
Rate Controlled Servers for Very High-Speed Networks

C. R. Kalmanek and H. Kanakia

AT&T Bell Laboratories
Murray Hill, NJ 07974

S. Keshav

University of California, Berkeley
Berkeley, CA 94720

ABSTRACT

Future high-speed networks are expected to carry traffic
with a wide range of performance requirements. We
describe two queue service disciplines, rate-based
scheduling and hierarchical round robin scheduling,
that allow some connections to receive guaranteed rate
and jitter performance, while others receive best effort
service. Rate-based scheduling is designed for fast
packet networks, while hierarchical round robin is an
extension of round robin scheduling suitable for use in
networks based on the Asynchronous Transfer Mode
(ATM) being defined in CCITT. Both schemes are
feasible at rates of one Gigabit/sec. The schemes allow
strict bounds on the buffer space required for rate
controlled connections and can provide efficient
utilization of transmission bandwidth.

Introduction
Future high-speed networks are expected to carry

traffic with a wide range of performance requirements.
A classic tradeoff in network design is between
providing quality of service guarantees on one hand,
and achieving efficient utilization of the transmission
bandwidth on the other [TYM]. Synchronous circuit
switching can provide guaranteed bandwidth and
bounds on jitter at the expense of underutilizing
bandwidth, whereas datagram networks can optimally
utilize bandwidth but cannot provide strong
performance guarantees.

In integrated networks, the design problem is
more difficult because different classes of traffic have
dramatically different performance requirements,
expressed in terms of the desired bandwidth, latency,
and jitter.1 Real-time video requires high bandwidth,
low latency and low jitter. Voice traffic requires low
bandwidth, low latency and low jitter. Computer traffic
spans a wide range of requirements, from applications
requiring low latency for small transfers to those which
are quite insensitive to the bandwidth, latency, and
jitter achieved. In addition, the operating range of
future networks will be very large: we expect trunk
speeds from 64 Kb/sec to over 1 Gb/sec. The burden on
1 Defined below.

the network designer is that where there is contention
for limited transmission bandwidth or buffer space,
control mechanisms must ensure that each traffic class
meets its performance objectives.

Rate Control
We propose to separate the virtual circuits or

connections provided by the network into two
categories: rate controlled connections and best effort
connections. In the literature, the use of the term "rate
control" is not standardized. We use the term "rate
control" to mean controlling both the rate and jitter of a
connection. At call setup time, a user requesting a rate
controlled connection specifies a desired average service
rate and jitter bound. If the call is accepted, the
network provides guaranteed bandwidth and jitter
bounds, and there may be mechanisms for renegotiation
if the network cannot provide a suitable connection.
Best effort connections, on the other hand, do not imply
(strong) performance guarantees.

As in [ZHA], the rate of a connection is defined
over an averaging interval: the rate is determined by
dividing the total number of bytes transmitted during
an averaging interval by the averaging interval. The
value of the averaging interval will determine the
allowed burstiness at the source. If the traffic source
uses a large averaging interval, the network must have
sufficient buffer space at the first node to accomodate a
burst.

Our notion of rate control also specifies a bound
on the jitter introduced by a server. We first present an
intuitive definition of jitter in order to contrast it with
the definition that we will use. A server is assumed to
introduce delay as packets pass through it: the delay is
modeled as having a constant component and a variable
component. The jitter introduced by a server is
computed by measuring the packet departure time from
the server and subtracting the constant component of
the delay from the departure time for each packet to
give the normalized departure time. The jitter for a
connection is the maximum difference over all packets
between the normalized departure time and the arrival
time at the server. This definition is useful in analytic
modeling of the server.



Page 2 of 9 Kalmanek, Kanakia and Keshav

We propose an alternative definition of jitter that
we believe is more relevant than the above definition in
systems design. Jitter is defined to be a short term
average rate, where the averaging interval used in
computing the jitter is different from the averaging
interval used in computing the rate of a connection. We
refer to the two averaging intervals as the rate
averaging interval, and the jitter averaging interval.
Specifically, the jitter is the maximum number of
packets transmitted by the server in the jitter averaging
interval. This definition captures a useful property of
our rate controlled servers, namely that they smooth the
output stream. In principle, either averaging interval
can range from the time to send one packet to the total
connection time. In practice, the rate averaging
interval might be on the order of several round trip
times. The jitter averaging interval would be smaller
and would depend on the size of the receive buffer at the
destination.

