
Towards Tetherless computing

S. Keshav
Ensim



Outline

 Technology trends
 Vision for tetherless computing
 Research areas

 Virtualization
 Internet Data Center topology
 Fast, secure roaming

 Conclusions



1. Computing costs are plummeting

From www.icknowledge.com

Processor costs have come
down by six orders of magnitude
in three decades

CMOS allows on-chip logic,
memory,  imaging and RF
components

Devices will merge computing,
audio, and video

•Processor
•RAM
•Flash memory
•Cell phone modem
•Still camera
•Video camera
•MP3 player



2. Batteries are lasting longer



Fuel cell technology



3. Wireless networks are proliferating

© Intel



4. Data Centers aggregate resources



Trends

 Computers getting cheaper and power-aware
 Batteries lasting longer
 Wireless networks proliferating
 Data centers aggregating resources for service

hosting



Where will this lead?

 Ubiquitous mobile devices will communicate with
resource-rich data centers over wireless and
wireline networks

Internet
cloud

Server

Data center



So what?



Use case: thin client

 Task-specific devices at the network edge can
leverage ‘heavy’ processing at a data center

 Application examples
 Voice storage

 A cell phone can store every word you speak at a data center
 Can use a multimodal interface to retrieve conversations on

demand

 Image analysis and manipulation
 A networked camera can shoot digital pictures and upload

them to a server
 Compute-intensive servers can process the image (red-eye

reduction, auto-date, translations)



Use case: ‘global’ state

 Provide central view of global state
 Application examples

 Instant messaging
 Wireless client can know which ‘buddies’ are online

 Cargo tracking using RFID
 Interested end points can get an instant snapshot of location
 Can run queries on dynamic database (which containers are

more than 4 hours behind schedule?)



Use case: coordination

 Central server can coordinate groups of clients
 Examples

 Form a private network (VLAN) between members of a
workgroup

 Lets users seamlessly participate in a secure collaborative
environment

 Share location information with team members
 A cell phone or PDA could display the geographical coordinates

of team members on a display



Use case: information overlays

 Exploit overlap between realspace and cyberspace to
overlay information on physical objects

 Two approaches
 RFID/Bluetooth
 GPS

 Application examples
 Entering an airport updates your PDA to reflect the latest

flight information
 Coming close to a painting in a museum brings up

information about it
 HP Cooltown



Economic impact

 Applications based on these use cases drive out
inefficiencies in production and enhance economic
value add

 ROI = Return on Intelligence!



Research areas

 Infrastructure implications of large-scale tetherless
computing

 Server virtualization
 Internet Data Center topology
 A hierarchical cryptosystem for fast, secure, roaming

between 802.11 hotspots



Server

DC

MS

MS

1

3
DC

DC

DC

DC

DC

2



Server Virtualization

Joint work with P. Goyal, R. Sharma, S. Gylfason, P.
Menage, X.W. Huang, C. Jaeger, and T. Bonkenberg

Ensim Corporation



Background

 End systems, including mobile devices, access
services in data centers
 A service instance corresponds to an instance of a running

application

 Examples
 Image analysis and transcoding services
 Coordination and collaboration services
 Database services
 Websites



Dedicated servers

 Users or organizations prefer to dedicate a server to
a service instance for three reasons
 Security

 The service may store sensitive information that should not be
seen by others sharing the same server e.g. electronic
commerce storefronts

 Performance
 The service may require guaranteed CPU, network, memory

and disk I/O resources e.g. transcoding

 Customization
 The service may need to be customized in a way that precludes

its use by other users or organizations e.g. website hosting



Problem

 This doesn’t scale!
 Too many servers
 Too hard to manage tens of thousands of servers

 Need solutions to
 Reduce number of servers
 Make server and service deployment manageable



Reducing server count

 Key insight #1: most servers are lightly used
 If we can pack many service instances on a single server,

then can reduce number of servers

 Key insight #2: cannot require application
modifications
 Otherwise no one will use the solution!



