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Abstract 

We discuss gateway queueing algorithms and their 
role in controlling congestion in datagram networks. 
A fair queueing aJgorithm, based on an earlier 
suggestion by Nagle, is proposed. An.alysis and 
simulations are used to compare this algorithm to 
other congestion control schemes. We find. that fair 
queueing provides several important advantages over 
the usual first-come-first-serve queueing algorithm: 
fair allocation of bandwidth, lower delay for sources 
using less than their full share of bandwidth, and 
protection from ill-behaved sources. 

1. Introduction 

Datagram networks have long suffered from perfor- 
mance degradation in the presence of congestion 
[GerBO]. The rapid growth, in both use and size, of 
computer networks has sparked a renewed interest 
in methods of congestion control [DEC87abcd, 
Jac88a, Man89, Nag871. These methods have two 
points of implementation. The first is at the source, 
where flow control algorithms vary the rate at 
which the source sends packets, Of course, flow 
control algorithms are designed primarily to ensure 
the presence of free buffers at the destination host, 
but we are more concerned with their role in limit- 
ing the overall network traffic. The second point of 
implementation is at the gateway. Congestion can 
be controlled at gateways through routing and 
queueing algorithms. Adaptive routing, if properly 
implemented, lessens congestion by routing packets 
away from network bottlenecks. Queueing algo- 
rithms, which control the order in which packets 
are sent and the usage of the gateway’s buffer 
space, do not affect congestion directly, in that they 
do not change the total traffic on the gateway’s out- 
going line. Queueing algorithms do, however, deter- 
mine the way in which packets from different 
sources interact with each other which, in turn, 
affects the collective behavior of flow control algo- 
rithms. We shall argue that this effect, which is 
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often ignored, makes queueing algorithms a crucial 
component in effective congestion control. 

Queueing algorithms can be thought of as allocat- 
ing three nearly independent quantities: bandwidth 
(which packets get transmitted), promptness (when 
do those packets get transmitted), and buffer space 
(which packets are discarded by the gateway). 
Currently, the most common queueing algorithm is 
first-come-first-serve (FCFS). FCFS queueing essen- 
tially relegates all congestion control to the sources, 
since the order of arrival completely determines the 
bandwidth, promptness, and buffer space alloca- 
tions. Thus, FCFS inextricably intertwines these 
three allocation issues. There may indeed be flow 
control algorithms that, when universally imple- 
mented throughout a network with FCFS gateways, 
can overcome these limitations and provide reason- 
ably fair and efficient congestion control. This 
point is discussed more fully in Sections 3 and 4, 
where several flow control algorithms are com- 
pared. However, with today’s diverse and decen- 
tralized computing environments, it is unrealistic 
to expect universal implementation of any given 
flow control algorithm, This is not merely a ques- 
tion of standards, but also one of compliance. Even 
if a universal standard such as IS0 [IS0861 were 
adopted, malfunctioning hardware and software 
could violate the standard, and there is always the 
possibility that individuals would alter the algo- 
rithms on their own machine to improve their per- 
formance at the expense of others. Consequently, 
congestion control algorithms should function well 
even in the presence of ill-behaved sources. Unfor- 
tunately, no matter what flow control algorithm is 
used by the well-behaved sources, networks with 
FCFS gateways do not have this property. A single 
source, sending packets to a gateway at a 
sufficiently high speed, can capture an arbitrarily 
high fraction of the bandwidth of the outgoing line. 
Thus, FCFS queueing is not adequate; more 
discriminating queueing algorithms must be used 
in conjunction with source flow control algorithms 
to control congestion effectively in noncooperative 
environments. 

Following a similar line of reasoning, Nagle 
[Nag87, Nag851 proposed a fair queueirtg (FQ! algo- 
rithm in which gateways maintain separate queues 
for packets from each individual source. The queues 
are serviced in a round-robin manner. This 
prevents a source from arbitrarily increasing its 



share of the bandwidth or the delay of other 
sources. In fact, when a source sends packets too 
quickly, it merely increases the length of its own 
queue. Nagle’s algorithm, by changing the way 
packets from different sources interact, does not 
reward, nor leave others vulnerable to, anti-social 
behavior. On the surface, this proposal appears to 
have considerable merit, but we are not aware of 
any published data on the performance of datagram 
networks with such fair queueing gateways. In this 
paper, we will first describe a modification of 
Nagle’s algorithm, and then provide simulation 
data comparing networks with FQ gateways and 
those with FCFS gateways. 

The three different components of congestion con- 
trol algorithms introduced above, source flow con- 
trol, gateway routing, and gateway queueing algo- 
rithms, interact in interesting and complicated 
ways. It is impossible to assess the effectiveness of 
any algorithm without reference to the other com- 
ponents of congestion control in operation. We will 
evaluate our proposed queueing algorithm in the 
context of static routing and several widely used 
flow control algorithms. The aim is to find a queue- 
ing algorithm that functions well in current com- 
puting environments. The algorithm might, indeed 
it should, enable new and improved routing and 
flow control algorithms, but it must not require 
them. 