Two alternative measures of quality for real-time
streams have been suggested in recent work [FER],
[LL]. These two alternative measures are the source-
to-destination delay bound for a packet and the variance
in inter-packet gaps observed at a receiver. In
transporting real-time video or voice, bounds on
absolute delay for a packet are not sufficient unless the
jitter is also controlled. The absolute delay time for a
packet in transit seems important mainly for
applications such as real-time feedback and control
systems. The variance in inter-packet gaps would affect
quality only when the receiver equipment does not have
the intelligence and the memory required to smooth out
the variation in inter-packet gaps. In an era of
inexpensive microprocessors and low cost memory
devices, it seems likely that receiver equipment would
be designed with the capability to smooth interpacket
packet gaps for a burst of packets. The real factor
affecting the cost would be the length of the burst that
has to be stored before decoding the data, and it is this
burst length which is captured in our definition of jitter.
The distinction between our definition of rate control
and these alternative definitions is important since we
have found that neither the bounds on the delay in a
network nor the variance in interpacket gaps observed
at a receiver comes cheaply, especially for networks
without a synchronous time base. However, we contend
that controlling the jitter and rate can be achieved at an
acceptable cost.

Traffic Categories
In the paper, we use the following classification of

sources of packet traffic. A source that injects packets
into the network at fixed time intervals is referred to as
a Continuous Bit Rate (CBR) source. Uncompressed
video or voice sources are CBR sources of packets.
Sources which use compression or adaptive techniques
generate packets at variable bit rates. We refer to these
types of sources as Variable Bit Rate (VBR) sources. A
simple model for a VBR source has an "on-off" traffic

pattern: the source sends some number of packets at its
peak rate for a period of time, and is quiet for a period of
time. We expect that CBR and VBR sources would use
rate-controlled connections. Sources with large amounts
of data to transfer, such as file transfer protocols, can
simulate either a CBR source or VBR source by using
rate-based admission control. It should be noted that
use of rate control within a network is distinct from the
admission control scheme used. A rate-controlled
network could support either rate-based or window-
based admission control policies.

A source that sends short messages at widely
spaced intervals, is referred to as an intermittent
source. Distributed computations use interprocess
control messages which are typically small and hence
are examples of intermittent sources. For an
intermittent source, the measure of importance is low
end-to-end delay and small probability of data loss. We
expect that intermittent sources would use the best
effort service.

Goals of Work
The goal of the rate control proposed in this paper

is to guarantee the rate and provide an upper bound on
the jitter for the rate-controlled connections, while also
providing the lowest possible delay and loss probability
for best-effort connections. An equally important goal
for the network provider is the efficient use of network
resources: memory and bandwidth. In this paper we
propose two implementations of the proposed rate
control scheme. The first implementation is focused on
fast packet networks, and the scheduling of packets for
service can be achieved by a microprocessor at very high
speeds using an algorithm known as rate-based
scheduling. The second implementation focuses on
networks based on Asynchronous Transfer Mode (ATM),
where messages are broken up and carried in small,
fixed length cells that are switched and multiplexed in a
uniform manner [CCITT]. This implementation, known
as Hierarchical Round Robin Scheduling (HRR), yields
the desired performance guarantees by an enhancement
of ordinary round robin scheduling.

Previous Work
In a packet switched network, the main point of

control is the queuing discipline used at a switch. Two
simple schemes used in current wide-area networks
have been widely studied: these are First-Come-First-
Served (FCFS) policy and Round-Robin (RR) service
among active connections. Neither of these schemes
differentiates between the quality of service desired by
different connections. Variations of FCFS and RR
policies have been proposed to guarantee quality of
service, either by use in conjunction with rate-based
admission control [LL],[SLCG] or by including
priorities, either static or dynamic, in each packet or
implicit with each connection. One notable variation is
the Earliest-Due-Date (EDD) scheme [FV], which marks
each packet with a due date and schedules the packet



Page 3 of 9 Kalmanek, Kanakia and Keshav

whose due date is next to expire. Although EDD
achieves lowest aggregate delay for a network, the per-
packet processing may be prohibitive for high-speed
networks. None of the schemes that we know of
provides the bounds on jitter.

