
Towards Tetherless computing

S. Keshav
Ensim

Outline

 Technology trends
 Vision for tetherless computing
 Research areas

 Virtualization
 Internet Data Center topology
 Fast, secure roaming

 Conclusions

1. Computing costs are plummeting

From www.icknowledge.com

Processor costs have come
down by six orders of magnitude
in three decades

CMOS allows on-chip logic,
memory, imaging and RF
components

Devices will merge computing,
audio, and video

•Processor
•RAM
•Flash memory
•Cell phone modem
•Still camera
•Video camera
•MP3 player

2. Batteries are lasting longer

Fuel cell technology

3. Wireless networks are proliferating

© Intel

4. Data Centers aggregate resources

Trends

 Computers getting cheaper and power-aware
 Batteries lasting longer
 Wireless networks proliferating
 Data centers aggregating resources for service

hosting

Where will this lead?

 Ubiquitous mobile devices will communicate with
resource-rich data centers over wireless and
wireline networks

Internet
cloud

Server

Data center

So what?

Use case: thin client

 Task-specific devices at the network edge can
leverage ‘heavy’ processing at a data center

 Application examples
 Voice storage

 A cell phone can store every word you speak at a data center
 Can use a multimodal interface to retrieve conversations on

demand

 Image analysis and manipulation
 A networked camera can shoot digital pictures and upload

them to a server
 Compute-intensive servers can process the image (red-eye

reduction, auto-date, translations)

Use case: ‘global’ state

 Provide central view of global state
 Application examples

 Instant messaging
 Wireless client can know which ‘buddies’ are online

 Cargo tracking using RFID
 Interested end points can get an instant snapshot of location
 Can run queries on dynamic database (which containers are

more than 4 hours behind schedule?)

Use case: coordination

 Central server can coordinate groups of clients
 Examples

 Form a private network (VLAN) between members of a
workgroup

 Lets users seamlessly participate in a secure collaborative
environment

 Share location information with team members
 A cell phone or PDA could display the geographical coordinates

of team members on a display

Use case: information overlays

 Exploit overlap between realspace and cyberspace to
overlay information on physical objects

 Two approaches
 RFID/Bluetooth
 GPS

 Application examples
 Entering an airport updates your PDA to reflect the latest

flight information
 Coming close to a painting in a museum brings up

information about it
 HP Cooltown

Economic impact

 Applications based on these use cases drive out
inefficiencies in production and enhance economic
value add

 ROI = Return on Intelligence!

Research areas

 Infrastructure implications of large-scale tetherless
computing

 Server virtualization
 Internet Data Center topology
 A hierarchical cryptosystem for fast, secure, roaming

between 802.11 hotspots

Server

DC

MS

MS

1

3
DC

DC

DC

DC

DC

2

Server Virtualization

Joint work with P. Goyal, R. Sharma, S. Gylfason, P.
Menage, X.W. Huang, C. Jaeger, and T. Bonkenberg

Ensim Corporation

Background

 End systems, including mobile devices, access
services in data centers
 A service instance corresponds to an instance of a running

application

 Examples
 Image analysis and transcoding services
 Coordination and collaboration services
 Database services
 Websites

Dedicated servers

 Users or organizations prefer to dedicate a server to
a service instance for three reasons
 Security

 The service may store sensitive information that should not be
seen by others sharing the same server e.g. electronic
commerce storefronts

 Performance
 The service may require guaranteed CPU, network, memory

and disk I/O resources e.g. transcoding

 Customization
 The service may need to be customized in a way that precludes

its use by other users or organizations e.g. website hosting

Problem

 This doesn’t scale!
 Too many servers
 Too hard to manage tens of thousands of servers

 Need solutions to
 Reduce number of servers
 Make server and service deployment manageable

Reducing server count

 Key insight #1: most servers are lightly used
 If we can pack many service instances on a single server,

then can reduce number of servers

 Key insight #2: cannot require application
modifications
 Otherwise no one will use the solution!