Aha – virtualization!

 Virtualization is a standard technique to break the
mapping between a service and its implementation
 Virtualization = interception + indirection + multiplexing
 Example: virtual memory

 If done properly
 Doesn’t require any application modification
 Can provide isolation
 Can provide performance guarantees
 Can allow each application instance to be arbitrarily

customized



HW
OS

Private Server
(Ensim)

•No source code or object
code changes
•Support for a single OS
•Can provide performance
guarantees
•Small overhead

Virtualization

Virtualization approaches

HW

HW HW HW
OS OS OS

Virtual machine
(VmWare, IBM)

• No source or object code
changes

• Allows a single server to
host multiple operating
systems

• Large overhead
• No performance

guarantees

Virtualization

OS OS OS

HW
OS
APP

Application virtualization
(Oracle, Apache)

•Requires either re-linking or
source-code modification
•Does not provide
performance guarantees
•Limits app customization

Virtualization



Private servers

 Ensim approach:
 Virtualize OS interfaces to create Private Servers (PS)
 Each PS appears to be a separate OS instance
 Each PS is completely isolated from others
 Does not require modifications to kernel source code
 PS can run unmodified binaries

 Quality of Service
 Each PS is guaranteed a resource share in terms of CPU,

disk, disk bandwidth, memory, and network bandwidth



Solution overview

 A private server is just a set of processes
 When a process in a PS accesses a shared resource,

the access is transparently intercepted
 The access is indirected  to the actual resource with

rewritten arguments or rewritten results
 In addition, kernel scheduling is modified to provide

resource guarantees to private servers
 3 key elements

 Process tracking
 Access interception and indirection
 Resource scheduling



Process tracking

Init

ChildInit

PID PSID

211 1

fork()
232 1



Interception and indirection

 Transparently intercept access to all system
resources, e.g.
 System calls
 /proc
 File system
 Users, groups, and resources for users and groups
 Network stack
 Physical memory and swap

 Two options
 Filter results of an information query based on PS ID
 Rewrite the arguments to the call based on indirection table



Transparent Interception

 Essentially based on wrapping system calls
 To intercept a system call

 Change the entry function in the system call vector table

 To intercept device access
 Intercept the ‘open’ system call and parse arguments

 To intercept network access
 Figure out which file descriptors are for network access, by

tracking socket() calls

 To intercept signals
 Intercept the system calls used to send/receive signals



Indirection

 Complex: need to do different things
depending on what is being intercepted

 Falls into a few categories
 Limit actions of the root user(s)
 Manage process interactions
 Create an additional level of quotas (user + group + PS)
 Massage system information
 Separate network protocol stacks



Limit actions of root users

 Each private server has its own ‘root’ user
 System calls made by this root user are given greater

privileges than system calls by non-root users
 However, even this root user has limits

 No module insertion
 Can’t browse file system outside of the PS
 Have permissions only to a specific set of system calls

 Need to parse arguments on every system call and
use a table to decide whether it should be allowed or
not



Manage process interactions

 Control processes to prevent process interactions (kill, send
signal, trace, set scheduling parameters, etc.) from crossing PS
boundaries
 The ‘real’ root can act on any process
 Virtual root can act on processes in its PS
 A parent can act on its children
 Processes in a PS cannot act on processes in other PSs



Create an additional level of quotas

 Normal Unix has user and group quotas
 Need to add PS quotas
 Done by creating a new file system type whose

inodes have the same uid/gid settings as the real file
system, but whose quota control operations
understand PS quotas

 Quotactl/status calls are intercepted and arguments
rewritten to use the new file system

 This allows us to integrate PS quotas seamlessly into
the OS



Massage system information

 Create separate syslogs
 Rewrite results of access to /proc
 Limit device access



A separate protocol stack per PS

 Protocol stack code is isolated into a single module
and virtualized

 Each PS is given its own module
 Allows very tight control over the network

 Prevent users from spoofing IP address
 Fine-grained rate control on packets reads and writes
 Fine-grained statistics at the application and protocol level
 Can have a separate firewall for each PS!