Various recent proposals have addressed the
performance objectives for best effort connections. One
approach (Jacobson [JAC] and Ramakrishnan-Jain [RJ])
assumes that sources voluntarily reduce their window
size when they sense or are informed of network
congestion. These schemes do not provide guarantees
against data loss, and depend on the sources willingness
to cooperate. In another approach [HKM], the source
transmission window is adapted dynamically and the
network provides guaranteed buffer space equal to the
window size for each connection at each queueing point.
Any of these schemes can be supported within the
context of the service disciplines discussed in this paper,
which multiplex rate controlled and best effort traffic at
the server.

The service disciplines proposed in this paper
meet our goals for rate control. Moreover, our
experience in implementation suggests that they are not
subsignificantly more costly in memory or CPU
requirements than FCFS or RR scheduling. One of the
implementations is based on a novel queue structure
used to hold waiting packets. The other implementation
shows how one can easily modify the basic RR server to
perform rate control. These two proposed
implementations are equivalent in the sense that they
both meet the requirements for a rate-controlled server,
and provide a packet transmission order which is
similar.

Rate-Based Scheduling
This algorithm, first proposed by one of the

authors [KAN], uses a tree-like structure to store
packets awaiting their turn. The structure is shown in
Figure 1.

We can think of the transmission on the output
link as occurring in frames or rounds of fixed size.
Packets are queued in each round as a singly-linked list,
and there is an array which holds pointers to the
packets for each round. One of the rounds is the current
round from which packets are removed and transmitted.
When the server reaches the end of the list, it moves on
to the next round. Thus, the service procedure is quite

Round 1

Round 2

.

.

.

Round-based Data Structure For Rate-Based Scheduling
Figure 1

simple. What remains to be discussed is how packets
are queued in rounds and how this achieves rate
control. The following algorithm is used to queue
arriving packets.

For each connection, a switch keeps four
parameters defining a rate and jitter for the connection.
These parameters are the service quantum, the last
round number, the current count and the interval. The
quantum defines the number of packets belonging to
this connection that can be sent per round. The last
round number indicates the round to which the previous
packet from this connection was added. The current
count is the number of packets of this connection added
so far to the last round. The interval number is an
integer which is added to the last round number when
the current count equals the quantum. This gives the
new last round number, and is used to skip rounds
when the rate of the connection is less than 1
packet/round. With these parameters, the algorithm to
identify the round for a received packet takes only a few
lines of code. We note that the order of packet
transmission for a connection is kept the same as the
order in which packets arrived.

In order to control jitter, the rounds are all kept of
fixed size (bytes). The rate-based server will not insert
a packet into an earlier round (a round with round
number less than the last round number for the
connection) even if there is an earlier round that is not
full. This limitation ensures that the jitter is no more
than the service quantum over an interval defined as
interval number times the round transmission time. In
order to handle best effort traffic with minimum delay,
packets belonging to best effort sources are queued
separately. Whenever a round under transmission runs
short of packets, then best effort packets are served in
round robin order until the fixed round size is filled.
One can reserve some fraction of the bandwidth in each
round for best effort packets by restricting the sum of
the quanta of currently active connections to be below a
predefined fraction of each round.

The algorithm described above controls rate and
jitter over a wide range of desired rates. An
implementation of this in software was measured to run
at about 200,000 packets/sec with variable length
packets, when run on a 25-MHz MC68020
Microprocessor.

Hierarchical Round Robin Scheduling
We describe below another implementation

achieving equivalent order of transmission of packets
over a link. This implementation was designed for use
in ATM networks. We start by describing an
implementation of an ordinary round robin server for
fixed-size cells.

Round Robin Server
It is well known that fairness requires some sort

of round robin queue service discipline as opposed to
traditional first-come-first-served queueing [MOR,



Page 4 of 9 Kalmanek, Kanakia and Keshav

data queues

...

service list
CID CID to serve

A Round Robin Server Consists of a List of CIDs.
Figure 2

DKS]. Data from each connection is stored in per-
connection data queues, so that each connection can be
served separately. When a cell arrives, its data is stored
in the data queue and its connection identifier (CID) is
added to the tail of a service list. In order to ensure that
each CID is entered on the list only once, there is a flag
bit per connection which is set to indicate that the CID
is on the service list (the round robin flag bit).