Aha – virtualization!

 Virtualization is a standard technique to break the
mapping between a service and its implementation
 Virtualization = interception + indirection + multiplexing
 Example: virtual memory

 If done properly
 Doesn’t require any application modification
 Can provide isolation
 Can provide performance guarantees
 Can allow each application instance to be arbitrarily

customized

HW
OS

Private Server
(Ensim)

•No source code or object
code changes
•Support for a single OS
•Can provide performance
guarantees
•Small overhead

Virtualization

Virtualization approaches

HW

HW HW HW
OS OS OS

Virtual machine
(VmWare, IBM)

• No source or object code
changes

• Allows a single server to
host multiple operating
systems

• Large overhead
• No performance

guarantees

Virtualization

OS OS OS

HW
OS
APP

Application virtualization
(Oracle, Apache)

•Requires either re-linking or
source-code modification
•Does not provide
performance guarantees
•Limits app customization

Virtualization

Private servers

 Ensim approach:
 Virtualize OS interfaces to create Private Servers (PS)
 Each PS appears to be a separate OS instance
 Each PS is completely isolated from others
 Does not require modifications to kernel source code
 PS can run unmodified binaries

 Quality of Service
 Each PS is guaranteed a resource share in terms of CPU,

disk, disk bandwidth, memory, and network bandwidth

Solution overview

 A private server is just a set of processes
 When a process in a PS accesses a shared resource,

the access is transparently intercepted
 The access is indirected to the actual resource with

rewritten arguments or rewritten results
 In addition, kernel scheduling is modified to provide

resource guarantees to private servers
 3 key elements

 Process tracking
 Access interception and indirection
 Resource scheduling

Process tracking

Init

ChildInit

PID PSID

211 1

fork()
232 1

Interception and indirection

 Transparently intercept access to all system
resources, e.g.
 System calls
 /proc
 File system
 Users, groups, and resources for users and groups
 Network stack
 Physical memory and swap

 Two options
 Filter results of an information query based on PS ID
 Rewrite the arguments to the call based on indirection table

Transparent Interception

 Essentially based on wrapping system calls
 To intercept a system call

 Change the entry function in the system call vector table

 To intercept device access
 Intercept the ‘open’ system call and parse arguments

 To intercept network access
 Figure out which file descriptors are for network access, by

tracking socket() calls

 To intercept signals
 Intercept the system calls used to send/receive signals

Indirection

 Complex: need to do different things
depending on what is being intercepted

 Falls into a few categories
 Limit actions of the root user(s)
 Manage process interactions
 Create an additional level of quotas (user + group + PS)
 Massage system information
 Separate network protocol stacks

Limit actions of root users

 Each private server has its own ‘root’ user
 System calls made by this root user are given greater

privileges than system calls by non-root users
 However, even this root user has limits

 No module insertion
 Can’t browse file system outside of the PS
 Have permissions only to a specific set of system calls

 Need to parse arguments on every system call and
use a table to decide whether it should be allowed or
not

Manage process interactions

 Control processes to prevent process interactions (kill, send
signal, trace, set scheduling parameters, etc.) from crossing PS
boundaries
 The ‘real’ root can act on any process
 Virtual root can act on processes in its PS
 A parent can act on its children
 Processes in a PS cannot act on processes in other PSs

Create an additional level of quotas

 Normal Unix has user and group quotas
 Need to add PS quotas
 Done by creating a new file system type whose

inodes have the same uid/gid settings as the real file
system, but whose quota control operations
understand PS quotas

 Quotactl/status calls are intercepted and arguments
rewritten to use the new file system

 This allows us to integrate PS quotas seamlessly into
the OS

Massage system information

 Create separate syslogs
 Rewrite results of access to /proc
 Limit device access

A separate protocol stack per PS

 Protocol stack code is isolated into a single module
and virtualized

 Each PS is given its own module
 Allows very tight control over the network

 Prevent users from spoofing IP address
 Fine-grained rate control on packets reads and writes
 Fine-grained statistics at the application and protocol level
 Can have a separate firewall for each PS!