We had three goals in writing this paper. The first 
was to describe a new fair queueing algorithm. In 
Section 2.1, we discuss the design requirements for 
an effective queueing algorithm and outline how 
Nagle’s original proposal fails to meet them. In Sec- 
tion 2.2, we propose a new fair queueing algorithm 
which meets these design requirements. The 
second goal was to provide some rigorous under- 
standing of the performance of this algorithm; this 
is done in Section 2.3, where we present a delay- 
throughput curve given by our fair queueing algo- 
rithm for a specific configuration of sources. The 
third goal was to evaluate this new queueing propo- 
sal in the context of real networks. To this end, we 
discuss flow control algorithms in Section 3, and 
then, in Section 4, we present simulation data com- 
paring several combinations of flow control and 
queueing algorithms on six benchmark networks. 
Section 5 contains an overview of our results, a dis- 
cussion of other proposed queueing algorithms, and 
an analysis of some criticisms of fair queueing. 

In circuit switched networks where there is explicit 
buffer reservation and uniform packet sizes, it has 
been established that round robin service discip- 
lines allocate bandwidth fairly [Hah86, Kat871. 
Recently Morgan [Mor891 has examined the role 
such queueing algorithms play in controlling 
congestion in circuit switched networks; while his 
application context is quite different from ours, his 
conclusions are qualitatively similar. In other 
related work, the DATAKIT’” queueing algorithm 

combines round robin service and FIFO priority 
service, and has been analyzed extensively [Lo87, 
Fra841. Also, Luan and Lucantoni present a 
different form of bandwidth management policy for 
circuit switched networks [Lua88]. 

Since the completion of this work, we have learned 
of a similar Virtual Clock algorithm for gateway 
resource allocation proposed by Zhang [Zha891. 
Furthermore, Heybey and Davin [Hey891 have 
simulated a simplified version of our fair queueing 
algorithm. 

2. Fair Queueing 

2.1. Motivation What are the requirements for a 
queueing algorithm that will allow source flow con- 
trol algorithms to provide adequate congestion con- 
trol even in the presence of ill-behaved sources? 
We start with Nagle’s observation that such queue- 
ing algorithms must provide protection, so that ill- 
behaved sources can only have a limited negative 
impact on well behaved sources. Allocating 
bandwidth and buffer space in a fair manner, to be 
defined later, automatically ensures that ill- 
behaved sources can get no more than their fair 
share. This led us to adopt, as our central design 
consideration, the requirement that the queueing 
algorithm allocate bandwidth and buffer space 
fairly. Ability to control the promptness, or delay, 
allocation somewhat independently of the 
bandwidth and buffer allocation is also desirable. 
Finally, we require that the gateway should pro- 
vide service that, at least on average, does not 
depend discontinuously on a packet’s time of arrival 
(this continuity condition will become clearer in 
Section .2.2). This requirement attempts to prevent 
the efficiency of source implementations from being 
overly sensitive to timing details (timers are the 
Bermuda Triangle of flow control algorithms). 
Nagle’s proposal does not satisfy these require- 
ments. The most obvious flaw is its lack of con- 
sideration of packet lengths. A source using long 
packets gets more bandwidth than one using short 
packets, so bandwidth is not allocated fairly. Also. 
the proposal has no explicit promptness allocation 
other than that provided by the round-robin service 
discipline. In addition, the static round robin ord- 
ering violates the continuity requirement. In the 
following section we attempt to correct these 
defects. 

In stating our requirements for queueing algo- 
rithms, we have left the term fair undefined. The 
term fair has a clear colloquial meaning, but it also 
has a technical definition (actually several, but only 
one is considered here). Consider, for example, the 
allocation of a single resource among N users. 
Assume there is an amount pt,tal of this resource 
and that each of the users requests an amount p, 
and, under a particular allocation, receives an 
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amount p,. What is a fair allocation? The max- 
min fairness criterion [Hah86, Gaf64, DECS7d] 
states that an allocation is fair if (1) no user 
receives more than its request, (2) no other alloca- 
tion scheme satisfying condition 1 has a higher 
minimum allocation, and (3) condition 2 remains 
recursively true as we remove the minimal user 
and reduce the total resource accordingly, 
~~~~~~~~~~~~~ - pm;,. This condition reduces to 
~1~ =MIN(pfat,,pJ in the simple example,Nwith pfaairr 

the fu;r shure, being set so that plotal = 2 p,. This 
1=1 

concept of fairness easily generalizes to the multi- 
ple resource case [DEC87d]. Note that implicit in 
the max-min definition of fairness is the assump- 
tion that the users have equal rights to the 
resource. 

In our communication application, the bandwidth 
and buffer demands are clearly represented by the 
packets that arrive at the gateway. (Demands for 
promptness are not explicitly communicated, and 
we will return to this issue later.) However, it is 
not clear what constitutes a user. The user associ- 
ated with a packet could refer to the source of the 
packet, the destination, the source-destination pair, 
or even refer to an individual process running on a 
source host. Each of these definitions has limita- 
tions. Allocation per source unnaturally restricts 
sources such as file servers which typically consume 
considerable bandwidth. Ideally the gateways 
could know that some sources deserve more 
bandwidth than others, but there is no adequate 
mechanism for establishing that knowledge in 
today’s networks. Allocation per receiver allows a 
receiver’s useful incoming bandwidth to be reduced 
by a broken or malicious source sending unwanted 
packets to it. Allocation per process on a host 
encourages human users to start several processes 
communicating simultaneously, thereby avoiding 
the original intent of fair allocation. Allocation per 
source-destination pair allows a malicious source to 
consume an unlimited amount of bandwidth by 
sending many packets all to different destinations. 
