
Stop-and-Go Service Using Hierarchical Round Robin

S. Keshav

AT&T Bell Laboratories
600 Mountain Avenue, Murray Hill, NJ 07974, USA

keshav@research.att.com

Abstract
The Stop-and-Go service discipline allows a rate-controlled Virtual Circuit to obtain (small) delay-jitter
bounds independent of the number of hops along its path. This may prove to be desirable for isochronous
applications in wide-area virtual circuit networks. We consider how to integrate the Stop-and-Go and Hier-
archical Round Robin service disciplines to allow delay-jitter bounded communication in large homoge-

1. Introduction

It has been argued that controlling the variation in the end-to-end delay received by a rate-controlled
virtual circuit would be a useful service in future networks (Golestani, 90; Verma, Zhang and Ferrari, 91).
This variation is usually measured by the delay jitter, defined as the difference between the maximum and
minimum possible end-to-end delay received by any data unit. This concept is graphically illustrated by
Figure 1, which shows the histogram of delays received by cells on circuits A and B. We see that both cir-
cuits have the same delay bound, but circuit B has a tighter delay-jitter bound.

Delay

Fraction

Delay bound

0

A

B

Jitter bound

Figure 1: Delay and delay-jitter bounds

Recently, Golestani proposed the Stop-and-Go scheduling discipline (SNG) (Golestani, 90) that uses
packet framing to provide bounded jitter data transmission in packet-switched networks. At the same time,
we developed the Hierarchical Round Robin service discipline (HRR) (Kalmanek, Kanakia, Keshav, 90)
that also implements packet framing, and is rather similar in spirit (Zhang, Keshav 91). However, neither



- 2 -

HRR nor SNG is clearly superior to the other, as shown in Table 1. While HRR is implementable at high
speeds, it cannot provide delay-jitter bounds independent of the number of hops. Thus, we feel that it
would be useful to extend HRR to provide these bounds.

_ __________________________________________________
Feature HRR Stop-and-Go_ ___________________________________________________ __________________________________________________
High speed implementation known Yes No_ __________________________________________________
Protects a user from other users Yes No_ __________________________________________________
Provides delay jitter bound
independent of number of hops No Yes_ __________________________________________________ 
































Table 1: Comparision of HRR and SNG

This was also attempted recently by Kalmanek and Morgan (Kalmanek and Morgan, 91), but while
they sketched methods to synchronize skewed input frames and compensate for non-negligible switching
delays, they did not describe how to implement the frame timing mechanism required by SNG. This memo
shows how a simple extension of HRR can handle timing issues. Further, we present two other schemes for
matching skewed frames that are easier to implement.

We first describe the operation of HRR and SNG, and then present an outline of our scheme for inte-
grating the two disciplines when there is only one input line (or all the input lines carry synchronized
frames) and only one output line (or all the output lines carry synchronized frames). This is followed by a
more detailed description of the implementation, and a sketch of a proof of correctness. We then consider
some details regarding frame synchronization and implementation costs.

2. HRR and Stop-and-Go

The Stop-and-Go service discipline aims to preserve the ‘smoothness’ property of traffic as it tra-
verses the network. Time is divided into frames. In each frame time, only packets that arrived at a server in
the previous frame time are sent. It can be shown that with this scheme, a user can obtain a jitter bound
independent of the number of hops traversed by the virtual circuit.

A HRR server provides rate-controlled service to virtual circuits: that is, it guarantees that each cir-
cuit will receive a minimum share of the trunk bandwidth, and that no circuit will be allowed to exceed its
share. A HRR server provides several levels of service, and circuits at each level are served round-robin.
Conceptually, each circuit is assigned some number of slots in a service level, and the server cycles through
the slots at each level. The time a server takes to service all the slots at a level is called the frame time at
that level. The key to HRR lies in its ability to give each level a constant share of the bandwidth. Each slot
at a higher level represents more bandwidth than a slot at a lower level (a user assigned to a higher level
will be one that requires more bandwidth than one assigned to a lower level), so the frame time at a higher
level is smaller than the frame time at a lower level.