Resource scheduling

 Modify schedulers to provide QoS guarantees based
on PS ID
 Hierarchical Start-time fair queueing for rate allocation
 Leaky bucket for rate control



Net result

 A process in a private server
 Has its own file system
 Can run any application with unmodified binaries
 Has guarantees on CPU, network, memory, disk quota, disk I/O

rate
 Cannot see external processes
 Cannot send signals to other PSs
 Has a unique ‘init’ parent
 Has limited access to devices
 Has a unique IP address and cannot spoof IP addresss
 Has unique users and groups
 Supports a ‘virtual’ root
 Limits ioctls
 Can only snoop local packets
 Has access to most of /proc
 Can configure its own protocol stack



Performance

 Additional kernel memory per private server: 200K
 Very small footprint

 Additional disk space per private server: 300MB
 To recreate the base file system

 Number of private servers/physical server: up to 90
 Private servers in production use: about 4000



Performance - continued

Response time with 
physical servers at 
peak load (ms) 

Response time with a 2.2 
private server at peak 
load (ms) 

Overhead 

336 343 2.04% 
 Domain type Operations/sec Response time (ms) Bitrate (bps) 

Low 1 6 2887 42088 
Low 2 7 2811 42585 
High 1 14 1412 85686 
High 2 14 1416 84780 

 

SPECWeb99 Results

0
20
40
60
80

100
120
140
160
180

0 50 100 150 200

Load

S
P

E
C

W
eb

99

Physical server

2.2 Private server



Consequences

 Allows a datacenter to offer a service on a virtual
server to an organization

 Service can be arbitrarily customized
 Services can be given performance guarantees
 Services are run in a secure environment
 Services can be densely packed
 Freebie: resource allocation to a service can be

dynamically modified
 First steps towards ‘grid computing’



Related work

 Vserver
 Uses security contexts for identifying each PS
 Security context checking has to be hacked into kernel
 Hard to do without modifying source
 No support for QoS (yet)

 Virtual machine architecture (IBM, VMWare)
 Has a heavy resource/performance overhead

 Isolation microkernel (Denali, Xeno)
 Does not support commercial OS
 Requires extensive rewrite of OS internals to match microkernel API

 Resource containers, restricted execution contexts, virtual services
 Share components between virtual servers
 Complex programming abstraction, complex policies
 Very hard to manage



But this is only 5% of the story…



SOAP/CLI API SOAP SOAP

End
user/admin

Control panel
server

Service factory
Control panel

server

Telco/Reseller
Control panel

server

SDM

SAM

Exports multi-level
APIs

 from WP/services

Provisioning and
management

(OSS)

Server

OS

Application

Virtualization

Server

OS

Application

Provisioning, usage, status agents

Configuration mgmt.

Making apps hostable

CBM

Non-
Ensim
BSS

Business
Support
System

Agent Control
panel
server

Directory server
Account, Usage, and

Ops Databases

Permissions/Quotas
(AAA) Manager

DB connectorLog
manager

Permissions/Quotas
(AAA) Manager

Service plugin

Server and service management



A hierarchical cryptosystem for fast
secure roaming

Joint work with C. Nagarkar and M. Kopikare
Stanford University



Server

DC

MS

MS

1

2
DC

DC

DC

DC

DC

3



Outline

 WiFi basics
 Security and authorization in WiFi networks
 Intra-federation authorization and handoffs
 Issues in inter-federation authorization
 WASSUP architecture
 WASSUP features
 Summary



WiFi basics

Access
Point

Internet
cloud

802.11 (WiFi)
link

Provides DHCP
server, NAT, and a
connection to the
Internet

Network
Access
Server

Mobile station
(MS)

NAS

Terminates
wireless
link

Can be
anywhere in
the world



802.11 networks abound

 Approximately 10,000 hotspots worldwide today
 1605 hotspots listed at http://www.wifinder.com
 Boingo has 800 hotspots
 T-Mobile has1696 hotspots

 Intel, IBM, Verizon have announced Project Rainbow with plans
for 1000s of hotspots

 IDC projects 40 million WiFi users in 2006



Issues: security and authorization

 Can a mobile station be sure that its data is private?
 If you log in to Wells Fargo from a coffee shop in Costa Rica,

should you worry?

