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Abstract

Performance analysis of computer networks is rapidly gaining importance as networks increase in
size and geographical extent. A simulation approach is often useful. This report describes REAL, a com-
puter network simulator, and presents results of some simulations to illustrate its analytical power. Details
of implementation and a performance evaluation are also presented.
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1. Introduction and Motivation

Performance analysis of computer networks is rapidly gaining importance as networks increase in
size and geographical extent. The size of the networks and the inherent complexity of network protocols
complicate this analysis. Analysis techniques such as queueing models have difficulty modeling dynamic
behavior such as retransmission timeouts and congestion. In these cases, simulation offers a better method
of studying computer networks, since one can simulate the details of actual protocols. Further, traces of
execution under different environments provide insights into the dynamics of protocols that queueing anal-
ysis does not easily provide. Of course, there is considerable effort involved in building a simulator and
substantial machine cost in running it, but this approach still is the most attractive.

The immediate motivation for building REAL (REalistic And Large) was to compare the ‘fair queue-
ing’ gateway algorithm [. Nagle .] [. Analysis Fair Queueing Shenker.] with first-come-first-served
scheduling and with competing proposals from Digital Equipment Corporation (DEC)[. DECa, DECb .].
Results from the study are described in a companion paper [. Demers Shenker .]. REAL was built using the
NEST simulation toolkit from Columbia University [. Dupuy .]. While the simulator was built specifically
for this study, simple modifications can greatly extend its power and generality.

This report presents a description of REAL and the results of some simulations to illustrate its analyt-
ical power. The remainder of the report is organized as follows : Section 2 presents an outline of the simu-
lator from a user’s point of view. Section 3 describes details of the implementation. Section 4 sketches the
transport protocols implemented. Section 5 presents some gateway scheduling algorithms. Section 6
describes results of some simulations using REAL, and Section 7 presents a performance evaluation of the
simulator. Section 8 describes a design for extending REAL to parallel distributed simulation. Section 9 is
an evaluation of this work, and Section 10 describes future work.

2. Outline of the Simulator

This section describes a user’s view of the REAL simulator’s two parts - a simulation server, and a
display client (Figure 1). The server carries out simulations, and connects through a Berkeley UNIX socket
to the client. The client maintains a ‘simulation window’ which reflects the current state of the simulation.
A user sets up and controls the simulation through the display client. The client passes simulation parame-
ters and control messages to the server; the server passes status information and results to the client.

Such a partition has two advantages. A simulation can be run on a large compute server, and simula-
tions running in parallel on several machines can be controlled from a single screenful of windows. We
have taken advantage of both features - by running large simulations on a VAX 8600, and by running up to
six simulations in parallel on a SUN cluster.

2.1. Network Model

REAL simulates a packet switched, store and forward network similar to existing wide area networks
such as the Xerox corporate net and the DARPA Internet. The network layer is datagram oriented, and
packets can be lost or delivered out of sequence. The transport layer, which is modeled on the Transmis-
sion Control Protocol (TCP) [. Tanenbaum .], provides reliable, sequenced packets using standard tech-
niques of flow control, timeout estimation and packet retransmission. The network itself consists of a set of
sources that execute a transport protocol, gateways that route packets and schedule them on their outgoing
lines, and sinks that absorb packets sent to them, returning an acknowledgment for each packet received.
Our analysis assumes that the bottleneck in a network is always the limited bandwidth of transmission
lines, hence all sources, gateways and sinks are infinitely fast. Note that REAL sources attempt to model
many of the details of flow control in the transport layer in contrast to some previous work, for instance [.
Passive Morgan .], where sources are abstracted as Poisson processes. We now discuss each component of
the network (sources, gateways and sinks) briefly.

Sources are classified according to the workload they present to the simulator and the version of the
transport layer protocol they employ (Figure 2). We chose to model three types of workloads : FTP, telnet
and ill behaved. An FTP workload models large file transfers : whenever flow control permits, a source
with an FTP workload (FTP source) immediately sends a maximal sized packet. A telnet source sends min-
imal sized packets with an exponential interpacket spacing, modeling the workload of a telnet (remote
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login) connection. An ill behaved source continuously sends maximally sized packets, limited only by the
network’s bandwidth.