Since a server always completes one round through its slots once every frame time, in cooperation
with a leaky-bucket type of traffic shaping mechanism, it can provide an upper bound on the delay suffered
by cells belonging to the channels allocated to that level. However, since a cell might arrive at a server just
in time to get service, it might get a queueing delay of zero. Since the upper bound is twice the frame time,
the delay jitter at each switch can be as large as twice the frame time. This can be repeated at each of a
series of switches, and, in fact, on a circuit with H hops, the delay jitter can be as large as O(H) (Kalmanek
and Morgan, 91). This may be undesirable. In this memo, we show how a simple extension to HRR can
reduce the jitter bound to twice the frame time independent of H.

3. Integrating SNG and HRR

There are two issues in integrating HRR an SNG: first, using the HRR server to provide timing infor-
mation, and second, establishing a buffer pool at each output queue to allow frame synchronization. The
first problem is tackled in this memo, the second was loosely described in (Kalmanek and Morgan, 91), and
elaborated here.



- 3 -

A note on the generality of the two schemes. If a channel traverses a number of switches, then in
SNG, it is assumed that the channel is assigned the same frame time at each server. If the frame time at any
switch is smaller than the frame time at any previous switch, then SNG does not make any claims on the
smoothness of the traffic on that channel. In contrast, HRR does not make any such assumptions. It can
assign channels different frame times (levels), as well as different bandwidth shares at each successive
switch, and still guarantee a delay bound as well as an upper bound on the service rate. In this work, we
assume a situation that is slightly more restrictive than the one assumed by SNG, that is, that at every server
along the path, a channel gets allocated the same number of slots on the same length frame.

4. Outline of the new scheme

We present the integration scheme first under the simplifying assumption that all the input frames
and all the output frames are perfectly synchronized (that is, the start and end times of all the frames coin-
cide). This assumption is removed in §7.

A HRR server has a number of levels of service. At each level, it has a service list of Virtual Circuit
Identifiers (VCIs), that it cycles through, serving cells from each VCI in turn. The data for each VCI is
kept in a per-VCI queue (Figure 2). In our scheme, called HRR++, we introduce (i) a scheduler called the
eligibility scheduler (ES), and (ii) a set of FIFOs, two per HRR level (Figure 3). One of the FIFOs is called
Current, the other is called Eligible (Figure 4).

Per-VCI queues

HRR server

Service list

Trunk

Figure 2: HRR Implementation

Per-VCI queues
HRR server

Service list
Trunk

Eligibility Scheduler FIFOs

list
Service

Figure 3: HRR++ Implementation

The ES and the HRR server share the service list data structure. They both use the HRR frame inter-
leaving algorithm to decide which level to serve next. On reading a slot at that level, the ES transfers a cell
from that VCI to the Eligible FIFO. Simultaneously, the HRR server transmits one cell from that level’s
Current FIFO. At the end of a frame, the HRR server interchanges the Current and Eligible FIFOs at that
level. This is double buffering.



- 4 -

1 ! !

! ! 19 10

33 47 14

! represents a slot served at a lower level

- represents an unfilled slot

- -

- -

-

HRR levels (service lists)

E

E

E

C

C

C

From ES To HRR

Eligible and current FIFOs

E = eligible

C = current

Figure 4: Eligible and current FIFOs

5. Detailed description

The components of a HRR++ server are:

1) A per-VCI queue of cells
2) The Eligibility Scheduler (ES)
3) A HRR server
4) The HRR service list data structure
5) Two FIFOs per service level

At call setup, the switch controller allocates a circuit with bandwidth, delay and delay-jitter bounds by
reserving some number of slots for it at some level. This is done by writing the VCI in the service list. The
admission control decision is made using an algorithm similar to the one described by (Verma, Zhang and
Ferrari, 91). If the frame time at the selected level is F, and the circuit is allocated a slots in the frame, the
bandwidth guaranteed is a slots per time F, the delay bound is 2F per hop and the delay-jitter bound is 2F
for the whole path.