While this does not allow the malicious source to do 
useful work, it can prevent other sources from 
obtaining sufficient bandwidth. 

Overall, allocation on the basis of source- 
destination pairs, or conversations, seems the best 
tradeoff between security and efficiency and will be 
used here. However, our treatment will apply to 
any of these interpretations of user. With our 
requirements for an adequate queueing algorithm, 
coupled with our definitions of fairness and user, we 
now turn to the description of our algorithm. 

2.2. Definition of algorithm It is simple to allo- 
cate buffer space fairly by dropping packets, when 
necessary, from the conversation with the largest 
queue. Allocating bandwidth fairly is less straight- 
forward. Pure round-robin service provides a fair 

allocation of packets-sent but fails to guarantee a 
fair allocation of bandwidth because of variations in 
packet sizes. To see how this unfairness can be 
avoided, we first consider a hypothetical service dis- 
cipline where transmission occurs in a bit-by-bit 
round robin (BR) fashion (as in a head-of-queue 
processor sharing discipline). This service discip- 
line allocates bandwidth fairly since at every 
instant in time each conversation is receiving its 
fair share. Let R(t) denote the number of rounds 
made in the round-robin service discipline up to 
time t (R(t) is a continuous function, with the frac- 
tional part indicating partially completed rounds>. 
Let N,,(t) denote the number of active conversa- 
tions, i.e. those tha. have bits in their queue at 

dK =--IL time t. Then, St -, where p is the 
N”,(t) 

linespeed of the gateway’s-outgoing line (we will, 
for convenience, work in units such that II= 1). A 
packet of size P whose first bit gets serviced at time 
to will have its last bit serviced P rounds later, at 
time t such that R(t)=R(t,)+P. Let tta be the 
time that packet i belonging to conversation a 
arrives at the gateway, and define the numbers S;“ 
and F,’ as the values of R(t) when the packet 
started and finished service. With P,” denoting the 
size of the packet, the following relations hold: 
F, a=StQfPLa and S,“=MAX(F,-,Q, R(t,“)). Since 
R(t) is a strictly monotonically increasing function 
whenever there are bits at the gateway, the order- 
ing of the FLU values is the same as the ordering of 
the finishing times of the various packets in the BR 
discipline. 

Sending packets in a bit-by-bit round robin fashion, 
while satisfying our requirements for an adequate 
queueing algorithm, is obviously unrealistic. We 
hope to emulate this impractical algorithm by a 
practical packet-by-packet transmission scheme. 
Note that the functions R(t) and N,,(,t) and the 
quantities S,” and F,a depend only on the packet 
arrival times tia and not on the actual packet 
transmission times, as long as we define a conversa- 
tion to be active whenever R(t) SF,= for 
i =MAX(j jt;“‘t). We are thus free to use these 
quantities in defining our packet-by-packet 
transmission algorithm. A natural way to emulate 
the bit-by-bit round-robin algorithm is to let the 
quantities Fla define the sending order of the pack- 
ets. Our packet-by-packet transmission algorithm 
is simply defined by the rule that, whenever a 
packet finishes transmission, the next packet sent 
is the one with the smallest value of F,‘. In a 
preemptive version of this algorithm, newly arriv- 
ing packets whose finishing number Fja is smaller 
than that of the packet currently in transmission 
preempt the transmitting packet. For practical rea- 
sons, we have implemented the nonpreemptive ver- 
sion, but the preemptive algorithm (with resump- 
tive service) is more tractable analytically. Clearly 
the preemptive and nonpreemptive packetized algo- 
rithms do not give the same instantaneous 
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bandwidth allocation as the BR version. However, 
for each conversation the total bits sent at a given 
time by these three algorithms are always within 
P mex of each other, where P,,, is the maximum 
packet size (this emulation discrepancy bound was 
proved by Greenberg and Madras [Gree89]). Thus, 
over sufficiently long conversations, the packetized 
algorithms asymptotically approach the fair 
bandwidth allocation of the BR scheme. 

Recall that the user’s request for promptness is not 
made explicit. (The IP [Pos811 protocol does have a 
field for type-of-service, but not enough applications 
make intelligent use of this option to render it a 
useful hint.) Consequently, promptness allocation 
must be based solely on data already available at 
the gateway. One such allocation strategy is to give 
more promptness (less delay) to users who utilize 
less than their fair share of bandwidth. Separating 
the promptness allocation from the bandwidth allo- 
cation can be accomplished by introducing a nonne- 
gative parameter 6, and defining a new quantity, 
the bid Bia, via B~a=P;a+MAX(F,-,a, R(ti”)-6). 