 Can the 802.11 network be sure that only valid
mobile stations are using it?
 Corporate intranets dislike unauthorized use



A naïve security solution

Internet
cloud

Server

SSL
Access
Point

Network
Access
Server

MS

NAS
SSL

SSL provides a secure tunnel between endpoints.



Naïve authorization

NAS

Server

SSL

Home
Authentication
Server (HAS)

1. MS gives NAS a password

2. NAS contacts HAS and
authorizes MS

3. MS uses NAS



Life is not so simple!

 What if the NAS is a rogue?
 Can intercept all non-encrypted traffic
 Worse, it can pretend to be a server, terminate SSL, and

then intercept passwords (man-in-the-middle attack)
 Any website can be spoofed!

 Can allow unauthorized mobile stations to access the
network

MS, NAS, and HAS must mutually authenticate
each other



Mutual authentication

 Can be done in many ways
 Current standard is IEEE 802.11X which allows for

Extensible Authorization Protocol (EAP)
 EAP allows any mutual authentication scheme to be

plugged in
 A common scheme is standard Unix-style passwords
 Secure Remote Protocol (SRP) is much better



SRP for mutual authentication

 SRP is a clever way to use a simple password for
mutual authentication of two entities

 Does not require Public Key Infrastructure
 Can be used to set up a session key
 As long as server keeps password file secret, can

guarantee a secure channel and mutual
authentication



SRP basics
MS HAS

Send user name and
hash(nonce1)

Replies with hash
(verifier, nonce2)

Stores username, and verifier
= hash (password)

Computes Key from
nonce1, password and
hash (verifier, nonce2)

Computes Key from
nonce2, verifier, and
hash (nonce1)

Send challenge =
hash(Key, …) Verifies and replies with

response = hash(Key, …)

On success, MS and HAS are mutually authenticated

Verifies



How does SRP help?

 Mobile station and HAS can mutually authenticate
each other (password is the shared secret)

 Anyone who trusts the HAS can be told about entities
that the HAS trusts

 Suppose that NAS establishes a secure channel with
HAS when it becomes part of the federation
 HAS can give NAS a credential that NAS and MS can use to

mutually authenticate each other



The Authorization Tree

HAS

NAS NAS NAS NAS

MS

1 2 … n

NASs and MSs are
indexed.

Every link in this tree is secure and
trusted. The trust relationship is
established outside of the security
framework. Trust is transitive.

MS-
index



Solving the rogue NAS problem

MS HAS

Authenticate HAS using SRM.
Establish K(MS-HAS)

Authenticate MS using SRM.
Establish K(MS-HAS)

Stores username, and verifier =
hash (password)

Compute K(MS-NAS) = Hash(Hash(K(MS-HAS) +
C*NAS-index) + C*MS-index). Challenge NAS with
Hash (K(MS-NAS)…)

Tell NAS credential =
Hash(K(MS-HAS) + C*NAS-
index)

Ask NAS for NAS-index
and credential

Compute K(MS-NAS) = Hash(credential +
C*MS-index). Tell MS NAS-index

NAS

Verify

Compute and verify Hash(K(MS-NAS), …) and
respond



Solving the rogue NAS problem

 This is basically an extension to SRP
 It can be shown that this scheme is cryptographically

secure
 For properly chosen values of Hash and C, MS can

verify that credential came from a valid NAS with
very high probability



What if the MS moves?