Resource scheduling

 Modify schedulers to provide QoS guarantees based
on PS ID
 Hierarchical Start-time fair queueing for rate allocation
 Leaky bucket for rate control

Net result

 A process in a private server
 Has its own file system
 Can run any application with unmodified binaries
 Has guarantees on CPU, network, memory, disk quota, disk I/O

rate
 Cannot see external processes
 Cannot send signals to other PSs
 Has a unique ‘init’ parent
 Has limited access to devices
 Has a unique IP address and cannot spoof IP addresss
 Has unique users and groups
 Supports a ‘virtual’ root
 Limits ioctls
 Can only snoop local packets
 Has access to most of /proc
 Can configure its own protocol stack

Performance

 Additional kernel memory per private server: 200K
 Very small footprint

 Additional disk space per private server: 300MB
 To recreate the base file system

 Number of private servers/physical server: up to 90
 Private servers in production use: about 4000

Performance - continued

Response time with
physical servers at
peak load (ms)

Response time with a 2.2
private server at peak
load (ms)

Overhead

336 343 2.04%
 Domain type Operations/sec Response time (ms) Bitrate (bps)

Low 1 6 2887 42088
Low 2 7 2811 42585
High 1 14 1412 85686
High 2 14 1416 84780

SPECWeb99 Results

0
20
40
60
80

100
120
140
160
180

0 50 100 150 200

Load

S
P

E
C

W
eb

99

Physical server

2.2 Private server

Consequences

 Allows a datacenter to offer a service on a virtual
server to an organization

 Service can be arbitrarily customized
 Services can be given performance guarantees
 Services are run in a secure environment
 Services can be densely packed
 Freebie: resource allocation to a service can be

dynamically modified
 First steps towards ‘grid computing’

Related work

 Vserver
 Uses security contexts for identifying each PS
 Security context checking has to be hacked into kernel
 Hard to do without modifying source
 No support for QoS (yet)

 Virtual machine architecture (IBM, VMWare)
 Has a heavy resource/performance overhead

 Isolation microkernel (Denali, Xeno)
 Does not support commercial OS
 Requires extensive rewrite of OS internals to match microkernel API

 Resource containers, restricted execution contexts, virtual services
 Share components between virtual servers
 Complex programming abstraction, complex policies
 Very hard to manage

But this is only 5% of the story…

SOAP/CLI API SOAP SOAP

End
user/admin

Control panel
server

Service factory
Control panel

server

Telco/Reseller
Control panel

server

SDM

SAM

Exports multi-level
APIs

 from WP/services

Provisioning and
management

(OSS)

Server

OS

Application

Virtualization

Server

OS

Application

Provisioning, usage, status agents

Configuration mgmt.

Making apps hostable

CBM

Non-
Ensim
BSS

Business
Support
System

Agent Control
panel
server

Directory server
Account, Usage, and

Ops Databases

Permissions/Quotas
(AAA) Manager

DB connectorLog
manager

Permissions/Quotas
(AAA) Manager

Service plugin

Server and service management

A hierarchical cryptosystem for fast
secure roaming

Joint work with C. Nagarkar and M. Kopikare
Stanford University

Server

DC

MS

MS

1

2
DC

DC

DC

DC

DC

3

Outline

 WiFi basics
 Security and authorization in WiFi networks
 Intra-federation authorization and handoffs
 Issues in inter-federation authorization
 WASSUP architecture
 WASSUP features
 Summary

WiFi basics

Access
Point

Internet
cloud

802.11 (WiFi)
link

Provides DHCP
server, NAT, and a
connection to the
Internet

Network
Access
Server

Mobile station
(MS)

NAS

Terminates
wireless
link

Can be
anywhere in
the world

802.11 networks abound

 Approximately 10,000 hotspots worldwide today
 1605 hotspots listed at http://www.wifinder.com
 Boingo has 800 hotspots
 T-Mobile has1696 hotspots

 Intel, IBM, Verizon have announced Project Rainbow with plans
for 1000s of hotspots

 IDC projects 40 million WiFi users in 2006

Issues: security and authorization

 Can a mobile station be sure that its data is private?
 If you log in to Wells Fargo from a coffee shop in Costa Rica,

should you worry?