We further divide these classes on the basis of their version of TCP. There are three kinds of FTP
and telnet sources : generic, DEC and JK. Generic sources use ‘standard’ TCP with flow control, but do
not take special measures to avoid network congestion (Section 4.1). JK sources add many of Jacobson and
Karels’ congestion avoidance ideas [. Jacobson .] (Section 4.2), and DEC sources add the DEC binary con-
gestion avoidance scheme [. DECa, DECb .] (Section 4.3) to the generic transport protocol.

Gateways (or routers), perform two logical functions : routing and scheduling. At startup, a straight-
forward shortest path computation does static routing. Since we were particularly interested in scheduling
policies, REAL implements several different scheduling algorithms, to be described later.

Sinks discard packets sent to them, sending an acknowledgment for each packet received. The
acknowledgment header contains the number of the last in-sequence packet the sink received.

2.2. User Interface

The display client runs on a Sun 3 or Sun 4 workstation under suntools, and presents a mouse
based interface to a user. The network is represented as a graph, and a display manager maintains the cur-
rent status of the network in the simulation window. A number of control panels allow simulation parame-
ters (such as the speeds of the communication lines) to be set interactively by mouse clicks, or by typing a
value.

Network graphs are drawn interactively using the mouse, and the result is sent to the simulator. A
node in the graph represents a source, gateway or sink, as specified by its ‘node function’, which is set for
each node by clicking on the appropriate menu. As an example, to draw the graph shown in Figure 3, the
mouse is used to create the six nodes (by clicks at the appropriate locations) and the edges between the
nodes. Additional menus prompt for the protocol to be run at each node and the bandwidth/delay character-
istics of each line. The simulation’s parameters are set from the appropriate panel. The entire graph and
associated simulation parameters can be sent to the server by clicking on a send selection or saved to a file
and reloaded later.

The display client allows for graphical monitoring of a selected node’s variables (such as the current
window size) as the simulation proceeds. The nodes to be monitored are selected by clicking on their icon.
For example, one might monitor the window size for the protocol running on node 1. This is analogous to
attaching an oscilloscope to a signal line in a hardware circuit, and as useful.

REAL provides for automatic report generation. A library of routines for table generation collects rel-
evant statistics (such as packets sent and received by each node), tabulates them, and prints them out at pre-
defined intervals.

It is interesting to note that entire simulations can be set up from the display using only the mouse
and menus. This visual programming style, analogous to that proposed in the Alternate Reality Kit [. Real-
ity .], makes the simulator fun to use. The availability of a graphical display to monitor the simulation in
real time is useful, and is an example of scientific visualization.

3. Implementation Details

REAL is built upon the NEST (NEtwork Simulation Testbed) package from Columbia University [.
Dupuy .]. We now present an outline of NEST, enumerating and describing the additions we made.

NEST provides (a) a display client and (b) a simulation library. The display client manages a simula-
tion window, where the simulated network and associated parameters are initially input, and subsequently
updated as the simulation proceeds. The library includes a threads package, primitives for inter-thread
communication, and a non blocking socket library for communication between the simulation server and
the display client.

The network is specified by the set of nodes and their interconnecting edges. Each network node is
assigned a C function, the ‘node function’. After the set of nodes, their node functions and their
__________________
2. Disregarding differences in functionality, we use these terms interchangeably in this report.
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interconnections are specified, the NEST primitive simulate() runs each node’s function in parallel in
a single common address space. REAL is thus written as a set of node functions, one for each kind of
source, gateway and sink. Writing such node functions is difficult. Not only do we have to solve standard
synchronization problems, but also, since threads are preemptable, all node functions have to be made reen-
trant.