In operation, incoming data is switched through the switching fabric and placed in a per-VCI output
queue (not to be confused with the FIFOs, see Figure 3). At each time step, both the HRR server and the
ES read the next slot in the service list, using the frame interleaving algorithm described in (Kalmanek,
Kanakia, Keshav 90). If the slot contains a valid VCI, the ES attempts to read a cell from the queue for that
VCI. If it finds a cell there, it transfers one cell to the corresponding Eligible FIFO. If there are no cells, or
the VCI is invalid, then no action is taken. At the same time step, one cell is read out from the Current
FIFO by the HRR server, and transmitted. If the Current FIFO is empty, best-effort (non-guaranteed ser-
vice) cells are served. If there are no best-effort cells, the line is left idle. The operations of the HRR server



- 5 -

and the ES can be done in parallel, since they are on different data paths. At the end of a frame, the HRR
server switches the Eligible and Current FIFOs.

6. Proof of correctness

We show that with this scheme, a cell has both a minimum delay and a maximum delay as it tra-
verses an HRR++ server, and that the difference between them is two frame times. Note that the service of
one Current FIFO at any level always takes one frame time. Thus, on the output trunk, there is a steady
stream of constant sized frames being transmitted (which are interleaved with other frame sizes as in HRR).
No cell that arrives during a given frame time can leave before the start of the next frame (since it is placed
in the Eligible FIFO, and not in the Current FIFO). Further, the worst delay it can get is if it just misses
being written to the Eligible FIFO, in which case it may have to wait as many as 2 frame times. This is
shown in Figure 5.

2 frame times
Cell arrival

Arriving frames

Departing frames
frame time

Latest time of cell departure

t

t

Cell departure

Figure 5: Worst case delay bound

In this figure, we see that a cell just missed being written into the Eligible FIFO. However, it will
certainly get written into that FIFO at the latest one frame time after its arrival, and will get service at worst
one more frame time later (since new VCIs join at the tail of the service list). This shows that the worst
case delay bound at each switch is twice the frame time. This proves the minimum and maximum delay
bounds in one switch. By an argument identical to the one used by Golestani, it is clear that over a series of
switches, we get a delay-jitter bound (of twice the frame time), as well as a worst case delay bound (propor-
tional to the number of hops in the path).

7. Frame synchronization

The scheme so far works correctly iff the input and output frames on all the trunks are perfectly syn-
chronized. This will not be the case in practice. Thus, we have to augment our scheme to correct for
unsynchronized frames on the input. Our scheme elaborates a loose sketch presented in (Kalmanek and
Morgan, 91). We initially assume zero delay in the switching fabric, and later extend the scheme to cope
with variable delays.

First, note that if the input and output frames are unsynchronized, we will need three FIFOs per level
per output trunk. This is clear from Figure 6, which shows frames at the output trunk and the correspond-
ing frames on input trunks. A number, such as ‘1’, indicates that cells from that input frame must be trans-
mitted on the similarly marked output frame. Note that at the time marked ‘NOW’ (corresponding to the
kth frame), the ES will see cells that must be transmitted either in the k + 1th frame time, or in the k + 2th
frame time. Thus, we need two eligible FIFOs, call them Eligible 1 and Eligible 2, and the ES must choose
to place cells in one of them. Cells that belong to the k + 1th frame should be placed in Eligible 1, cells
belonging to the k + 2th frame should be placed in Eligible 2, and at the end of each output frame, the three
FIFOs should be rotated. But, how should the ES decide where to place a cell? There are several solutions.



- 6 -

NOW

Output

Input 1

Input 2

1

1

1 2

2

2

3

3

3

Figure 6: Need for 3 output FIFOs

7.1. Solution 1

This is the solution outlined in (Kalmanek and Morgan, 91). Each cell header is marked with a 2 bit
sequence number by some entity operating at each input trunk. The sequence number cycles through the
values 00, 01 and 10, with the change occurring at the beginning of each frame. The three output FIFOs at
each level are correspondingly labeled 00, 01 and 10. (00 corresponds to Current, 01 to Eligible 1, and 10
to Eligible 2.) When the ES reads a VCI from the service list, it removes a cell from the per-channel queue
for that VCI, and places it in the corresponding output FIFO. At the end of every output frame, the labels
of the output FIFOs are rotated. It is clear that this scheme allows cells to be sorted to the correct output
FIFO automatically.