The quantities R(t), N,,(t), FL’, and SLa remain as 
before, but now the sending order is determined by 
the B’s, not the F’s. The asymptotic bandwidth 
allocation is independent of 6, since the F’s control 
the bandwidth allocation, but the algorithm gives 
slightly faster service to packets that arrive at an 
inactive conversation, The parameter 6 controls 
the extent of this additional promptness. Note that 
the bid Bia is continuous in tLa, so that the con- 
tinuity requirement mentioned in Section 2.1 is 
met. 

The role of this term 6 can be seen more clearly by 
considering the two extreme cases 6 =O and S =a. 
If an arriving packet has R(t,a)=F, -iu, then the 
conversation a is active (i.e. the corresponding 
conversation in the BR algorithm would have bits 
in the queue). In this case, the value of S is 
irrelevant and the bid number depends only on the 
finishing number of the previous packet. However, 
if R(tLa)>F,-ia, so that the a conversation is inac- 
tive, the two cases are quite different. With S=O, 
the bid number is given by Bia=P,a+R(t,a) and is 
completely independent of the previous history of 
user a. With S=w, the bid number is 
B,“=P,“+F,-,a and depends only the previous 
packet’s finishing number, no matter how many 
rounds ago. For intermediate values of S, schedul- 
ing decisions for packets arriving at inactive 
conversations depends on the previous packet’s 
finishing round as long as it wasn’t too long ago, 
and 6 controls how far back this dependence goes. 

Recall that when the queue is full and a new 
packet arrives, the last packet from the source 
currently using the most buffer space is dropped. 
We have chosen to leave the quantities FLU and Sia 
unchanged when we drop a packet. This provides a 
small penalty for ill-behaved hosts, in that they 
will be charged for throughput that, because of 

their own poor flow control, they could not use. 

2.3. Properties of Fair Queueing The desired 
bandwidth and buffer allocations are completely 
specified by the definition of fairness, and we have 
demonstrated that our algorithm achieves those 
goals. However, we have not been able to charac- 
terize the promptness allocation for an arbitrary 
arrival stream of packets. To obtain some quantita- 
tive results on the promptness, or delay, perfor- 
mance of a single FQ gateway, we consider a very 
restricted class of arrival streams in which there 
are only two types of sources. There are FTP-like 
file transfer sources, which always have ready pack- 
ets and transmit them whenever permitted by the 
source flow control (which, for simplicity, is taken 
to be sliding window flow control), and there are 
Telnet-like interactive sources, which produce pack- 
ets intermittently according to some unspecified 
generation process. What are the quantities of 
interest? An FTP source is typically transferring a 
large file, so the quantity of interest is the transfer 
time of the file, which for asymptotically large files 
depends only on the bandwidth allocation. Given 
the configuration of sources this bandwidth alloca- 
tion can be computed a priori by using the fairness 
property of FQ gateways. The interesting quantity 
for Telnet sources is the average delay of each 
packet, and it is for this quantity that we now pro- 
vide a rather limited result. 

Consider a single FQ gateway with N FTP sources 
sending packets of size PF, and allow a single 
packet of size PT from a Telnet source to arrive at 
the gateway at time t. It will be assigned a bid 
number B =R(t) +P,- 6; thus, the dependence of 
the queueing delay on the quantities Pr and 6 is 
only through the combination PT - 8. We will 
denote the queueing delay of this packet by q(t), 
which is a periodic function with period NP,T. We 
are interested in the average queueing delay A 

.-VP F 
BE1 J cpctkit 

NPF n 

The finishing numbers F,’ for the N FTP’s can be 
expressed, after perhaps renumbering the packets, 
by FLa=(ifla)PF where the l’s obey 0~1~<1. The 
queueing delay of the Telnet packet depends on the 
configuration of Z’s whenever P,<P,. One can 
show that the delay is bounded by the extremal 
cases of la=0 for all a and la= a/N for 
a=O,l,..., N-l. The delay values for these 
extremal cases are straightforward to calculate; for 
the sake of brevity we omit the derivation and 
merely display the result below. The average 
queueing delay is given by A=A(Pr-6) where the 
function A(P), the delay with 6 =O, is defined below 
(with integer k and small constant E, OIc< 1, 
defined via PT=PF(k+~)/N). 
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Now consider a general Telnet packet generation 
process (ignoring the effects of flow control) and 
characterize this generation process by the function 
Ds(Pr) which denotes the queueing delay of the 
Telnet source when it is the sole source at the gate- 
way. In the BR algorithm, the queueing delay of 
the Telnet source in the presence of N FTP sources 
is merely D,((N + 12’~). For the packetized preemp- 
tive algorithm with S =O, we can express the 
queueing delay in the presence of N FTP sources, 
call it D#r), in terms of Ds via the relation 
(averaging over all relative synchronizations 
between the FTP’s and the Telnet): 

D,vPr)=Do((N+ lU’r)+A(Pr) 

where the term A(Pr) reflects the extra delay 
incurred when emulating the BR algorithm by the 
preemptive packetized algorithm. 