The server periodically takes a CID from the head
of the service list and serves it for some number of
service quanta. That is, there is a maximum number of
cells that will be taken from the data queue for that CID
and put onto the transmission line. The service
quantum can be different for different CIDs. If the data
queue goes empty, the flag bit is cleared and the server
takes another CID from the head of the service list. If
the data queue still has data in it, however, the server
first returns the CID to the tail of the service list before
going on. The situation is shown in Figure 2.

HRR Implementation
We will describe the implementation as a series of

successive refinements on a basic idea. We then present
the exact details of the algorithm in a form suitable for
hardware implementation.

Again, we think of the transmission on the output
link as occurring in frames of fixed size. A frame can be
measured in time slots where each slot corresponds to
one cell served on the output link. We modify the round
robin server such that it starts service through its list of
CIDs once per frame. For example, if the service
quantum for each connection were one cell, the server
would serve each CID on its service list at a rate of one
cell each frame. Once a particular connection is served,
its CID is returned to the end of the list, but we must
insure that this connection is not served again until the
beginning of the next frame. To do this, we implement
each service list as two lists: a current list from which
CIDs are being served, and a next list to which CIDs are
added. At the beginning of the frame, we swap the
current and next lists.

The HRR server has a hierarchy of service lists,
each of which has a different frame length. The topmost
list has the shortest frame length, and is used to serve
connections that are allocated the highest service rate.
We think of each list as having some number of time
slots associated with it. We partition the bandwidth on
the link between service lists by allocating some
fraction of the slots associated with each list to lists that
are lower in the hierarchy. When all the timeslots
allocated to a particular list are used, we start another
round through its service list. At the bottom of the
hierarchy, there is a round robin server that handles the
best effort traffic.

Consider two lists of connections that require
service, labeled 1 and 2. The level 1 list is used for high
rate connections, while the level 2 list is used for lower
rate connections. (For the moment, we will ignore best
effort traffic). We can achieve different service rates by
having different frame lengths for the two lists.
Successive rounds through the level 1 list are to be
started at fixed time intervals FT 1 (in units of cell
service time), and successive service rounds through the
level 2 list are to be started at fixed time intervals FT 2.
Moreover, we interleave the service of level 1 and 2 as
follows. After serving b1 < FT 1 cells in level 1, we serve
FT 1 − b1 cells in level 2. After serving b1 cells in level 1
again, we serve the next cells in round robin order in
level 2, and so on.

The next refinement is to allow for multiple
service quanta each time a connection is picked for
service. Given a connection j, we define the service
quantum aj, which is the number of cells served from
that connection whenever it is picked for service. Thus,
if VCI 29 is given a service quantum of 3, every time
that VCI appears in a round robin list, three cells are
serviced. There is an obvious problem if this VCI is on a
level other than the first. Since the service of that level
may be widely separated in time, we will need to
remember how many cells from a VCI have been
serviced at each level, and when service at that level
resumes, this has to be accounted for. Thus, when
connection j is picked for service, we load a counter, Gi,
with the value of the service quantum aj. Every time
level i services a cell, Gi is decremented till the service
quantum is exhausted.

The final refinement of the algorithm is to add a
best effort server. If in serving CIDs from any service
list we run out of CIDs before exhausting the frame, we
fill out the rest of the frame with best effort traffic.

We are now ready to present the complete
algorithm, in a form suitable for hardware realization.

Notation
We number the levels 1 . . . N, with the highest

rate connections at level 1. At level i, we have ni slots.
As before, one slot represents one cell serviced on the
output link. We define a boundary bi≤ni, such that bi
slots are allocated to lists at lower (slower) levels. The
remaining ni − bi slots at level i are either allocated to



Page 5 of 9 Kalmanek, Kanakia and Keshav

activate
next server

1n
b1

Server at level 1 allocates 3 slots to lower levels.
Figure 3

some connection or are unallocated. The service
quantum for connection j is denoted by aj. Let queuedj
denote the number of cells queued at a connection at
any given time. We shall refer to the HRR
implementation as having multiple servers, one per
level, where a server is either active or inactive. A
server at level i is active if servers 1..i − 1 are active and
have served ni − bi cells in each of their frames. Server
1 is always active. (Figure 3 gives an example of a
server at level 1 with n 1 equal to 10 slots and where
b1 = 3 slots have been allocated to lower levels.)

The frame time, FTi, for level i is defined to be the
time (in units of cell service time) between two services
of the first slot in the frame. During each frame time, a
server makes one round through its service list.