The problem with the solution lies in the nature of the marking entity. In the XUNET II switch, the
only possible candidate is the input Queue Module (QM). We then require the QM to determine the start of
each frame at each level, and correspondingly mark headers. This can be implemented only if the QM can
keep track of all the frame times simultaneously, perhaps using some kind of HRR scheme. In practice, we
feel that this is not desirable, since it adds complexity to the critical path of each cell. Thus, the need for
other solutions.

7.2. Solution 2

In this solution, cells are still tagged, but the marking entity is the first point in the network where
framing happens, for example, the HRR server on the output trunk of the XUNET router (which is the entry
point of a circuit into the network). This HRR server will be serving frames anyway, it has access to timing
information, and so it is can be modified to mark the sequence number on the cell headers. Since the frame
sizes are preserved through the entire network, cells from a VCI on consecutive frames will always have
consecutive sequence numbers, no matter on which trunk they receive service. Thus, the per VCI sequence
numbers can be used to identify cells from consecutive frames by the ES. The ES maintains a table called
LastSeq[VCI], that maps from the VCI to the last sequence number seen for that VCI. If the sequence
number seen on the cell just read differs from the LastSeq value, then the cell is put in Eligible 2, else it is
placed in Eligible 1. Essentially, the change in sequence number marks the end of an input frame, and indi-
cates that further cells should be delayed one more frame time at the output.

This solution needs a per-VCI last sequence value, since different VCIs on the same output frame
may have different sequence numbers, so the direct mapping to FIFOs, as in Solution 1, is not possible.
However, per-VCI queues are maintained in any case, so this information can be kept in the queue headers.

One problem with this solution is that it requires sequence bits to be carried with each cell, leading to
an overhead in the bandwidth. However, since there are 8 unused bits in the congestion control field of



- 7 -

each ATM cell, we feel that two of them can be used for this purpose. There is another subtle problem: at
the end of each output frame, the ES must update the LastSeq array. This can be computationally expen-
sive. Alternatively, the ES must somehow determine its first visit to LastSeq in each frame, and must use
the opportunity to update it. The details of the solution depend on the available hardware support, and so
will not be discussed further in this memo. In any case, note that no additional complexity is introduced in
the input side. Thus, we feel that this is a better solution that the earlier one.

7.3. Solution 3

The third solution does not require any tagging. Instead, the switch computes the relative synchro-
nizations of each input and output frame, and then uses this information to process cells. This scheme is
described in detail below.

We assume that each switch has its own free running clock, and that all the output frames on all the
outgoing trunks are synchronized. We also assume that the switching delay between any input trunk and
any output trunk is constant. In order to place a cell in the correct output FIFO, the ES needs to know the
relative phase difference (defined below) between each input trunk and the common phase of the output
trunks. The absolute phase difference between an input frame and output frame is the delay, in units of
time, between the end of a frame in the input, and the start of the adjacent frames at the outputs. The rela-
tive phase difference between frames at the input and the output is the absolute phase difference modulo
one frame time, expressed in units of one frame time. The relative phase difference always lies between 0
and 1. In general, the relative phase difference depends on the phase of the input trunk, as well as the
switching delay along the path from the input to the output. For example, if the end of a frame at the input
corresponds to a point that is midway through a frame at the output, and the switch fabric takes 1.2 frame
times to switch a cell, then the relative phase difference is 0.7 frame times. In the discussion below, the
switch delay is assumed to be 0, but the discussion holds for non-zero switching delays also, as long as the
switching delay from input to output is constant.

In the two earlier schemes, since cells are explicitly tagged, the phase difference value is implicitly
known, and does not need to be computed. In this scheme, we first compute the absolute phase difference
between the superframes at the input and output trunks. This is done by marking the end of each super-
frame on each input trunk. When the mark reappears on the output trunk, after passing through the switch-
ing fabric, the ES knows the absolute phase difference between the input and output superframes.