Communication between the server and the display occurs over a non blocking socket. The network,
described formally in a ‘graph language’ structure, is converted to a bit stream and exchanged between the
display and the server. We wanted to leave the graph language unchanged to maintain compatibility with
other NEST simulators, and so added an extra socket between the display and the server to carry REAL-
specific simulation parameters. We implemented the socket using the nonblocking socket library. An extra
panel was added to the simulation window to hold REAL parameters.

We now describe some libraries that we added.

• The Tables Library creates tables of statistics, adds entries to them and prints them neatly in a report.

• A large Buffer Management Library supports a variety of buffer allocation schemes at the routers.
Buffer data structures and associated procedures were strictly encapsulated to assure correctness of
buffer management.

• As the simulation progresses, values of selected variables can be written onto a file. A separate pro-
cess reads these values and creates graphs (using the UNIX graph utility) that are then displayed
on a Tektronix emulation window (tektool).

• Finally, a number of tracing options were built into REAL. These allow simultaneous tracing of one
of many network functions, such as routing, buffer management and source protocols. This proved
to be a valuable debugging tool, as well as a way of checking a protocol implementation’s correct-
ness.

4. Transport Protocols

This section describes details of the implementation of REAL’s transport protocol options. Some
familiarity with windowing mechanisms and TCP is assumed [. Tanenbaum .]. Recall (Figure 2) that three
types of TCP transport are implemented : generic, JK (Jacobson-Karels), and DEC. A source implementing
a protocol version X is called an X source for convenience.

4.1. Generic Transport

Generic sources model features common to many of today’s transport protocols such as TCP and
XNS. They represent the minimal common functionality necessary for a reliable, connection-oriented
transport layer built on an unreliable, connectionless network layer. Generic sources implement sliding
window flow control and retransmission timeout.

4.1.1. Sliding windows

A window is the largest number of unacknowledged packets that a source can have outstanding.
Once the window limit is reached, a source waits for new acknowledgments before sending more packets.
Since only sinks send acknowledgments, they can dictate the rate at which they receive packets, i.e., the
flow rate.

4.1.2. Timeouts

When a packet is dispatched at time t, a timer is set for an interval I. If the source does not receive
an acknowledgment by t+I, it retransmits the packet. I is usually set to be bR, where R is the exponen-
tially smoothed round trip time and b is typically 2.

Generic sources behave badly in the presence of congestion since they do not have sophisticated con-
gestion control mechanisms. For example, consider a generic source that has a window size of 5, which
__________________
3. If the current estimate is R, and the actual round trip time for a packet is T, the new estimate is kR + (1-k) T, where k is a
constant in [0,1].
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loses a packet with sequence number 10 at a gateway due to congestion. Window flow control allows
packets with sequence numbers 10-14 to be outstanding. Assume that the sink receives packets 11-14.
However, these packets are out of sequence and the sink does not acknowledge them. When packet 10
times out, the source retransmits it and the sink acknowledges packets 10-14. At this point, the source sends
a burst of 5 packets, which further aggravates the congested gateway. Thus, the packet loss due to conges-
tion triggers a burst of packets from a generic source which sustains the condition.

4.2. JK Sources

Jacobson and Karels (JK) have made several modifications to the basic TCP algorithm to improve
their behavior under congestion. These include ‘slow start’, window shutdown on a lost packet, refine-
ments in timeout estimation, and fast retransmit in case of duplicate acknowledgments [. Jacobson .]. We
describe some of these briefly below.

In the generic TCP implementation, the implementor fixes the window size once and for all. In con-
trast, JK propose that the window size be dynamically adjusted to permit congestion control. Initially a
source sets its window size to 1. As it receives acknowledgments, this is slowly increased (‘slow start’) to
the maximum allowed window size, until a timeout occurs, signalling a packet loss due to congestion. At
this point, the window is shut down to one, and the process resumes. Thus, congestion control is imple-
mented by "window shutdown." The actual window size increase algorithm is somewhat more complicated
- details can be found in [. Jacobson .].

