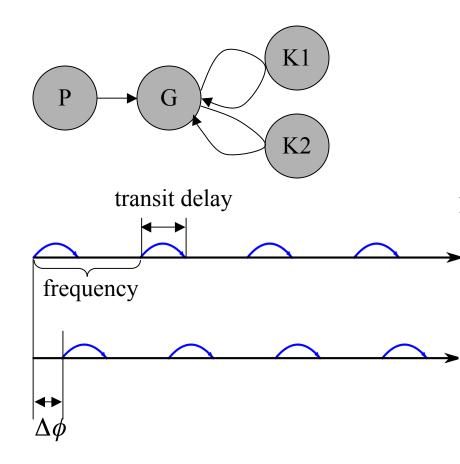
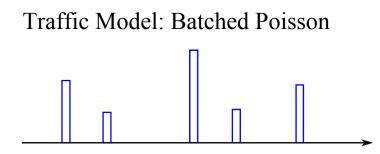
How to give a talk

Prof. S. Keshav University of Waterloo *November 2010*

Outline

- Preparation
- Presentation


Rule 1: Tell a story


- Background
 - "Once upon a time, ..."
- Problem
 - "The ogre ate all the apples, so the children went without..."
- Solution
 - "The anti-ogre fence..."
- Evaluation
 - "Ogre infestations declined 58% over 5 years..."
- Conclusions
 - "We recommend anti-ogre fences"

Rule 2: 1-2-3 rule

• One idea per slide

Microbenchmarks

load = mean batch size / mean batch interval

Load	0.45
Allowed Rate	0.5
Frequency	12 / day
Transit Delay	60 min
$\Delta \phi$	180°

Rule 2: 1-2-3 rule

- **Two** minutes per slide
- 30 minute talk: no more than 15 body slides
 - unless very sparse
 - like this talk!

Rule 2: 1-2-3 rule

- At most three topics
 - figure them out first
 - depends on the nature of the audience
 - work backwards

Rule 3: Use outlines

- Outlines show *connections*
 - as important as the details
- Start with an outline
- Repeat the outline or section title for each section
 - 'roadmap'

Rule 4: Use few words

- "Words on presentation slides are a very good idea, but only when the audience is deaf."
 - Prof. W. Cowan, University of Waterloo

For example...

• A lush green valley in the Himalayas, looking down a thousand meters to stepped rice fields by a rushing river

Rule 5: Use friendly fonts and colours

- KIOSKNET ARCHITECTURE
- Downlink Scheduling
 - Problem Definition
 - Existing Approaches
 - Our Solution
 - Simulation
- Implementing the KioskNet System
- Especially for graphs

Rule 6: Never show tables when you can show graphs

Table 4. Cases of meningococcal disease in Dublin 1998 by area of residence

Area	Ca	Cases	
	n	%	
1	2	5	
2	1	3	
3	2	5	
4	2	5	
5	8	22	
6	7	19	
7	10	27	
8	2	5	
9	2	5	
10	1	3	
Total	37	100	

From epinorth.org

The area map

Rewl 7: Typoos relfect porely on ur comptence

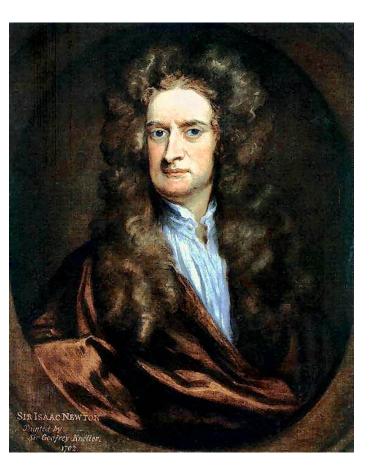
Rule 8: Use examples

• As in this talk!

Rule 9: Avoid colloquialisms

• It's like, duh

Rule 10: Describe related and past work


"If I have seen further it is only by standing on the shoulders of Giants."

Isaac Newton

Rule 4 &10: Describe related and past work

"If I have seen further it is only by standing on the shoulders of Giants."

Isaac Newton

Rule 11: Talk about your contributions

• Don't make the audience guess what they are

Rule 12: Highlight insights

- The story behind the work is what audiences come to talks for
 - What didn't work? Why?
 - What would you do differently next time?