NAS

Server

SSL

HAS

NAS
SSL

To avoid a round trip to the HAS, the old
NAS can give the new NAS an
authorization credential (BAPU
scheme). The MS may also need to
acquire a new IP address or use Mobile
IP to tell its Home Address Agent about
its new location.



Federations

 The description so far allows sets of NASs and a HAS
to work together to mutually authenticate MSs.

 This forms the basis for a federation
 Handoffs within a federation are fairly straightforward

 BAPU scheme optimizes handoff

 This has made federations commercially feasible



A commercial example

Graphic © Airpath



Federations abound

 An incomplete list
 Boingo
 Airpath
 T-Mobile
 Pass-One
 Megabeam
 Telia Mobile
 iPass
 Sputnik

 Most future access points will have to belong to one
or more federations to amortize the cost of marketing
and customer acquisition



But…

 It is very unlikely that all WiFi subscribers will want to
belong to the same federation

 What if a subscriber belongs to one of the
federations and wants to roam to another?
 How to authorize a roaming MS?
 How efficient is an inter-federation handoff?
 How can the roaming service provider get paid?
 If a NAS is compromised, how much damage can it do to the

system?



WASSUP

 Wireless Access with Secure, Scaleable and
Ubiquitous Performance

 Provides solutions for inter-federation roaming and
fast, secure, inter-federation handoffs

 Also provides authorization for roaming users and
non-repudiable billing

 Robust: limits damage from a compromised NAS



WASSUP Architecture

NAS

Server

SSL

HAS

DAS

SSL

The Domain Access Server
(DAS) keeps track of all
roaming MSs in the domain

HAS

DAS



New Authorization Tree

HAS

DAS DAS DAS DAS

NAS

1 2 … n

NAS, DASs, and
MSs are indexed.

NAS NAS

MS

1 2
3



Authorizing a roaming MS

 Each HAS establishes a trust relationship with all other DASs
 Each DAS establishes a trust relationship with every NAS in its

domain
 MS mutually authenticates its own HAS using SRP
 Now, repeat credential exchange twice

 HAS gives DAS a credential
 DAS gives NAS a credential

 By knowing the index of DAS and NAS, MS can compute the
credential and challenge the NAS

 NAS verifies and responds with a key computed with its
credential

 This mutually authenticates MS, NAS, DAS, and HAS



Solution in more detail
MS HAS

Authenticate HAS using SRM.
Establish K(MS-HAS)

Authenticate MS using SRM.
Establish K(MS-HAS)

Stores ‘salt’, username, and verifier
= hash (password)

Tell DAS Hash(K(MS-HAS) +
C*DAS-index)

Ask NAS for indices

NAS DAS

Tell NAS credential = Hash(Hash(K(MS-
HAS) + C*DAS-index) + C*NAS-index)

Compute K(MS-NAS) = Hash(Hash(Hash(K(MS-
HAS) + C* DAS-index)+ C*NAS-index) + C*MS-
index). Challenge NAS with Hash (K(MS-NAS)…)

Compute K(MS-NAS) = Hash(credential + C*MS-
index). Tell MS DAS-index, NAS-index, and MS-
index

Verify

Compute Hash(K(MS-NAS), …) and respond



Inter-federation roaming

 This solution can be further generalized
 Can construct a hierarchy of servers between HAS

and MS
 Once MS and HAS are mutually authenticated,

credentials can be chained to authenticate every
element in the path

 Key-chaining is a novel contribution of WASSUP that
is a general technique applicable to other
cryptosystems



How about fast handoffs

 When a mobile moves from a NAS belonging to one
federation to a NAS belonging to another federation,
there can be substantial delays
 Have to validate entire NAS-DAS-HAS path

 Can we optimize this?



Consider a use case

 Talking on your WiFi mobile as you walk through a
mall

 Every store could belong to a different federation
 You will be handed off from one NAS to another
 But may incur substantial delays each time
 Can we exploit locality?