Another interesting feature in JK protocols is ‘fast retransmit’. A TCP receiver replies to packets with
an acknowledgment that contains the sequence number of the last in-sequence packet it has seen so far.
When a packet is lost, subsequent acknowledgments contain the sequence number of the packet before the
lost packet. Thus, if a JK source receives (window-size -1) acknowledgments with the same sequence num-
ber, it detects a lost packet and retransmits the packet even before it times out.

JK sources implement these improvements, as well some others suggested by Karn [. Karn .]. We
would like to repeat that JK sources are not exact TCP implementations - they are generic sources to which
improvements suggested by Jacobson/Karels and Karn are added. They model details of TCP that are rele-
vant to congestion control and ignore other details such as keep alive messages, out-of-band messages etc.

4.3. DEC Sources

Jain and Ramakrishnan at DEC have described a congestion control scheme based on a single bit in
the header of every (data and acknowledgment) packet, the ‘decbit’. A gateway sets the decbit on a data
packet when it detects incipient congestion. This is echoed back by the destination to the source that sent
that packet to the gateway. Sources decrease their window size when they receive a packet with decbit set.
Such sources, implemented according to the algorithms presented in two technical reports from DEC [.
DECa, DECb .], are called ‘DEC sources’.

Window decrease and increase are decided at a decision point, and at every such point, the window
size is either decreased or increased by one. If the previous window size was wp, and the current window
size is w, then a decision point is reached when wp + w acknowledgments have arrived since the last deci-
sion point. The source counts the number of packets with set decbits for the last w packets. If more than
50% of the bits have been set, the window size is decreased by one, else it is increased by one. This acts
like a low pass filter on the incoming bits, and stabilizes the system. The references above discuss other
aspects of the algorithm in detail.

5. Gateway Scheduling Algorithms

REAL implements several gateway scheduling algorithms. Of these, the interesting ones are first
come first served (FCFS), fair queueing (FQ), and the DEC congestion avoidance algorithm.
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5.1. FCFS Gateway

In an FCFS gateway both the buffer allocation and the bandwidth management scheme are FCFS.
The gateway places packets in buffers in the order they are received, and drops packets that arrive when
there is no more buffer space. The buffers thus form a FIFO queue, and, whenever an output line becomes
idle, the next packet in the queue is sent.

5.2. DEC Gateway

A DEC gateway schedules packets FCFS, and, when it detects incipient congestion, it sets the decbits
of some packets. Congestion is detected by monitoring the average queue length of an output line’s trans-
mission queue. When the average queue length is less than 1, no bits are set. When it is more than 2, bits
are set on all outgoing packets. Else, the gateway sets bits on packets from host-host pairs that ask for more
than their fair share of throughput. This implicitly introduces fairness into the bandwidth allocation
scheme.

5.3. Fair Queueing Gateway

A fair queueing gateway implements the fair queueing scheduling policy (FQ). This policy is based
on an idea presented by Nagle [. Nagle .], and is best described by a metaphor, the bit-by-bit-round-robin
(BR) scheme (Figure 4). In this scheme, the gateway selects one bit each from each source destination pair
having a packet in the gateway and sends it. BR is the fairest scheduling policy possible, since every active
pair gets exactly as much bandwidth as any other. Furthermore, each host-host pair is protected from the
others, in that no host can delay the servicing of any other host. Note that the unit that obtains fair service is
a source-destination pair, as opposed to a source or a destination alone.

However, BR is not practical since there are significant overheads involved in switching between
packets. The fair queueing policy [. Demers Shenker .] approximates BR as follows : it maintains a "round
number", R, the round BR would be at any moment in time. When a packet arrives, the gateway assigns it
a "finishing number" that is the current round number plus the packet size. FQ schedules the packet with
the least finishing number first. However, small packets with a smaller finishing number may arrive after a
FQ gateway began transmission of a larger packet with a larger finishing number. This violation does
cause some unfairness in the scheduling, but this is bounded by the largest allowed packet size.

In addition to implementing FQ, a FQ gateway also allocates buffer space fairly : whenever there is
not enough buffer space for a newly arrived packet, the gateway drops packets from the source-destination
pair that has the most packets in the gateway.