Detailed Description
Each server i has three counters called NBi, Bi

and Gi. NBi determines how many cells are served from
level i, Bi determines how many cells are served from
all levels lower than i, and Gi keeps track of service
quanta larger than 1. The algorithm proceeds as
follows:
1. Initialize:

At the beginning of a frame at level i,
NBi ← ni − bi; Bi ← bi; and swap(next i,
current i).

2. Server and connection selection:
Let i be the index of the lowest rate active server.
If (current service list i is empty and NBi is non-
zero)

activate BE server for one slot
else

server i picks connection j from the head of
its current service list
If (Gi is 0)

Gi ← min(aj , queuedj ).
serve connection j for one slot; decrement
Gi.

decrement NBi and Bi − 1, ..., B 1.
3. Adjust service list:

If (j’s data queue is empty)
set Gi ← 0 and clear the round robin flag

bit for connection j
else if (Gi is zero)

server i places connection j at the tail of its
next service list

else server i places connection j at the head of its
current service list

4. Check for change of active server:
If (any of Bi − 1, ..., B 1 is 0)

server i becomes inactive.
else if (NBi is zero and Bi is non-zero)

server i makes server i + 1 active
Go to step 2.

Example
An example will illustrate. Consider two levels

with n 1 = 10 slots and n 2 = 10 slots. Also, b1 = 1 slot,
which means that the level 1 server allocates 1 time slot
every 10 to the level 2 server. b2 = 0. (At 45 Mbps with
ATM 53 byte cells, these frame times support rates that
are multiples of 4.5 Mbps and 450 Kbps, respectively.)
Suppose that CID#1 has reserved 9 Mbps, CID#2 has
reserved 22.5 Mbps, CID#3 has reserved 450 Kbps, and
CID#4 has reserved 900 Kbps. The allocations will look
like the following:

_ _____________________________
CID# allocation_ _____________________________

Level 1: 1 2
2 5_ _____________________________

Level 2: 3 1
4 2_ _____________________________ 
















The HRR algorithm does not determine the
service order within the frame. That is determined by
the position of the CID in the service list for a particular
service. For example, the above case might result in the
service order shown in Figure 4.

The HRR algorithm is able to offer guaranteed
bandwidth and an upper bound on jitter to rate
controlled connections. The bandwidth received by a
connection j at level i is aj / FTi cells/sec. The jitter
bound is computed as follows. In the worst case, an
HRR server could serve connection j for aj cells at the
end of one frame, following by another aj cells at the
beginning of the next frame. If we consider at the
interval during which the cells are sent, we see that the
jitter bound is 2* a j cells during one frame time at that
level. Thus, the HRR algorithm bounds the size of the
elasticity buffer needed at intermediate nodes and at
the receiver as desired. We also offer a straightforward
computation of the delay bound for an HRR server at an
intermediate node. Consider a cell from connection j
that arrives at the server just after j was served. This
cell may not get sent out until the end of the next frame,
so the delay is bounded by 2* FTi, if connection j is at
level i. Thus, there is a fixed delay introduced by the
server as a side-effect of metering the flow.



Page 6 of 9 Kalmanek, Kanakia and Keshav

1

11 4

4

3

BE BE 2 2 2 2 2 1 1

Level 1

this frame
repeated
seven times ...

Level 2

BE

BE BE 2 2 2 2 2 11

BE

BE BE 2 2 2 2 2

BE 2 22 2 2

1

Example of service order
Figure 4

The HRR scheme can be readily implemented as
an Application Specific Integrated Circuit (ASIC). One
of the authors and R.C. Restrick have built a queueing
engine that implements per-connection queueing for
32,000 CIDs with a memory bandwidth of 1.3 Gbps. A
chip has been built which supports sixteen round robin
lists of CIDs. Implementation of the HRR service
discipline requires support for multiple frame counters
to control which round robin list is served next. The
chip to implement the counters would be designed with
a microprocessor interface to allow flexibility in setting
the parameters of the algorithm.

Rate Partitioning
Consider the hierarchical round robin server in

the example above with n 1 = 10, n 2 = 10, b1 = 1, b2 = 0.
These parameter values allow up to 9 connections
sending at 10% of the total bandwidth, and up to 10
connections sending at 1% of the total bandwidth.
Suppose the 11th connection sends a call setup message
requesting rate controlled service at 1%. As things
stand, we can either allocate more bandwidth to this
connection than requested, or we can deny the call. As
both are unacceptable, we present a scheme which
allows the menu of rates to be changed. Suppose we
simply set b1 = 2. This would cause the server at level 2
to be served twice as often, which would halve the frame
time and double the rate. The correct solution is to set
b1 = 2 and n2 = 20 simultaneously. Intuitively, when we
double the service rate, we must also double the work.