 Can the 802.11 network be sure that only valid
mobile stations are using it?
 Corporate intranets dislike unauthorized use

A naïve security solution

Internet
cloud

Server

SSL
Access
Point

Network
Access
Server

MS

NAS
SSL

SSL provides a secure tunnel between endpoints.

Naïve authorization

NAS

Server

SSL

Home
Authentication
Server (HAS)

1. MS gives NAS a password

2. NAS contacts HAS and
authorizes MS

3. MS uses NAS

Life is not so simple!

 What if the NAS is a rogue?
 Can intercept all non-encrypted traffic
 Worse, it can pretend to be a server, terminate SSL, and

then intercept passwords (man-in-the-middle attack)
 Any website can be spoofed!

 Can allow unauthorized mobile stations to access the
network

MS, NAS, and HAS must mutually authenticate
each other

Mutual authentication

 Can be done in many ways
 Current standard is IEEE 802.11X which allows for

Extensible Authorization Protocol (EAP)
 EAP allows any mutual authentication scheme to be

plugged in
 A common scheme is standard Unix-style passwords
 Secure Remote Protocol (SRP) is much better

SRP for mutual authentication

 SRP is a clever way to use a simple password for
mutual authentication of two entities

 Does not require Public Key Infrastructure
 Can be used to set up a session key
 As long as server keeps password file secret, can

guarantee a secure channel and mutual
authentication

SRP basics
MS HAS

Send user name and
hash(nonce1)

Replies with hash
(verifier, nonce2)

Stores username, and verifier
= hash (password)

Computes Key from
nonce1, password and
hash (verifier, nonce2)

Computes Key from
nonce2, verifier, and
hash (nonce1)

Send challenge =
hash(Key, …) Verifies and replies with

response = hash(Key, …)

On success, MS and HAS are mutually authenticated

Verifies

How does SRP help?

 Mobile station and HAS can mutually authenticate
each other (password is the shared secret)

 Anyone who trusts the HAS can be told about entities
that the HAS trusts

 Suppose that NAS establishes a secure channel with
HAS when it becomes part of the federation
 HAS can give NAS a credential that NAS and MS can use to

mutually authenticate each other

The Authorization Tree

HAS

NAS NAS NAS NAS

MS

1 2 … n

NASs and MSs are
indexed.

Every link in this tree is secure and
trusted. The trust relationship is
established outside of the security
framework. Trust is transitive.

MS-
index

Solving the rogue NAS problem

MS HAS

Authenticate HAS using SRM.
Establish K(MS-HAS)

Authenticate MS using SRM.
Establish K(MS-HAS)

Stores username, and verifier =
hash (password)

Compute K(MS-NAS) = Hash(Hash(K(MS-HAS) +
C*NAS-index) + C*MS-index). Challenge NAS with
Hash (K(MS-NAS)…)

Tell NAS credential =
Hash(K(MS-HAS) + C*NAS-
index)

Ask NAS for NAS-index
and credential

Compute K(MS-NAS) = Hash(credential +
C*MS-index). Tell MS NAS-index

NAS

Verify

Compute and verify Hash(K(MS-NAS), …) and
respond

Solving the rogue NAS problem

 This is basically an extension to SRP
 It can be shown that this scheme is cryptographically

secure
 For properly chosen values of Hash and C, MS can

verify that credential came from a valid NAS with
very high probability

What if the MS moves?