A variant of the FQ algorithm (FQ with bit setting) sets bits on packets from source destination pairs
that have filled more than a third of their fair share of buffers. This allows the sources to decrease their
window size, as in the DEC algorithm, reducing the mean queueing delay that their packets experience.

6. Simulation Results

This section presents some of the results obtained from the simulator. The results illustrate the
detailed study of protocols that is possible using REAL. Further comparisons are presented in a companion
paper [. Demers Shenker .].

The results are described in the context of a set of benchmark networks. Each benchmark tests an
aspect of gateway and source protocols that we think are important in real networks. Further, parameter
values have been chosen to reflect those of the Arpanet. For example, long haul line speeds are 56kbps.
Six protocol pairs were tested on each benchmark : these are presented in Table 1. We now discuss the
intent of each benchmark, and the results obtained for that benchmark.

__________________
4. Actually, MAX (R, finishing number of the last packet from this host-host pair) + packet size.
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6.1. Single Underloaded Gateway

This benchmark is intended to test the system in unstressed conditions (Scenario 1).
Protocol/scheduling policy pairs (henceforward called protocol pairs) that behave badly in this situation are
clearly unacceptable. As it turns out, all the protocol pairs examined behave well in this benchmark. It is
interesting to note the delay incurred by telnet packets in fair queueing (FQ) gateways . Since telnet packets
are small, their finishing numbers are only slightly above the current round number, and are automatically
given preference over larger FTP packets. Thus, they processed and sent with very low delays, which is
desirable.

6.2. Single Overloaded Gateway

This benchmark tests a gateway under severe overload (Scenario 2). Six FTP sources, each with a
maximum window size of 5, send packets to a gateway with only 15 buffers. Congestion can arise when a
source is unable to keep a full window’s worth of packets in each intermediate router, as in this benchmark.
If a protocol pair behaves badly under congestion, then it will do badly here.

In this scenario, packets from each source have one hop on a slow line. The transmission delay on
this line is long enough for a source to receive an acknowledgment for the previous packet and send a new
packet to the gateway. If each source keeps its window size at two, there will always be a packet waiting to
be sent on the slow line, and an increase in the window size will not help. However, if a source expands its
window size to the maximum size or does not adjust its window size, there will not be enough buffers. The
gateway will be forced to drop packets either from the offending source, or from some other source. This
could lead to spurious retransmissions, some hosts being shut out of the network, or to other undesirable
behavior.

The DEC protocol pair does not exhibit any of these problems (case A). The DEC/(FQ with bitset-
ting) scheme performs equally well, and gives a lower delay to packets from telnet sources (case F). How-
ever, the other protocol pairs do exhibit problems due to congestion; we examine these below.

The Generic/FCFS pair has no congestion control and the system reaches a stable state with some
sources sending packets as fast as they can (winners), while others do not get any packets through
(losers)(case B). This behavior, which we call ‘segregation’, was first observed by Sturgis at Xerox PARC
[. Sturgis .]. Packets from winning gateways arrive shortly after the gateway has processed one of their
packets and has released a buffer space. So, they are rarely dropped. On the other hand, when packets from
losing sources arrive at the gateway, usually all the buffers are full. Thus, packets from losers are preferen-
tially dropped.

When FQ is used at the gateway along with generic sources, there is a slight improvement (case C).
This is because a source is protected from other sources, and will not lose packets due to a burst of packets
from another source. Nevertheless, a source is able to get only two and a half buffers in the gateway on
average, whereas the window size is five. Hence, bursts of three or more packets from a source will inun-
date the gateway, leading to dropped packets, retransmission and segregation.

With JK/FCFS all the FTP sources get a fair share of the bandwidth (case D), but the telnet sources
get no throughput. The reason is that JK FTP sources keep increasing their window size till the gateway
buffers are full. Thus, packets from the intermittent telnet sources get dropped. In general, we feel that the
JK/FCFS pair will suffer from such problems, since the intermittent (telnet) sources are never protected
from the established (FTP) sources, and are vulnerable to starvation.