Rule 13: End with a summary slide

• Leave it up on the screen when you stop for questions

Outline

- Preparation
- Presentation

Rule 1: Talk to the audience, not the screen

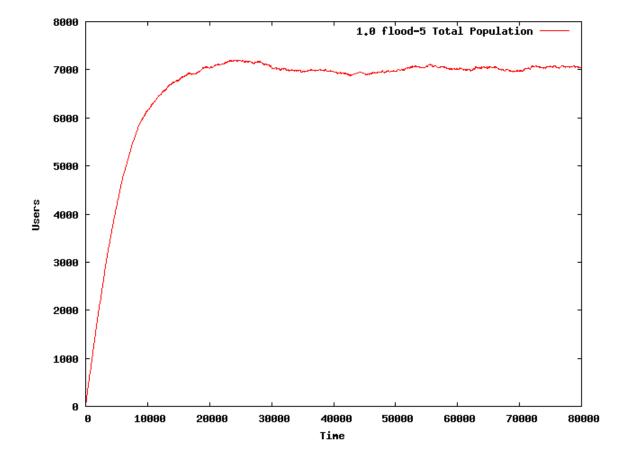
- Scan the audience, see if they are understanding
- Pace your talk

Rule 2: Never read from notes

• Expand from 'headlines'

Rule 3: Walk audiences through formulae

$$\log N^{*}(t) = \log \left(\prod_{i=1}^{n} N^{i}\left(\frac{t}{\sigma}\right)\right) = \sum_{i=1}^{n} \log \left(N^{i}\left(\frac{t}{\sigma}\right)\right) \approx \sum_{i=1}^{n} \log \left(1 + \frac{(\sigma^{i})^{2}}{2}\left(\frac{t}{\sigma}\right)^{2}\right)$$
(EQ 14)


It is easily shown by the Taylor series expansion that when h is small (so that h^2 and higher powers of h can be ignored) log(1+h) can be approximated by h. So, when n is large, and σ is large, we can further approximate

$$\sum_{i=1}^{n} \log\left(1 + \frac{(\sigma^{i})^{2}}{2} \left(\frac{t}{\sigma}\right)^{2}\right) \approx \sum_{i=1}^{n} \frac{(\sigma^{i})^{2}}{2} \left(\frac{t}{\sigma}\right)^{2} = \frac{1}{2} \left(\frac{t}{\sigma}\right)^{2} \sum_{i=1}^{n} (\sigma^{i})^{2} = \frac{1}{2} t^{2}$$
(EQ 15)

where, for the last simplification, we used Equation 10. Thus, $\log N^*(t)$ is approximately 1/2 t^2 , which means that

$$N^*(t) \approx e^{\frac{t^2}{2}}$$
 (EQ 16)

Rule 4: Always introduce graph axes

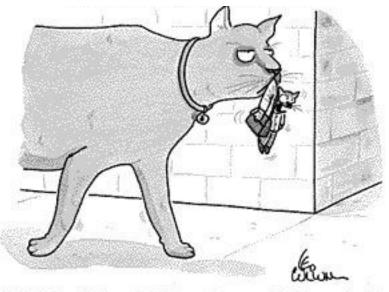
Rule 5: Speak slowly and clearly

Rule 6: Respect questioners

- Hear questions fully
- Defer them if needed

Rule 7: Practice makes perfect

- Practice a talk at least three times
- Talk in front of a mirror
- Have it videotaped, if possible


Rule 8: Arrive early

- Test your laptop or better yet, borrow one
- Bring a memory stick
- Do the talk on a white/black board if necessary

Rule 9: Bring a pointer

• Laser, stick, or pen

Rule 10: A little humour goes a long way

"This is humiliating. Couldn't you drop me a block from school?"

From The New Yorker

Rule 11: End on time

• Keep track of the time

Summary

- Rule 1: Tell a story
- Rule 2: 1-2-3 rule
- Rule 3: Use outlines
- Rule 4: Use few words
- Rule 5: Use friendly fonts and colours
- Rule 6: Never show tables when you can show graphs
- Rewl 7: Typoos relfect porely on ur comptence
- Rule 8: Use examples
- Rule 9: Avoid colloquialisms
- Rule 10: Describe related and past work
- Rule 11: Talk about your contributions
- Rule 12: Highlight insights
- Rule 13: End with a summary slide

- Rule 1: Talk to the audience, not the screen
- Rule 2: Never read from notes
- Rule 3: Walk audiences through formulae
- Rule 4: Always introduce graph axes
- Rule 5: Speak slowly and clearly
- Rule 6: Respect questioners
- Rule 7: Practice makes perfect
- Rule 8: Arrive early
- Rule 9: Bring a pointer
- Rule 10: A little humour goes a long way
- Rule 11: End on time