NAS

Server

SSL

HAS

NAS
SSL

To avoid a round trip to the HAS, the old
NAS can give the new NAS an
authorization credential (BAPU
scheme). The MS may also need to
acquire a new IP address or use Mobile
IP to tell its Home Address Agent about
its new location.

Federations

 The description so far allows sets of NASs and a HAS
to work together to mutually authenticate MSs.

 This forms the basis for a federation
 Handoffs within a federation are fairly straightforward

 BAPU scheme optimizes handoff

 This has made federations commercially feasible

A commercial example

Graphic © Airpath

Federations abound

 An incomplete list
 Boingo
 Airpath
 T-Mobile
 Pass-One
 Megabeam
 Telia Mobile
 iPass
 Sputnik

 Most future access points will have to belong to one
or more federations to amortize the cost of marketing
and customer acquisition

But…

 It is very unlikely that all WiFi subscribers will want to
belong to the same federation

 What if a subscriber belongs to one of the
federations and wants to roam to another?
 How to authorize a roaming MS?
 How efficient is an inter-federation handoff?
 How can the roaming service provider get paid?
 If a NAS is compromised, how much damage can it do to the

system?

WASSUP

 Wireless Access with Secure, Scaleable and
Ubiquitous Performance

 Provides solutions for inter-federation roaming and
fast, secure, inter-federation handoffs

 Also provides authorization for roaming users and
non-repudiable billing

 Robust: limits damage from a compromised NAS

WASSUP Architecture

NAS

Server

SSL

HAS

DAS

SSL

The Domain Access Server
(DAS) keeps track of all
roaming MSs in the domain

HAS

DAS

New Authorization Tree

HAS

DAS DAS DAS DAS

NAS

1 2 … n

NAS, DASs, and
MSs are indexed.

NAS NAS

MS

1 2
3

Authorizing a roaming MS

 Each HAS establishes a trust relationship with all other DASs
 Each DAS establishes a trust relationship with every NAS in its

domain
 MS mutually authenticates its own HAS using SRP
 Now, repeat credential exchange twice

 HAS gives DAS a credential
 DAS gives NAS a credential

 By knowing the index of DAS and NAS, MS can compute the
credential and challenge the NAS

 NAS verifies and responds with a key computed with its
credential

 This mutually authenticates MS, NAS, DAS, and HAS

Solution in more detail
MS HAS

Authenticate HAS using SRM.
Establish K(MS-HAS)

Authenticate MS using SRM.
Establish K(MS-HAS)

Stores ‘salt’, username, and verifier
= hash (password)

Tell DAS Hash(K(MS-HAS) +
C*DAS-index)

Ask NAS for indices

NAS DAS

Tell NAS credential = Hash(Hash(K(MS-
HAS) + C*DAS-index) + C*NAS-index)

Compute K(MS-NAS) = Hash(Hash(Hash(K(MS-
HAS) + C* DAS-index)+ C*NAS-index) + C*MS-
index). Challenge NAS with Hash (K(MS-NAS)…)

Compute K(MS-NAS) = Hash(credential + C*MS-
index). Tell MS DAS-index, NAS-index, and MS-
index

Verify

Compute Hash(K(MS-NAS), …) and respond

Inter-federation roaming

 This solution can be further generalized
 Can construct a hierarchy of servers between HAS

and MS
 Once MS and HAS are mutually authenticated,

credentials can be chained to authenticate every
element in the path

 Key-chaining is a novel contribution of WASSUP that
is a general technique applicable to other
cryptosystems

How about fast handoffs

 When a mobile moves from a NAS belonging to one
federation to a NAS belonging to another federation,
there can be substantial delays
 Have to validate entire NAS-DAS-HAS path

 Can we optimize this?

Consider a use case

 Talking on your WiFi mobile as you walk through a
mall

 Every store could belong to a different federation
 You will be handed off from one NAS to another
 But may incur substantial delays each time
 Can we exploit locality?