For nonzero values 6, the generation process must 
be further characterized by the quantity ZU(P~,t) 
which, in a system where the Telnet is the sole 
source, is the probability that a packet arrives to a 
queue which has been idle for time t. The delay is 
given by, 

where the last term represents the reduction in 
delay due the the nonzero 6. These expressions for 
DN, which were derived for the preemptive case, 
are also valid for the nonpreemptive algorithm 
when PT 2 PF, 

What do these forbidding formulae mean? Con- 
sider, for concreteness, a Poisson arrival process 
with arrival rate h, packet sizes PT = PF =P, a 
linespeed p= 1, and an FTP synchronization 

described by Z”=a/N for a =O,l,...,N-1. Define p 
to be the average bandwidth of the stream, meas- 
ured relative to the fair share of the Telnet: 
p = XP(iV+l). Then, for the nonpreemptive algo- 
rithm, 

I I 1-exp - (N+l) 
--%fN($,$(1- +,, III 

This is the throughput/delay curve the FQ gateway 
offers the Poisson Telnet source (the formulae for 
different FTP synchronizations are substantially 
more complicated, but have the same qualitative 
behavior). This can be contrasted with that offered 
by the FCFS gateway, although the FCFS results 
depend in detail on the flow control used by the 
FTP sources and on the surrounding network 
environment. Assume that all other communica- 
tions speeds are ‘infinitely fast in relation to the 
outgoing linespeed of the gateway, and that the 
FTP’s all have window size W, so there are always 
NW FTP packets in the queue or in transmission. 
Figure 1 shows the throughput/delay curves for an 
FCFS gateway, along with those for a FQ gateway 
with 6 =0 and 6 =P. For p-+0, FCFS gives a large 
queueing delay of (NW - #)P, whereas FQ gives a 
queueing delay of NP/Z for 6 =0 and P/2 for S =P. 
This ability to provide a lower delay to lower 
throughput sources, completely independent of the 
window sizes of the FTP’s, is one of the most impor- 
tant features of fair queueing. Note also that the 
FQ queueing delay diverges as p+l, reflecting FQ’s 
insistence that no conversation gets more than its 
fair share. In contrast, the FCFS curve remains 
finite for all p < (N + 1). showing that an ill-behaved 
source can consume an arbitrarily large fraction of 
the bandwidth. 

What happens in a network of FQ gateways? 
There are few results here, but Hahne [Hah861 has 
shown that for strict round robin service gateways 
and only FTP sources there is fair allocation of 
bandwidth (in the multiple resource sense) when 
the window sizes are sufficiently large. She also 
provides examples where insufficient window sizes 
(but much larger than the communication path) 
result in unfair allocations. We believe, but have 
been unable to prove, that both of these properties 
hold for our fair queueing scheme. 

3. Flow Control Algorithms 

Flow control algorithms are both the benchmarks 
against which the congestion control properties of 
fair queueing are measured, and also the environ- 
ment in which FQ gateways will operate. We 
already know that, when combined with FCFS 
gateways, these flow control algorithms all suffer 
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Figure 1: Delay vs. Throughput 
This graph describes the queueing delay 
of a single Telnet source with Poisson 
generation process of strength h, sending 
packets through a gateway with three 
FTP conversations. The packet sizes are 
PF =PT =P, the throughput is measured 
relative to the Telnet’s fair share, 
pz4XP/p where p is the linespeed. The 
delay is measured in units of P/p. The 
FQ algorithm is nonpreemptive, and the 
FCFS case always has 15 FTP packets in 
the queue. 

from the fundamental problem of vulnerability to 
ill-behaving sources. Also, there is no mechanism 
for separating the promptness allocation from the 
bandwidth and buffer allocation. The remaining 
question is then how fairly do these flow control 
algorithms allocate bandwidth. Before proceeding, 
note that there are really two distinct problems in 
controlling congestion. Congestion recouery allows 
a system to recover from a badly congested state, 
whereas congestion avoidance attempts to prevent 
the congestion from occurring. In this paper, we are 
focusing on congestion avoidance and will not dis- 
cuss congestion recooery mechanisms at length. 

A generic version of source flow control, as imple- 
mented in XNS’s SPP [XerSll or in TCP [USCSl], 
has two parts. There is a timeout mechanism, 
which provides for congestion recovery, whereby 
packets that have not been acknowledged before 
the timeout period are retransmitted (and a new 
timeout period set). The timeout periods are given 
by Prtt where typically j3 -2 and rtt is the 
exponentially averaged estimate of the round trip 
time (the rtt estimate for retransmitted packets is 
the time from their first transmission to their ack- 

nowledgement). The congestion avoidance part of 
the algorithm is sliding window flow control, with 
some set window size. This algorithm has a very 
narrow range of validity, in that it avoids conges- 
tion if the window sizes are small enough, and pro- 
vides efficient service if the windows are large 
enough, but cannot respond adequately if either of 
these conditions is violated. 

The second generation of flow control algorithms, 
exemplified by Jacobson and Karels’ (JK) modified 
TCP [Jac88a] and the original DECbit proposal 
[DEC87a-c3, are descendants of the above generic 
algorithm with the added feature that the window 
size is allowed to respond dynamically in response 
to network congestion (JK also has, among other 
changes, substantial modifications to the timeout 
calculation [Jac88a,b, Kar871). The algorithms use 
different signals for congestion; JK uses timeouts 
whereas DECbit uses a header bit which is set by 
the gateway on all packets whenever the average 
queue length is greater than one. These mechan- 
isms allocate window sizes fairly, but the relation 
Throughput = WindowlRoundTrip implies that 
conversations with different paths receive different 
bandwidths. 