The next step is to compute, for each frame size, the phase difference between the input frame and
the output frame. Since the start of each input and output subframe is uniquely determined by the sizing of
the HRR service lists (which, by assumption, will be common to all the servers along the path), given the
superframe phase difference, the relative phase differences for each subframe can also be computed. This is
the absolute phase difference of the superframes added to the start time of the first frame at that level, mod-
ulo the frame time. This value, expressed in terms of frame size, is stored in a table Phase[trunk][level] (the
trunk-phase table), as shown in Figure 7. A separate table maps from each VCI to an input trunk (the VCI-
trunk table). The trunk-phase table is updated at the start of each (or in general, every nth) superframe on
the input trunk, and the VCI-trunk table is updated during call setup and teardown. We use two tables
instead of one, since this allows us to update the frame phases at the start of each superframe, without hav-
ing to track down every VCI on that frame.

In operation, the ES keeps track of the fraction of the superframe that has been served so far. This
value, added to the start time of the first frame at that level, modulo one frame time, is the relative fraction
of each frame that has been served, that is, the current phase of service for that frame. When the ES is
asked to transfer a cell, it reads the VCI from the service list, and determines the input trunk from the VCI-
trunk table. Then, it determines the relative phase difference from the trunk-phase table. If the relative
phase difference for the VCI is φ, and the current phase for that frame is ξ, then



- 8 -

Input trunk Phase

1

VCI Input trunk

123 1

213 2

Trunk-phase table VCI-trunk table

level

1

1

1

2

2

2

3

1

2

0.1

0.4

0.4

0.5

0.3

Figure 7: Synchronization tables

if ξ > 1 - φ, it places a cell in Eligible 2
else, it places it in Eligible 1.

It is easily shown that this has exactly the same effect as marking each input cell.

The cost of this solution lies in computing the relative phases of the input and output frames, and in
maintaining the current phase information. The current phase for each frame size can be determined by the
cell count since the start of the superframe, the start time of the first frame at that level, and the size of a
frame. If n cells have been served thus far, the first frame at that level is served after l cells, and the frame
size at some level is f cells, then the phase is simply (n + l) mod f. The relative phase difference between
the input and output frames can be similarly computed.

7.4. Non-zero switching delays

Thus far, we have assumed that the switching delay is zero. If the switching delay is non-zero but
constant, then the frames arriving at the output trunk will be delayed by a constant factor, and this is exactly
as if the preceding trunk had an additional propagation delay equal to the switching delay. Hence, the three
solutions described above will work with no additional modifications.

What if the switching delay is variable? Following the model of (Kalmanek and Morgan, 91), we
assume that the switching delay between any input trunk and any output trunk is bounded from above by a
value ∆. Also, we define p to be an integer such that at each level ∆ lies between p − 1 and p frame times
(so p is different for each level). With this model in hand, we re-examine the three solutions.

It is clear that if the delay is variable, at any moment, cells may arrive that may belong to as many as
p + 3 frames. Hence, for all three solutions, we will need to maintain p + 3 FIFOs per output level. The
solutions differ only in the algorithm used to determine in which FIFO to place a cell.

For the first solution, the obvious extension is to increase the tag field from 2 to ceil(ln p ) bits. The
sequence numbers cycle from 0 to p + 2. The output trunk simply reads off the tag value, and places the
cell in the FIFO that corresponds to the tag value. At the end of the frame, the labels of the FIFOs are
rotated. As before, the complexity lies in the input trunk, which will have to tag the cells somehow.

The second solution can be similarly extended. The additional cost is that the LastSeq[VCI] array
will have to hold more bits. Also, the bandwidth overhead will be larger.

The third solution will not work if the switching delays can be variable, since the ES has no way to
differentiate between cells destined for different FIFOs. However, if the switching delay is relatively small,
then the phase computation can be done pretending that the switching delay is zero, and the resulting error
will be small. If the delays are non-negligible, the ES could send cells to Eligible 1 till half of the output



- 9 -

frame, and to Eligible 2 thereafter. Assuming that all possible frame synchronizations are equally likely,
cells on any virtual circuit will be served too early or too late with equal likelihood, so that expected delay
jitter will converge as the length of the path goes to infinity. In a network with a large number of hops, this
may be a reasonable approach.