In general, multiplying bi − 1 by x should be
accompanied by a corresponding change in ni. Note
that these changes must be atomic across different level
servers. In order to describe this, we offer an
alternative definition of a frame. Consider a level α.
Step 1 of the algorithm states that counters NBα and
Bα are initialized at the beginning of a frame. This
occurs when all counters NBα, NB α − 1, ..., NB1, and
Bα, B α − 1, ..., B 1 go to zero. Thus, a frame at level α
can be defined to be the interval between successive
occurrences of these counters going to zero. A
superframe is defined to be the frame for the lowest

level server, thus repartitioning must occur at the
beginning of the superframe. For example, if the lowest
level server had a frame time of 6 ms (600 slots), then
we could repartition the menu of rates at most every 6
ms.

If the ratio ni / b i is an integer, it is possible to
write a simple formula for the superframe time.
Consider a two level server. The level 1 server offers
b1 / n1 of the bandwidth to the level 2 server. The level
2 server must be served n 2 times for a complete frame.
Thus, FT 2 = n 1 n 2 / b1, and in general
FTN = n 1 n 2

. . . nN / b1 b2
. . . bN − 1. Note that if ni / b i

is initially an integer, it will retain this property
through successive partitionings.

Over time, the menu may become fragmented
with most slots allocated to low rate connections. When
this occurs, it will be necessary to do some repacking in
order to be able to quickly handle a request for a high
rate connection. This fragmentation and the need for
repacking are analogous to the memory fragmentation
that occurs in computer systems.

Performance Management
In order to establish a rate-controlled connection,

the current rate parameters for each of the connections
passing through each switch must be considered. In
this paper, we do not consider issues pertaining to
establishment and dynamic adaptation of rates based on
network load. These issues are faced by any packet-
switched network. For example, route selection could be
done at the source or by control processors in the
network based on knowledge of the previously allocated
rates [FV].

Simulation Experiments

Network Topology and Traffic Sources
In order to demonstrate the behavior of the rate

control schemes, we present simulation results of mixed
traffic in a network with HRR nodes. We also present
results for FCFS nodes for comparison. The network
topology is shown in Figure 5. All links are the same
speed, C = 10,000 bits/sec. The simulation uses two
rate-controlled sources (Source 1 and 2) sending to a
single destination, plus a Poisson source (Source 5) to
represent the effect of cross traffic.

The source parameters are set up so that the link
from node 4 to node 6 is the first bottleneck. Source 1
sends at 0. 4* C, and source 2 sends at 0. 1* C. The mean
traffic intensity of the Poisson source is increased from 0
to 1. 0* C.2 Thus, the simulation results will show the
behavior of HRR as the links move into saturation.
Note that as the intensity of the cross traffic increases
beyond 0.5, queue lengths would be expected to increase
without bound. We model a node as having finite
buffers, thus packets are dropped from all sources under
2 The peak rate of this source is clamped at the rate of its access link, C. We refer
to this as a clamped Poisson source. To simulate a true Poisson source,
one would let the rate of the access link go to infinity.



Page 7 of 9 Kalmanek, Kanakia and Keshav

1

3

2

4

.4 * C

.1 * C

5

0 - 1.0 * C

6 7

Network topology for simulation
Figure 5

FCFS. Under HRR, only the packets from Source 5 are
dropped due to the use of per-connection queueing. The
run length for the simulation was 100 seconds of
simulated time, which was sufficient to reach steady
state.

The results are shown for an "on-off" rate
controlled source. An "on-off" source is specified by its
on_time: the time period for which it is on, num_pkts:
the number of packets sent during that time, and its
off_time: the time for which it is off. From these
numbers, it is possible to compute peak and average
bandwidths. All sources used a packet size = 200 bits.
The two "on-off" sources used the following parameters:

_ ______________________________________________
On Num_pkts Off Ave Rate_ ______________________________________________

1: 450 ms 20 550 ms 4000 b/s
2: 1 s 10 1 s 1000 b/s_ ______________________________________________ 









The HRR server allocates five slots to the level 1
server N1 = 5, with one of these slots allocated to the
level 2 server B 1 = 1. The level 2 server has ten slots
N2 = 10, B 2 = 0. Source 1 is allocated two slots at level 1;
source 2 is allocated four slots at level 2.