Local Authorization Server

 A LAS is an authorization server that is shared among
multiple federations

 It is trusted by multiple DASs
 It sits in the authorization tree between a DAS and a

NAS
 NASs from multiple federations can get a chained

credential from the local LAS
 So, if a MS moves between NASes within the same

federation, or moves back and forth between the
same set of federations at a single location, there is
no need to contact the HAS
 Reduces latency



WASSUP Authorization Tree

HAS

DAS DAS DAS

LAS

1 2 …

LAS LAS

NAS

1 2

LAS

NAS

MS

HAS

DAS DAS

1 2



LAS benefits

 LASs reduce handoff latency for handoffs between
NASs belonging to the same set of federations
 But it doesn’t reduce the first time authorization latency

 Leverages the key chaining algorithm
 Can also provide a single DHCP server for a set of

NASs, to reduce overheads from Mobile IP



WASSUP features

 Fast and secure inter-federation roaming
 Rapid, simple, rekeying
 Integrated with usage accounting system
 Robust against attacks
 Easy to integrate with existing infrastructure



Rekeying

 If an MS wants to rekey, it simply asks the NAS to
change its MS-index

 This changes K(MS-NAS)
 K(MS-NAS) provides over-the-air encryption for

privacy



Accounting

 When an MS is authorized, NAS knows MS UID, and
its IP address

 Can trivially account for MS’s bandwidth usage
 Reports this to DAS to consolidate billing for roaming

access
 What if DAS is untrustworthy?

 It can bill a MS even with no usage!



Accounting: Solution 1

 When an MS accesses a domain, it is asked to digitally sign an
undertaking its private key

 Undertaking contains
 MS UID
 DAS UID
 Current time
 Usage time period
 Traffic rate

 DAS verifies and stores the undertaking and presents it to the HAS for
billing

 This guarantees non-repudiable billing
 However

 Overhead for verifying the undertaking on every handoff
 Overhead for storing the undertaking
 What if the MS moves away before the time period expires

 Will still get billed!



Accounting: Solution 2

 Solution 1 is overkill
 Rely on social/legal pressures to enforce billing

accuracy
 If an MS user is wrongly billed, they will complain
 If a HAS gets a lot of complaints about a particular

DAS, they can break the trust relationship
 This is probably more realistic



WASSUP robustness

 Basis of robustness is key chaining
 All keys are derived from a single K(MS-HAS) master key

 Only secret information is password file at each HAS
 Even if this is stolen, the only possible attack is man-in-the-middle,

which is much harder than identity theft (I.e. if raw passwords are
stored at HAS)

 Attacks on DAS, LAS, and NAS cannot compromise authorization
and privacy unless the MS is a complicit party

 A hacked NAS can, at most, generate false billing records
 A hacked NAS will not give the hacker access to any other NAS,

or any other part of the system
 If K(MS-NAS) is broken, simple rekeying will change the key in a

way that cannot be ‘followed’



Integrating WASSUP

 IEEE 802.11X allows SRP to be plugged in as an EAP
 A federation needs a way to recognize the HAS for a

non-local UID
 Federations allowing roaming access need to specify a global

UID space (can just be UID@federation)
 Existing HAS can then serve as a WASSUP DAS

 LASs can be added incrementally to improve
performance



Related work

 Hierarchical cryptosystems
 Do not explicitly support caching and multiple federations

 Security for nomadic systems
 Solve a harder problem (disconnected authorization) not

relevant here

 Multicast group security systems
 Solve a related problem, but focus on keeping excluded

members out

 PKI systems
 Much heavier weight
 For mutual authentication, require users to obtain key pairs



Summary

 WiFi networks are mushrooming
 Security and authorization are critical (and distinct)

issues
 Existing solutions allow formation of federations, but

do not address inter-federation roaming, and fast
handoffs

 WASSUP provides a simple, robust, and efficient
architecture for inter-federation roaming and hand
offs

 Can be integrated into existing architecture with little
effort



Internet Data Center Discovery

Joint work with R. Govindan (USC), A. Jain, and G. Kwatra (IIT, Delhi)



Server

DC

MS

MS

1

3
DC

DC

DC

DC

DC

2



Internet Data Centers

 Datacenters represent a rich aggregation of
computing resources

 Highly connected to the Internet backbone
 Hypothesis

 Most wide-area Internet traffic is going to data centers



To top 10K
site

Other

HTTP

Other

Hypothesis

?

