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This paper presents an approach to  time series extrapolation based on fuzzy control. The standard exponen- 
tial averaging scheme is inflexible in that it gives a fixed weight to  past history, thus ignoring transient phases 
in system dynamics. We present a modification to the scheme where the control parameter of the averaging 
scheme is dynamically adjusted by a simple fuzzy logic controller. The design of the controller is described, 
and the scheme is evaluated by simulation on test workloads and by application to the real-world problem 
of flow control in communication networks. We also study the sensitivity of our system to its descriptive 
parameters. 

1 Statement of the Problem 
A frequently occurring problem in many areas of the physical sciences is that of extrapolating a time series 
into the future, given that the observed values can be corrupted by noise. Consider a scalar variable 8 that 
assumes the sequence of values 81,82, ..., &,&+I and can be represented as 

where W k  is a random variable from some unknown distribution, called the system perturbation. 
Suppose that an observer sees a sequence of values ( 8 , )  and wishes to use the sequence seen so far to 

estimate the next value of 8. In many cases, the observed-sequence is corrupted by some noise (introduced 
by the measurement process), so that the observed value 8k is not the actual value 8k. We represent this by 

i k  = Bk + / J k  

where pk is another random variable from an unknown distribution, referred to  as the observation noise. 

What we require, instead, is that 8 k ,  the predictor of 8k, be optimal in some sense. 

2 Classical approach 
The standard solution to this problem is to use a Kalman predictor or one of its many variants [l] [3]. This 
is optimal in the sense that the expected squared error in 8, is zero. However, the system perturbation and 
observation noise variables must be from a zero mean, gaussian, white noise distribution and the observer 
must supply the variances of the system perturbation and the observation noise (though if the noise is 
colored, the Kalman predictor is still the optimal linear predictor of 8 k ) .  

The robustness of the method has made it very popular in the control literature, but it requires the 
system and observation noise variances to be know_n in advance. One cannot obtain these values simply by 
looking at  past observations, since the sequence { O k }  is the result of both the system perturbation and the 
observation noise. A simple analysis shows that in such a case, the variance of each component cannot be 
extracted. 

In this paper we consider a new approach to prediction based on fuzzy control. The approach is simple, 
yet it affords much generality, and we believe that it can be applied to a number of practical problems. 

Since the perturbation and noise variables can be stochastic, the exact value of 8k cannot be determined. 
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3 Assumptions 
We model the parameter I9k as being the state variable of an unknown dynamical system. In many situations, 
there is not enough data and/or modeling power to describe the system dynamics analytically and isolate 
the ‘system drift’ component, which may be highly non-Gaussian. The variances involved may themselves 
change over time. Since the standard assumptions are unreasonable and restrictive in this scenario, we relax 
them and make some weak assumptions about the system dynamics. First, the time scale over which the 
system perturbations occur is assumed to be an order of magnitude larger than the corresponding time 
scale of the observation noise. Thus, the observations can be thought of as a high frequency signal that is 
amplitude modulated by the system dynamics. 

Second, we assume that system can span a spectrum ranging from ‘steady’ to ‘noisy’. When it is steady, 
the amplitude of the system perturbations is close to zero, and observed changes are due to the observation 
noise. When the system is noisy, the state can change, but with a time constant that is longer than the time 
constant of the observation noise. It is assumed that the sampling process does not have any systematic 
error. 

Note that our approach is very general, since we do not make any assumptions about the distributions of 
w and p .  Also, we do not require any conditions on the variances of these distributions. On the other hand, 
we do not guarantee optimality of the resulting predictor: we only claim that the method is found to work 
well in practice. 

4 Exponential averaging 
The basis of our approach is the variant of the Kalman predictor called the exponential average predictor. 
This is given by the recurrence: 

&+, = a& + (1 - a)& 

The predictor is controlled by a parameter a ,  that can be related to the system perturbation and observation 
noise variances. However, it has another, more intuitive, interpretation: a can be thought of as the weight 
given to past history. The larger the value of a ,  the more weight past history has in relation to the last 
observed value of the parameter. The method is called ‘exponential’, since the predictor is the discrete 
convolution of the observed sequence with an exponential curve with a time constant l/(l-a). Alternately, 
if the value of $ becomes fixed, the error, 8 - 8, decays exponentially. This averaging filters out the high- 
frequency components, hopefully eliminating the observation noise and letting the system perturbations 
through. 

The exponential averaging technique is very robust, and has been used in a number of applications, 
ranging from coinputer communication protocols (for round trip time estimation), to the social sciences. 
However, a major problem with the exponential averaging predictor is in the choice of cy. While in principle, 
it can be determined by knowledge of the system and observation noise variances, in  practice, the variances 
are unknown. It would be useful to automatically determine a ‘good’ value of cy, and to be able to 
change this value on-line if the system behavior changes. Our approach uses fuzzy control to effect this 
tuning. 