Simulation Results
Figures 6 and 7 show the interpacket gap in

seconds seen at the receiver for "on-off" Sources 1 and 2,
respectively. The x-axis represents the traffic intensity
from source 5 as a fraction of C. The solid lines show
the results for HRR scheduling; the dotted lines show
the results for FCFS. We observe first that the
interpacket spacing for both constant rate sources under
HRR is independent of the intensity of the cross traffic.
The maximum gap for Source 1 is approximately 160
ms: this is approximately the worst case jitter of the
level 1 server, which has a frame time of 100 ms. The
maximum interpacket gap for Source 2 is 600 ms, which
is less than the worst case possible for the level 2 server.
The difference between the maximum and minimum
interpacket gaps at the receiver is also less than that at
the source, which shows the effect of smoothing. Both
these results agree with expectations.

In the case of FCFS nodes, the average gap
between Source 1 and Source 2 packets can be
calculated. For example, with a cross traffic intensity of
1 (total intensity of 1.5), the average gap between
Source 1 packets should be 0.075 seconds, which agrees

0

0.2

0.4

0.6

Interpacket
Gap

Intensity of Cross Traffic
0 0.5 1 1.5

× × × × × × × × HRR-Src1 Ave
∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ Both-Src1 Min

HRR-Src1 Max

×. . . .×. . . .×. . . .×. . . .×. . . .×. . . .×. . . . . . . . . . . .× FCFS-Src1 Ave

∆. . . .∆. . . .∆. . . .∆. . . .∆. . . .∆. . . .∆. . . . . . . . . . . .∆

. . . .. . . .. . . ........ . . .. . . .. .
. . . . . . . . . . . .

. . FCFS-Src1 Max

Figure 6.

0

0.5

1

Interpacket
Gap

Intensity of Cross Traffic
0 0.5 1 1.5

× × × × × × × × HRR-Src2 Ave

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ HRR-Src2 Min

HRR-Src2 Max

×. . . .×. . . .×. . . .×. . . .×. . . .×. . . .×. . . . . . . . . . . .×
FCFS-Src2 Ave

∆. . . .∆. . . .∆. . . .∆. . . .∆. . . .∆. . . .∆. . . . . . . . . . . .∆
FCFS-Src2 Min

. . . .. . . .. . . .. . . .. . . .. . . .. . . . . . . . . . . . FCFS-Src2 Max

Figure 7.

with Figure 6. For FCFS, the average interpacket gaps
will increase without bound as the load increases.
When the cross traffic is zero, the maximum interpacket
gap for source 1 using FCFS is 550 ms: this is the
maximum interpacket gap of the source output stream.
As the load approaches 0.5, the maximum interpacket
spacing dips for Source 1. This might be attributable
the fact that packets from Source 5 delay packets from
Source 1 at the end of the on_time somewhat, which
would reduce the maximum gap. With cross traffic
intensities above 0.5, the maximum gap increases
without bound. Note that the minimum interpacket gap
for source 2 using FCFS is reduced below that at the
source. This is due to packets being sent out back-to-
back due to queueing in the FCFS nodes.

Figure 8 shows the end-to-end delay in seconds for
the rate controlled traffic. The end-to-end delays using



Page 8 of 9 Kalmanek, Kanakia and Keshav

0 0.2 0.4 0.6

0

1

2

3

4

End-to-End
Delay

Intensity of Cross Traffic

∆

×

∆

×

∆

×

∆

×

∆

×

∆

×

∆

×

∆ × ∆× ∆× ∆× ∆× ∆×

∆×

HRR-src1

HRR-src2

HRR-be

FCFS

Figure 8.

HRR correspond to the sum of the propagation and the
fixed absolute delay of the server. This delay is greater
for Source 2 than Source 1 since Source 2 is placed at a
lower level in the server. Note, however, that the delay
is independent of the load on the network. With the
FCFS server, all traffic sees essentially zero delay when
the network is lightly loaded, but as the load increases,
the delay increases without bound. This suggests that
for traffic sources where delay (not jitter) is important,
that FCFS is preferred when the network is
uncongested. The HRR server can provide hard delay
and jitter bounds independent of the network
congestion.