The third generation of flow control algorithms are 
similar to the second, except that now the conges- 
tion signals are sent selectively. For instance, the 
selective DECbit proposal [DEC87d] has the gate- 
way measure the flows of the various conversations 
and only send congestion signals to those users who 
are using more than their fair share of bandwidth. 
This corrects the previous unfairness for sources 
using different paths (see [DEC87dl and section 4), 
and appears to offer reasonably fair and efficient 
congestion control in many networks. The DEC 
algorithm controls the delay by attempting to keep 
the average queue size close to one. However, it 
does not allow individual users to make different 
delay/throughput tradeoffs; the collective tradeoff is 
set by the gateway. 

4. Simulations 

In this section we compare the various congestion 
control mechanisms, and try to illustrate the inter- 
play between the queueing and flow control algo- 
rithms. We simulated these algorithms at the 
packet level using a network simulator built on the 
Nest network simulation tool [Nes88]. In order to 
compare the FQ and FCFS gateway algorithms in a 
variety of settings, we selected several different 
flow control algorithms; the generic one described 
above, JK flow control, and the selective DECbit 
algorithm. To enable DECbit flow control to 
operate with FQ gateways, we developed a bit- 
setting FQ algorithm in which the congestion bits 
are set whenever the source’s queue length is 
greater than + of its fair share of buffer space (note 
that this is a much simpler bit-setting algorithm 
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than the DEC scheme, which involves complicated 
averages; however, the choice of Q is completely ad 
hoc). The Jacobson/Karels flow control algorithm is 
defined by the 4.3bsd TCP implementation. This 
code deals with many issues unrelated to conges- 
tion control. Rather than using that code directly in 
our simulations, we have chosen to model the JK 
algorithm by adding many of the congestion control 
ideas found in that code, such as adjustable win- 
dows, better timeout calculations, and fast 
retransmit to our generic flow control algorithm. 
The various cases of test algorithms are labeled in 
table 1. 

Label 1 Flow Control 1 Queueing Algorithm 

G/FCFS 1 Generic FCFS 

G/FQ Generic FQ 
JK/FCFS 1 JK FCFS R 

JKlFQ / JK FQ 
DEUDEC 1 DECbit 1 Selective DECbit 

11 DECiFQbit / DECbit FQ with bit setting 

Table 1: Algorithm Combinations 

Rather than test this set of algorithms on a single 
representc~tive network and load, we chose to define 
a set of benchmark scenarios, each of which, while 
somewhat unrealistic in itself, serves to illuminate 
a different facet of congestion control. The load on 
the network consists of a set of Telnet and FTP 
conversations. The Telnet sources generate 40 byte 
packets by a Poisson process with a mean idter- 
packet interval of 5 seconds. The FTP’s have an 
infinite supply of 1000 byte packets that are sent as 
fast as flow control allows. Both FTP’s and Telnet’s 
have their maximum window size set to 5, and the 
acknowledgement (ACK) packets sent back from 
the receiving sink are 40 bytes. (The small size of 
Telnet packets relative to the FTP packets makes 
the effect of S insignificant, so the FQ algorithm 
was implemented with S =O). The gateways have 
finite buffers which, for convenience, are measured 
in packets rather than bytes. The system was 
allowed to stabilize for the first 1500 secotids, and 
then data was collected over the next 500 second 
interval. For each scenario, there is a figure depict- 
ing the corresponding network layout, and a table 
containing the data. There are four performance 
measures for each source: total throughput (number 
of packets reaching destination), average round trip 
time of the packets, the number of packet 
retransmissions, and number of dropped packets. 
We do not include confidence intervals for the data, 
but repetitions of the simulations have consistently 
produced results that lead to the same qualitative 
conclusions. 

We first considered several single-gateway net- 
works. The first scenario has two FTP sources and 
two Telnet sources sending to a sink through a sin- 
gle bottleneck gateway. Note that, in this under- 

Buffer Size: 40 

c- 56kbps 

0 S 

e%‘P 1 Telnet 1 
I I I-. ! I I I Quantity Policy 1 2 3 4 

Retrans- 

mitted 

Packets 

Dropped 

Packets 

- 
EUDEC - 

Scenario 1: Underloaded Gateway 

loaded case, all of the algorithms provide fair 
bandwidth allocation, but the cases with FQ pro- 
vide much lower Telnet delay than those with 
FCFS. The selective DECbit gives an intermediate 
value for the Telnet delay, since the flow control is 
designed to keep the average queue length small. 

Scenario 2 involves 6 FTP sources and 2 Telnet 
sources again sending through a single gateway. 
The gateway, with a buffer size of only 15, is sub- 
stantially overloaded. This scenario probes the 
behavior of the algorithms in the presence of severe 
congestion. 

When FCFS gateways are paired with generic flow 
control, the sources segregate into winners, who 
consume a large amount of bandwidth, and losers, 
who consume very little. This phenomenon 
develops because the queue is almost always full. 