Local Authorization Server

 A LAS is an authorization server that is shared among
multiple federations

 It is trusted by multiple DASs
 It sits in the authorization tree between a DAS and a

NAS
 NASs from multiple federations can get a chained

credential from the local LAS
 So, if a MS moves between NASes within the same

federation, or moves back and forth between the
same set of federations at a single location, there is
no need to contact the HAS
 Reduces latency

WASSUP Authorization Tree

HAS

DAS DAS DAS

LAS

1 2 …

LAS LAS

NAS

1 2

LAS

NAS

MS

HAS

DAS DAS

1 2

LAS benefits

 LASs reduce handoff latency for handoffs between
NASs belonging to the same set of federations
 But it doesn’t reduce the first time authorization latency

 Leverages the key chaining algorithm
 Can also provide a single DHCP server for a set of

NASs, to reduce overheads from Mobile IP

WASSUP features

 Fast and secure inter-federation roaming
 Rapid, simple, rekeying
 Integrated with usage accounting system
 Robust against attacks
 Easy to integrate with existing infrastructure

Rekeying

 If an MS wants to rekey, it simply asks the NAS to
change its MS-index

 This changes K(MS-NAS)
 K(MS-NAS) provides over-the-air encryption for

privacy

Accounting

 When an MS is authorized, NAS knows MS UID, and
its IP address

 Can trivially account for MS’s bandwidth usage
 Reports this to DAS to consolidate billing for roaming

access
 What if DAS is untrustworthy?

 It can bill a MS even with no usage!

Accounting: Solution 1

 When an MS accesses a domain, it is asked to digitally sign an
undertaking its private key

 Undertaking contains
 MS UID
 DAS UID
 Current time
 Usage time period
 Traffic rate

 DAS verifies and stores the undertaking and presents it to the HAS for
billing

 This guarantees non-repudiable billing
 However

 Overhead for verifying the undertaking on every handoff
 Overhead for storing the undertaking
 What if the MS moves away before the time period expires

 Will still get billed!

Accounting: Solution 2

 Solution 1 is overkill
 Rely on social/legal pressures to enforce billing

accuracy
 If an MS user is wrongly billed, they will complain
 If a HAS gets a lot of complaints about a particular

DAS, they can break the trust relationship
 This is probably more realistic

WASSUP robustness

 Basis of robustness is key chaining
 All keys are derived from a single K(MS-HAS) master key

 Only secret information is password file at each HAS
 Even if this is stolen, the only possible attack is man-in-the-middle,

which is much harder than identity theft (I.e. if raw passwords are
stored at HAS)

 Attacks on DAS, LAS, and NAS cannot compromise authorization
and privacy unless the MS is a complicit party

 A hacked NAS can, at most, generate false billing records
 A hacked NAS will not give the hacker access to any other NAS,

or any other part of the system
 If K(MS-NAS) is broken, simple rekeying will change the key in a

way that cannot be ‘followed’

Integrating WASSUP

 IEEE 802.11X allows SRP to be plugged in as an EAP
 A federation needs a way to recognize the HAS for a

non-local UID
 Federations allowing roaming access need to specify a global

UID space (can just be UID@federation)
 Existing HAS can then serve as a WASSUP DAS

 LASs can be added incrementally to improve
performance

Related work

 Hierarchical cryptosystems
 Do not explicitly support caching and multiple federations

 Security for nomadic systems
 Solve a harder problem (disconnected authorization) not

relevant here

 Multicast group security systems
 Solve a related problem, but focus on keeping excluded

members out

 PKI systems
 Much heavier weight
 For mutual authentication, require users to obtain key pairs

Summary

 WiFi networks are mushrooming
 Security and authorization are critical (and distinct)

issues
 Existing solutions allow formation of federations, but

do not address inter-federation roaming, and fast
handoffs

 WASSUP provides a simple, robust, and efficient
architecture for inter-federation roaming and hand
offs

 Can be integrated into existing architecture with little
effort

Internet Data Center Discovery

Joint work with R. Govindan (USC), A. Jain, and G. Kwatra (IIT, Delhi)

Server

DC

MS

MS

1

3
DC

DC

DC

DC

DC

2

Internet Data Centers

 Datacenters represent a rich aggregation of
computing resources

 Highly connected to the Internet backbone
 Hypothesis

 Most wide-area Internet traffic is going to data centers

To top 10K
site

Other

HTTP

Other

Hypothesis

?