To top 250
data center

Enterprise



IDC topology

 If this is true, we can obtain a list of popular IDCs
 Once we know list of IDCs, can easily use existing

tools to find topology
 Then, we could

 Optimally place distributed computations (such as .NET
components and grid computations)

 Create topology-aware multicast groups
 Intelligent cache and replicate web content



Methodology

 List top websites
 Traceroute to each
 Define equivalence class:

 Set of sites that share the same last hop router
 Probably all these sites are in the same data center

 But how to distinguish between websites at a data
center and a website that is hosted on premises?



Equivalence class refinement

 Step 1: Recompute equivalence classes from multiple
vantage points
 Intersection is the set of websites that share a last hop

router from two vantage points
 Very likely to be hosted at an IDC



Further refinements

 Step 2: Determine ownership of address ranges
 Further validates ownership

 Step 3: Look at minimum inter-hop delays
 All websites in the same datacenter will have roughly the

same minimum delay from the last hop



Complications

 Router aliasing
 Same router can report two different IP addresses

 Content distribution networks alias websites
 Same website shows up in two sites
 We work around this by tracking (site name, IP)

 Load balancers and firewalls hide sites
 Need to locate sites using UDP, ICMP, TCP, HTTP

 Datacenters have internal topology
 Some internal nodes show up in traceroutes, and others

don’t
 Need to massage data to find and correct for this



Preliminary results

 Probed 4320 ‘top’ sites
 Found the last-hop router for 3489 websites

 For the others, no IP address returned for the last hop
 These fall into 1934 equivalence classes
 Of these, we found 531 IDCs that host 2086 site-
tuples
 Rest (1403 sites) appear to be non-IDC websites
 In 160 Cities



Summary

 Our hypothesis is that IDC topology concisely
represents where the bulk  of Internet traffic goes

 If this is true, then it opens the doors for topology-
aware computing

 Work is still under way
 Multiple vantage points
 Refinement of heuristics



Related work

 Rocketfuel
 Fast algorithms to determine router topology

 Geotrace
 Maps routers and servers to geographical locations

 Topology-aware grid computing (UW – Barford)



Conclusions

 Four trends are converging
 Mobile computers are getting cheaper
 Batteries last longer
 Wireless networks are proliferating
 Internet data centers are aggregating resources

 This motivates four use cases
 Thin client
 Global state
 Coordination
 Information tagging



Conclusions – contd.

 These use cases have motivated my research agenda on
 Server virtualization
 WiFi Roaming
 IDC topology discovery

 Generally, I’m interested in continuing my research in
infrastructure for tetherless computing
 Choose specific applications for verticals
 Build out a tetherless community interacting with a datacenter-

based computing ‘grid’
 Pose and solve fundamental research problems in this context

 For example, what does ‘fairness’ mean in a multi-hop ad hoc network?

 Bring systems experience to bear to make the ‘right’ system
assumptions



Future research areas

 Look for problems five years out
 Problem selection criteria

 Relevant
 Risky
 High pay off
 Theoretically sound
 Synergistic
 Cross-disciplinary



Specific areas

 Infrastructure for tetherless computing
 Choose specific applications for verticals
 Build out a tetherless computing community
 Pose and solve fundamental research problems in this

context
 For example, what does ‘fairness’ mean in a multi-hop ad hoc

network?

 Grid computing



The grand unification!

HW
Virtualization

HW
OS

Virtualization
OS OS OS

HW
OS

Virtualization
OS OS OS

HW
OS

Virtualization
OS OS OS