The ACK packets received by the winners serve as 
a signal that a buffer space has just been freed, so 
their packets are rarely dropped. The losers are 
usually retransmitting, at essentially random 
times, and thus have most. of their packets dropped. 
This analysis is due to Jacobson [JacMbl, and the 
segregation effect was first, pointed out to us in this 
context by Sturgis [Stu88]. The combination of JK 
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Scenario 2: Overloaded Gateway 

flow control with FCFS gateways produces fair 
bandwidth allocation among the FTP sources, but 
the Telnet sources are almost completely shut out. 
This is because the JK algorithm ensures that the 
gateway’s buffer is usually full, causing most of the 
Telnet packets to be dropped. 

When generic flow control is combined with FQ, the 
strict segregation disappears. However, the 
bandwidth allocation is still rather uneven, and the 
useful bandwidth (rate of nonduplicate packets! is 
12% below optimal. Both of these facts are due to 
the inflexibility of the generic flow control, which is 
unable to reduce its load enough to prevent dropped 
packets. This not only necessitates retransmissions 
but also, because of the crudeness of the timeout 
congestion recovery mechanism, prevents FTP’s 
from using their fair share of bandwidth. In con- 
trast, JK flow control combined with FQ produced 
reasonably fair and efficient allocation of the 
bandwidth. The lesson here is that fair queueing 
gateways by themselves do not provide adequate 
congestion control; they must be combined with 
intelligent flow control algorithms at the sources. 

The selective DECbit algorithm manages to keep 
the bandwidth allocation perfectly fair, and there 
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Scenario 3: Ill-Behaved Source 

are no dropped packets or retransmissions. The 
addition of FQ to the DECbit algorithm retains the 
fair bandwidth allocation and, in addition, lowers 
the Telnet delay by a factor of 9. Thus, for each of 
the three flow control algorithms, replacing FCFS 
gateways with FQ gateways generally improved the 
FTP performance and dramatically improved the 
Telnet performance of this extremely overloaded 
network. 

In scenario 3 there is a single FTP and a single 
Telnet competing with an ill-behaved source. This 
ill-behaved source has no flow control and is send- 
ing packets at twice the rate of the gateway’s out- 
going line. With FCFS, the FTP and Telnet are 
essentially shut out by the ill-behaved source. 
With FQ, they obtain their fair share of bandwidth. 
Moreover, the ill-behaved host gets much less than 
its fair share, since when it has its packets dropped 
it is still charged for that throughput. Thus, FQ 
gateways are effective firewalls that can protect 
users, and the rest of the network, from being dam- 
aged by ill-behaved sources. 

We have argued for the importance of considering a 
heterogeneous set of flow control mechanisms. 



Bufh Size: 15 

Scenario 4: Mixed Protocols 

Scenario 4 has single gateway with two pairs of 
FTP sources, employing generic and JK flow control 
respectively. With a FCFS gateway, the generic 
flow controlled pair has higher throughput than the 
JK pair. However, with a FQ gateway, the situa- 
tion is reversed (and the generic sources have 
segregated). Note that the FQ gateway has pro- 
vided incentive for sources to implement JK or 
some other intelligent flow control, whereas the 
FCFS gateway makes such a move sacrificial. 

Certainly not all of the relevant behavior of these 
algorithms can be gleaned from single gateway net- 
works. Scenario 5 has a multinode network with 
four FTP sources using different network paths. 
Three of the sources have short nonoverlapping 
conversations and the fourth source has a long path 
that intersects each of the short paths. When FCFS 
gateways are used with generic or JK flow control, 
the conversation with the long path receives less 
than 60% of its fair share. With FQ gateways, it 
receives its full fair share. Furthermore, the selec- 
tive DECbit algorithm, in keeping the average 
queue size small, wastes roughly 10% of the 
bandwidth (and the conversation with the long 
path, which should be helped by any attempt at 
fairness, ends up with less bandwidth than in the 
generic/FCFS case). 

Scenario 6 involves a more complicated network, 
combining lines of several different bandwidths. 
None of the gateways are overloaded so all combi- 

F Q 4 
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Packets 
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Scenario 5: Multihop Path 

nations of flow control and queueing algorithms 
function smoothly, With FCFS, sources 4 and 8 are 
not limited by the available bandwidth, but by the 
delay their ACK packets incur waiting behind FTP 
packets. The total throughput increases when the 
FQ gateways are used because the small ACK 
packets are given priority, 

For the sake of clarity and brevity, we have 
presented a fairly clean and uncomplicated view of 
network dynamics. We want to emphasize that 
there are many other scenarios, not presented here, 
where the simulation results are confusing and 
apparently involve complicated dynamic effects. 
These results do not call into question the efficacy 
and desirability of fair queueing, but they do chal- 
lenge our understanding of the collective behavior 
of flow control algorithms in networks. 

5. Discussion 

In an FCFS gateway, the queueing delay of packets 
is, on average, uniform across all sources and 
directly proportional to the total queue size. Thus. 
achieving ambitious performance goals, such as low 
delay for Telnet-like sources, or even mundane 
ones, such as avoiding dropped packets, requires 
coordination among all sources to control the queue 
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Scenario 6: Complicated Network 

size. Having to rely on source flow control algo- 
rithms to solve this control problem, which is 
extremely difficult in a maximally cooperative 
environment and impossible in a noncooperative 
one, merely reflects the inability of FCFS gateways 
to distinguish between users and to allocate 
bandwidth, promptness, and buffer space indepen- 
dently. 