The gateway drops packets with both JK/FCFS and JK/FQ pairs (cases D and E). This is because of
the steady attempt by JK sources to increase their window size. The increase proceeds till a packet is
dropped, which triggers a window size shutdown to one, after which the cycle repeats.

6.3. Ill behaved Hosts

An ill behaved source sends packets to the gateway as fast as it can, limited only by network band-
width. Such a source is intended to model a failure mode of the system, when a host floods a gateway and
ignores the congestion that it thus causes. We examine the behavior of each protocol pair in the presence of
such a source.
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In general, FQ gateways protect well behaved sources from the ill behaved one. This is expected, and
demonstrates the ‘firewall’ nature of fair queueing. An interesting question is why the ill behaved source
does not even get its fair share of the output bandwidth. The reason is a policy decision to increment a
source’s finishing number even if the packet that caused this increase is dropped. Thus, if a source chooses
to ignore the danger signal of dropped packets, it will cause further damage to itself.

6.4. Summary of Results

We note that congestion control or avoidance requires coordination between the source transport pro-
tocol and the gateway scheduling policy. The simulations isolate some points of failure of current TCP
implementations and FCFS gateways. REAL can be modified to analyze modifications to these protocols
or alternate protocols.

Fair queueing gateways seem to offer several advantages over existing FCFS gateways. These
advantages are described in greater detail in [. demers Shenker .].

Simulations of small networks, such as those described above, do not adequately model the behavior
of networks with many hundreds of gateways and sources. For example, these simulations ignore adaptive
routing routing. However, it is slow and cumbersome to simulate networks with more than about 100
nodes on REAL. This motivated us to distribute the simulator on a cluster of computers, allowing us to
simulate much larger networks (Section 8).

7. Performance Evaluation

This section discusses the simulator’s performance. The time to perform a simulation depends on a
number of factors; among them, the protocols being simulated, the network configuration, the machine on
which the simulation is carried out, and the machine’s load. For simplicity, we decided to fix all parame-
ters except for the number of sources, and only studied the dependency of simulation time on the number of
sources in the simulated network.

The standard simulation we chose was, quite arbitrarily, the network shown in Figure 3. All sources
executed the JK protocol with an FTP workload, and the gateway did FCFS scheduling. We wanted to
study scaling when the network was underloaded, so we adjusted the buffer size to ensure there was no con-
gestion. Thus, when there were n sources in the simulation, and the maximum allowed window size was 5,
we allocated 5n buffers to the gateway.

The bottleneck resource in the system was the bandwidth of the line connecting the gateway to the
sink. Simulations ran for 500 seconds of simulated time, so in each simulation the same number of packets
were transmitted on the bottleneck : the bandwidth of the bottleneck times the simulation time. In this set
of simulations, the bottleneck line speed was 7 packets/second, so 3500 packets were transmitted in each
simulation.

The simulations were run on a Vax 8600 when the load average ranged from 1.0 to 1.1. The only
other user process on the machine was a low priority simulator that had been running for several days and
presented a relatively constant load to the system. Thus, we believe that the results are free from anomalies
arising from fluctuations in the machine workload.

Figure 5 presents the results of the evaluation. The number of sources in the simulation is reported
on the horizontal axis and the simulation time (in minutes) on the vertical axis.

Observe that the simulation time varies roughly linearly with the number of sources. Also, the simu-
lation scales well, with about seven more seconds of real time needed for each additional source.

We hypothesized that the simulation time is also directly proportional to the total number of packets
transmitted and tested this by running the simulations for 500 and 1000 simulated seconds. If the hypothe-
sis were true, the simulation time should nearly double. This is confirmed by Figure 5. Thus, we conclude
that the simulation time depends approximately linearly on the number of sources in the simulation and on
the total number of packets transmitted in the simulation. Of course, the result is derived from the single
case that we tested, but it is hoped to be an indication of the general nature of things.
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8. Extension to Parallel Distributed Simulation

In this section, we describe a distributed version of REAL that is able to simulate reasonably large
networks.