To top 250
data center

Enterprise

IDC topology

 If this is true, we can obtain a list of popular IDCs
 Once we know list of IDCs, can easily use existing

tools to find topology
 Then, we could

 Optimally place distributed computations (such as .NET
components and grid computations)

 Create topology-aware multicast groups
 Intelligent cache and replicate web content

Methodology

 List top websites
 Traceroute to each
 Define equivalence class:

 Set of sites that share the same last hop router
 Probably all these sites are in the same data center

 But how to distinguish between websites at a data
center and a website that is hosted on premises?

Equivalence class refinement

 Step 1: Recompute equivalence classes from multiple
vantage points
 Intersection is the set of websites that share a last hop

router from two vantage points
 Very likely to be hosted at an IDC

Further refinements

 Step 2: Determine ownership of address ranges
 Further validates ownership

 Step 3: Look at minimum inter-hop delays
 All websites in the same datacenter will have roughly the

same minimum delay from the last hop

Complications

 Router aliasing
 Same router can report two different IP addresses

 Content distribution networks alias websites
 Same website shows up in two sites
 We work around this by tracking (site name, IP)

 Load balancers and firewalls hide sites
 Need to locate sites using UDP, ICMP, TCP, HTTP

 Datacenters have internal topology
 Some internal nodes show up in traceroutes, and others

don’t
 Need to massage data to find and correct for this

Preliminary results

 Probed 4320 ‘top’ sites
 Found the last-hop router for 3489 websites

 For the others, no IP address returned for the last hop
 These fall into 1934 equivalence classes
 Of these, we found 531 IDCs that host 2086 site-
tuples
 Rest (1403 sites) appear to be non-IDC websites
 In 160 Cities

Summary

 Our hypothesis is that IDC topology concisely
represents where the bulk of Internet traffic goes

 If this is true, then it opens the doors for topology-
aware computing

 Work is still under way
 Multiple vantage points
 Refinement of heuristics

Related work

 Rocketfuel
 Fast algorithms to determine router topology

 Geotrace
 Maps routers and servers to geographical locations

 Topology-aware grid computing (UW – Barford)

Conclusions

 Four trends are converging
 Mobile computers are getting cheaper
 Batteries last longer
 Wireless networks are proliferating
 Internet data centers are aggregating resources

 This motivates four use cases
 Thin client
 Global state
 Coordination
 Information tagging

Conclusions – contd.

 These use cases have motivated my research agenda on
 Server virtualization
 WiFi Roaming
 IDC topology discovery

 Generally, I’m interested in continuing my research in
infrastructure for tetherless computing
 Choose specific applications for verticals
 Build out a tetherless community interacting with a datacenter-

based computing ‘grid’
 Pose and solve fundamental research problems in this context

 For example, what does ‘fairness’ mean in a multi-hop ad hoc network?

 Bring systems experience to bear to make the ‘right’ system
assumptions

Future research areas

 Look for problems five years out
 Problem selection criteria

 Relevant
 Risky
 High pay off
 Theoretically sound
 Synergistic
 Cross-disciplinary

Specific areas

 Infrastructure for tetherless computing
 Choose specific applications for verticals
 Build out a tetherless computing community
 Pose and solve fundamental research problems in this

context
 For example, what does ‘fairness’ mean in a multi-hop ad hoc

network?

 Grid computing

The grand unification!

HW
Virtualization

HW
OS

Virtualization
OS OS OS

HW
OS

Virtualization
OS OS OS

HW
OS

Virtualization
OS OS OS