Thus, with HRR nodes both the interpacket
spacing and end-to-end delay are independent of load. A
crucial point to be made is that these results hold even
for multiple nodes connected together in tandem. One
additional observation for HRR nodes with "on-off"
sources is that most of the buffering for these
connections occurs at the first node. The buffer size at
intermediate nodes never exceeds the expected bound on
the buffer size.

Conclusions
This paper proposes that the connections provided

by integrated networks be separated into two categories:
rate-controlled and best effort connections. Using the
rate-based service disciplines, rate-controlled traffic can
be carried at a wide range of rates. Traffic is metered
out during each frame time, which provides rate
enforcement and allows the network to provide upper
bounds on the jitter in the output stream. These results
hold even in the presence of congestion or when the
traffic flows through multiple nodes in tandem. Strict
bounds can also be placed on the amount of buffer that
is required at each queueing point. Idle bandwidth is
utilized by best effort traffic, insuring efficient use of
network resources. Both rate controlled servers can be
efficiently implemented at rates up to 1 Gigabit/sec.

Future Work
We believe that the rate-based service disciplines

provide a platform for several areas of future research.

These include: design of algorithms for call set up and
design of traffic management policies, selection of
appropriate rate partitioning and compaction
algorithms (for HRR), a broader simulation study of
various aspects of the design, and implementation of the
schemes in experimental networks.

Acknowledgments
The HRR scheme was significantly influenced by

work on real-time channel establishment by Prof.
Domenico Ferrari at UC Berkeley. The idea of reducing
jitter by substituting best effort traffic for absent rate-
controlled cells is due to him. We also appreciate the
help of Sam Morgan and Ellen Hahne at Bell Labs, who
continue to help get the details right.

References
[CCITT] CCITT Recommendation CCITT/AP-

IX/DOC.143E3.TXS, June 1989.
[DKS] A. Demers, S. Keshav, S. Shenker, Analysis and

Simulation of a Fair Queueing Algorithm, Proc. ACM
Sigcomm 89, pp 1-12, September 1989.

[FER] D. Ferrari, Real-Time Communication in Packet-
Switching Wide-Area Networks, Report No. TR-89-
022, International Computer Science Institute,
Berkeley, May 1989.

[FV] D. Ferrari and D. Verma, A Scheme for Real-Time
Channel Establishment in Wide-Area Networks, Report
No. TR-89-036, International Computer Science
Institute, Berkeley, May 1989.

[HKM] E. L. Hahne, C. R. Kalmanek, S.P. Morgan,
Fairness and Congestion Control on a Large ATM Data
Network, submitted to ITC-13, Copenhagen, June
1991.

[JAC] V. Jacobson, Congestion Avoidance and Control,
Proc. ACM Sigcomm 88, pp 314-329, August 1988.

[KAN] H. Kanakia, AT&T Bell Laboratories internal
memorandum.

[KES] S. Keshav, REAL: A Network Simulator", Tech.
Report UCB/CSD 88/472, Department of EECS,
University of California at Berkeley, December 1988.

[LL] D. T. Luan and D. M. Lucantoni, The Effect of
Bandwidth Management on the Performance of Window-
Based Flow Control, AT&T Technical Journal 67,
No. 5, pp 17-26, September-October 1988.

[MOR] S. P. Morgan, Queueing Disciplines and Passive
Congestion Control in Byte-Stream Networks, Proc.
IEEE Infocom 89, pp 711-720, April 1989.

[RJ] K. K. Ramakrishnan and R. Jain, A Binary
Feedback Scheme for Congestion Avoidance in Computer
Networks, Proc. ACM Sigcomm 88, pp 303-313,
August 1988.

[SLCG] M. Sidi, W.-Z. Liu, I. Cidon, and I. Gopal,
Congestion Control Through Input Rate Regulation,
Proc. Globecom 89, pp 1764-1768, December 1989.

[TYM] L. Tymes, Routing and Flow Control in Tymnet,
IEEE Transactions on Communications, April
1981.



Page 9 of 9 Kalmanek, Kanakia and Keshav

[ZHA] Lixia Zhang, A New Architecture for Packet Switching
Network Protocols, PhD thesis, Massachusetts
Institute of Technology, July 17, 1989.