The key to distributed simulation lies in the monitor facility provided by NEST. NEST supports the
idea of simulation pass, which is an interval of simulated time. At the end of each pass, control flows to a
user specified monitor function that can access the simulation’s address space. The monitor executes in zero
simulated time.

The distributed version of REAL (DisREAL) binds together a number of REAL instances. It imple-
ments a variant of barrier synchronization, where the monitor of each REAL instance blocks till all the
other monitors have completed their slice of the simulation. At this point, all messages that cross computer
boundaries are routed to the proper REAL instance, and the next pass is started. Note that synchronization
is done at the end of every pass. If the synchronization overhead is high, then choosing a small pass time is
potentially very expensive.

A master-slave configuration makes it easy to practically implement barrier synchronization. Each
REAL instance runs as a slave and executes a pass. At the end of each pass it sends the DisREAL master a
message indicating completion. When the master has received all the completion messages, it routes
cross-computer messages and sends each slave a ‘proceed’ message. However, there is an important detail
here.

Consider a cross-computer message M that is sent from NEST instance N1 to instance N2. If M is
sent from N1 at the beginning of a pass, and should be received by N2 before the end of the pass, then the
barrier scheme does not work since M will be delivered by the master only at the beginning of the next
pass. There are two ways to get around this. In the Timewarp [. Timewarp .] style of synchronization, N2
would proceed beyond the time it should have received M. When M is actually received, N2 will need to do
a rollback to the previous state. This is costly and undesirable. Our solution is to impose the restriction
that every cross-computer message must have a delay that is greater than the pass time. This guarantees that
there will be no need for a rollback. This is illustrated in Figure 6. We see that, as long as the delay in the
message is greater than the pass time, it is necessary that at least one barrier be crossed during the transit
time of the message. This is sufficient to deliver the message on time.

Our scheme has two advantages. First, it is easy to implement, and, unlike the Timewarp scheme, it
does not need rollback. Second, it models the structure of real networks. Currently, long haul networks
have relatively fast LANs on the ends, with much slower (56kbps) intermediate trunks. Long haul line
delay is an order of magnitude larger than LAN line delay. If each NEST instance contains all the nodes in
a local area, the messages we require to have high delay will be the same as those sent on the (high delay)
trunks. Thus, we can simplify the distributed simulator by exploiting the nature of the target network. We
are currently implementing this scheme.

With such an implementation, networks of reasonably large size can be simulated. We estimate that,
with 100 nodes per NEST instance, and on a network of 20 Suns, we should be able to accurately simulate
networks of 2000 nodes in about the same time as it takes to simulate 100 nodes on a single Sun.

9. Evaluation

Our primary design goals were to simulate reasonably large networks realistically. In our opinion,
we have had reasonable but limited success in meeting these goals. By simulating certain aspects of TCP
protocols in detail we have obtained insights that we would not otherwise have. Yet, we ignore other, per-
haps equally important, details about packet buffering, fragmentation/reassembly, copying and checksum-
ming. We are currently able to simulate networks with as many as 100 nodes. However, the proposed
extension will allow us to simulate networks with a few thousands of nodes. on a local-area distributed sys-
tem of moderate size.

There are several payoffs from the ‘visual programming’ approach. One is a simple and intuitive
user interface. Further, simulation scenarios can be set up easily with the mouse based display client.
__________________
5. Specifically details of flow control, timeout estimation and retransmission, and others relevant to congestion control.
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Finally, one can graphically monitor the state of the simulation, making it easier to verify protocol correct-
ness.

10. Future Work

Our immediate goal is to complete the implementation of the distributed simulator outlined above.
Once this is done, we will simulate much larger networks.

The choice of a benchmark to evaluate transport protocol behavior is an open problem. Such a
benchmark must specify the system topology, line speeds, gateway buffer sizes and the system workload.
Furthermore, a simulation of a transport protocol and a gateway scheduling policy on the benchmark should
accurately predict protocol performance. We hope to create and justify a set of benchmarks in this spirit.

Finally, we will use the simulator to implement and test a variety of congestion control schemes.
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