8. Implementation cost

Current

Eligible 1

Eligible 2

Eligible 3

Output trunk
HRR

level 1 fifos

level 2 fifos

level 3 fifos

ES

Per-VCI

queues

Trunk-phase table
VCI- trunk mapping

Service list

data flow

information flow

Figure 8: Complete scheme

The complete scheme is presented in Figure 8. The cost of the scheme is basically in
1) Providing more FIFOs
2) Implementing the ES
3) Synchronization control

If the switching delays are constant, we will need 3 FIFOs per level, and the depth of a FIFO is the
number of slots at each level. This will probably be not very large (on the order of a few kilobytes). Thus
the memory cost is small. Even if the number of FIFOs is increased to p+3 per level, as long as p is reason-
ably small (we expect it to be 1 or 2, for most switches), the cost is not appreciably more.

The ES is implemented as a simple extension of the HRR server. It only involves one more opera-
tion at each step of the HRR server, and this can be done in parallel with the other operations, since they do
not share a data path.

The cost of synchronization depends on the solution used. For the first solution, the cost is the com-
plexity in the input queue module. This may be prohibitively high. For the second solution, the cost is the
overhead for sequence information, the complexity of the marking scheme at the router, and the per-VCI
sequence information. For a small enough p, the loss of bandwidth is on the order of a few bits per cell,
and this seems reasonable. Since per-VCI information can be kept with each VCI queue header, this cost
also is small. The marking scheme at the router needs the HRR server to be augmented to mark outgoing
frames with a 2 or 3 bit header. This can be done relatively easily. Thus, the overall cost of the scheme
does not appear to be too much.



- 10 -

The third scheme needs computation of relative phases, and keeping track of the current phase. Since
the first step is done infrequently, it can be performed offline by the switch controller. Keeping track of the
current phase can be done simply by counting the number of cells transmitted since the start of the current
superframe, and this is easy. Thus, the third scheme is the most attractive one. However, since it does not
work correctly in networks where switches can have variable switching delays, in such networks, we prefer
the second scheme.

9. Limitations

We assume that the service hierarchy at all the servers, and the trunk speeds of all the trunks, are the
same. If this does not hold, then the scheme fails. Extending the scheme to allow for such variations
(which would probably occur in practice) is a topic for future work.

Another assumption is that the clocks on the input and output trunks do not drift appreciably, so that
frame times remain relatively constant. If the clock frequencies can drift with respect to each other, then
the frame times at the input and output trunks will not match, and this introduces further delay-jitter. Since
clocks in DS3 trunks drift only about one cell every 5 minutes, if the drift is corrected at the physical or
datalink layer, this should not pose a severe problem to stop-and-go service.

10. Conclusions

We have presented detailed schemes to implement Stop-and-Go queuing in networks of HRR
servers, such as XUNET II. We have shown that HRR servers can provide the timing information that is
crucial to implement SNG. Further, we have examined requirements for frame synchronization in detail.
We have discussed three alternate solutions for the problem, which are appropriate for switches with con-
stant, or variable but bounded, switching delay. In light of our work , we feel that implementing a HRR++
server is practical, and probably not much more complex than implementing a HRR server.

11. Acknowledgments

This work owes much to discussions with S.P. Morgan and C.R. Kalmanek.

12. References

(Golestani, 90): S.J. Golestani, "A Stop-and-Go Queueing Framework for Congestion Management", Proc.
ACM SigComm 1990, September 1990, pp 8-18.

(Kalmanek, 91): C.R. Kalmanek, Personal communication, September 1991.

(Kalmanek, Kanakia, Keshav, 90): C.R. Kalmanek, H. Kanakia and S. Keshav, "Rate-Controlled Servers
for Very High Speed Networks", Proc. Globecom ’90, December 1990.

(Kalmanek and Morgan 91): C.R. Kalmanek and S.P. Morgan, "Combining Stop-and-Go Queueing with
Hierarchical Round Robin Service in an ATM Network", Bell Labs Internal Memorandum 11275-910426-
03TM, April 1991.

(Verma, Zhang and Ferrari, 91): D. Verma, H. Zhang and D. Ferrari, "Delay Jitter Control for Real-Time
Communication in Packet Switching Networks", Proc. Tricomm’91 Conf., April 1991.

(Zhang, Keshav, 90): H. Zhang and S. Keshav, "Comparision of Rate-based Service Disciplines", Proc.
ACM SigComm 1991, September 1991.