In the design of the fair queueing algorithm, we 
have attempted to address these issues. The algo- 
rithm does allocate the three quantities separately. 
Moreover, the promptness allocation is not uniform 
across users and is somewhat tunable through the 
parameter 6. Most importantly, fair queueing 
creates a firewall that protects well-behaved 
sources from their uncouth brethren. Not only does 
this allow the current generation of flow control 
algorithms to function more effectively, but it 

creates an environment where users are rewarded 
for devising more sophisticated and responsive algo- 
rithms. The game-theoretic issue first raised by 
Nagle, that one must change the rules of the 
gateway’s game so that good source behavior is 
encouraged, is crucial in the design of gateway 
algorithms. A formal game-theoretic analysis of a 
simple gateway model (an exponential server with 
N Poisson sources) suggests that fair queueing 
algorithms make self-optimizing source behavior 
result in fair, protective, nonmanipulable, and 
stable networks; in fact, they may be the only rea- 
sonable queueing algorithms to do so [SheBgal. 

Our calculations show that the fair queueing algo- 
rithm is able to deliver low delay to sources using 
less than their fair share of bandwidth, and that 
this delay is insensitive to the window sizes being 
used by the FTP sources. Furthermore, simulations 
indicate that, when combined with currently avail- 
able flow control algorithms, FQ delivers satisfac- 
tory congestion control in a wide variety of network 
scenarios. The combination of FQ gateways and 
DECbit flow control was particularly effective. 
However, these limited tests are in no way con- 
clusive. We hope, in the future, to investigate the 
performance of FQ under more realistic load condi- 
tions, on larger networks, and interacting with 
routing algorithms. Also, we hope to explore new 
source flow control algorithms that are more 
attuned to the properties of FQ gateways. 

In this paper we have compared our fair queueing 
algorithm with only the standard first-come-first- 
serve queueing algorithm. We know of three other 
widely known queueing algorithm proposals. The 
first two were not intended as a general purpose 
congestion control algorithms. Prue and Postel 
[Pru871 have proposed a type-of-service priority 
queueing algorithm, but allocation is not made on a 
user-by-user basis, so fairness issues are not 
addressed. There is also the Fuzzball selective 
preemption algorithm [Mi1187,88] whereby the gate- 
ways allocate buffers fairly (on a source basis, over 
all of the gateway’s outgoing buffers). This is very 
similar to our buffer allocation policy, and so can be 
considered a subset of our FQ algorithm. The Fuzz- 
balls also had a form of type-of-service priority 
queueing but, as with the Prue and Postel algo- 
rithm, allocations were not made on a user-by-user 
basis. The third policy is the Random-Dropping 
(RD) buffer management policy in which, when the 
buffer is overloaded, the packet to be dropped is 
chosen at random CPer89, JacBBabl. This algorithm 
greatly alleviates the problem of segregation. How- 
ever, it is now generally agreed that the RD algo- 
rithm does not provide fair bandwidth allocation, is 
vulnerable to ill-behaved sources, and is unable to 
provide reduced delay to conversations using less 
than their fair share of bandwidth [She89b, Zha89. 
Has891. 
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There are two objections that have been raised in 
conjunction with fair queueing. The first is that 
some source-destination pairs, such as file server or 
mail server pairs, need more than their fair share 
of bandwidth. There are several responses to this. 
First, FQ is no worse than the status quo. FCFS 
gateways already limit well-behaved hosts, using 
the same path and having only one stream per 
source destination pair, to their fair share of 
bandwidth. Some current bandwidth hogs achieve 
their desired level of service by opening up many 
streams, since FCFS gateways implicitly define 
streams as the unit of user. Note that that there 
are no controls over this mechanism of gaining 
more bandwidth, leaving the network vulnerable to 
abuse. If desired, however, this same trick can be 
introduced into fair queueing by merely changing 
the notion of user. This would violate layering, 
which is admittedly a serious drawback. A better 
approach is to confront the issue of allocation 
directly by generalizing the algorithm to allow for 
arbitrary bandwidth priorities. Assign each pair a 
number n, which represents how many queue slots 
that conversation gets in the bit-by-bit round robin. 
The new relationships are Nnc=x:na with the sum 
over all active conversations, and P,” is set to be 
l/n, times the true packet length. Of course, the 
truly vexing problem is the politics of assigning the 
priorities na, Note that while we have described an 
extension that provides for different relative shares 
of bandwidth, one could also define these shares as 
absolute fractions of the bandwidth of the outgoing 
line. This would guarantee a minimum level of 
service for these sources, and is very similar to the 
Virtual Clock algorithm of Zhang [Zha89]. 

The other objection is that fair queueing requires 
the gateways to be smart and fast. There is techno- 
logical question of whether or not one can build FQ 
gateways that can match the bandwidth of fibers. If 
so, are these gateways economically feasible? We 
have no answers to these questions, and they do 
indeed seem to hold the key to the future of fair 
queueing. 
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