5 Fuzzy exponential averaging 
Our technique is based on the assumption that a system displays a spectrum of behavior r_anging from 
‘steady’ to ‘noisy’. In a ‘steady’ system, the sequence {Ok) is approximately constant, so that O k  is affected 
mainly by observatL0-n noise. Then, a should be large, so that the past history is given more weight, and 
transient spikes in 0 are ignored. 

In contrast, the data_could be from a ‘noisy’ system, so that I9k itself varied steadily and considerably 
over time. In that case, I9 reflects changes both in 6 k  and the observation noise. A high Q would filter out 
changes in the system too, and would cause a large lag in the predictor. By choosing a lower value of a ,  the 
observer quickly tracks changes in B k ,  while ignoring past history which only provides obsolete information. 
In the limit, a can be set to 0, so that the predictor I9k becomes maximally responsive to O k  . 

While the choice of Q in the extrema1 cases is simple, the choice for intermediate values along the spectrum 
is hard to make. We use a fuzzy controller to determine a value of a that gracefully responds to changes in 
system behavior. Thus, as the system evolves along the noise spectrum, the value of a changes continuously 
to match the change, and this allows us to obtain a good estimate of Bk at all times. Moreover, if the observer 
does not know a a pr ior i ,  the predictor automatically determines an appropriate value. 
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Figure 1: Membership functions for all 4 variables : there are only 2 free parameters 

6 System identification 
In the previous section, we linked the choice of a to the ‘noise’ in the system. The problem now reduces to 
the following: how can we determine the amount of ‘noise’ in the system? This is done by means of another 
key observation. 

We will temporarily assume that the variance in the system perturbation is an order of magnitude larger 
than the variance in the observation noise. Given this assumption, if a system is ‘steady’, then the estimation 
error is small. That is, if the system has little perturbation, then the exponential averaging technique will 
produce a predictor that is usually close to the actual system state, and thus, close to the observed state. If 
that is so, when the prediction errors are small, the value of a should be large. In contrast, if the system 
is ‘noisy’, then the exponential averaging technique will give a predictor that usually has a large estimation 
error. This is because when the system noise is large, past history cannot predict the future well. So, no 
matter what the predictor does, it will usually have a larger error. In that case, the best thing to do is to 
give little weight to  past history, and set a to be low, so that the observer can track the changes in the 
system. 

To summarize, the observation is that if the predictor error is large, then a should be small, and vice 
versa. Treating small and large as fuzzy linguistic variables, we have a fuzzy controller for the estimation 
of a, as desired. 

7 Fuzzy control 
Fuzzy control requires (a) specification of the rules in terms of linguistic variables, and (b) the membership 
functions of the fuzzy labels used. Then a standard fuzzify-combine-defuzzify technique can be used for 
inference [5]. 

Since we do not have a good grasp of the state dynamics, we have only three gradations in the values of 
a and error. Even if additional resolution was provided, there is not enough domain knowledge to specify 
a values for all the finer gradations of error. In any case, a finer granularity would be justified only if the 
correct a value is not the one obtained by interpolation among the three rules below. This results in the 
following control rules: 

if erroris large then a is small 
if error is medium then a is medium 

0 if erroris small then a is large 

The shapes and ranges of the fuzzy labels small, medium and large remain to be specified. We look at  
various ways in which this can be done and will argue that a reasonably simple choice works well. We make 
the standard assumption that these are all trapezoidal-shaped, normal fuzzy sets. This would usually require 
specifying four parameters for each linguistic variable (the interval of support and the interval over which 
membership is 1). However, we argue below that in this estimation context, the overlap should be maximal 
(as shown in Figure l), and hence we have 2 free parameters (me and ma), the modes for the two medium 
labels. 

The reasons for this are as follows. If I ,  is not 0, there exists a range of non-zero error, for which a will be 
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set t o  1. This means that the estimator will never catch up, maintaining a residual error even in the absence 
of all noise. On the other hand, the choice of T,  is linked to the choice of definition and scaling of the error 
variable, so the latter can be chosen to make re 1. We will show (in Section 9), that the choice of 1, and re 
do not affect the system’s qualitative behavior, but a non-extrema1 choice here causes a larger gradient in 
the system response curve, which is undesirable. Hence there are two degrees of freedom left: nz, and ma. 

The tuning to compute a good value for these can be done using a neural network training algorithm 
(as in [2]), but here we concentrate on the effects of these two parameters as they are varied over the entire 
range. In any case, fine-tuning is bound to be application specific, and we are only interested in general 
characteristics of such a system at  the moment. A further possible simplifying assumption is to force the 
two middle points t o  be identical in value. This has no justification, apart from reducing the number of 
parameters. We have tried this as well, but found it to be too restrictive. 

Since a E [0,1], and the error is unbounded, we have used proportional (relative) error, which is defined 
as lerror/predictor(. The absolute value is good enough since there is no reason, in general, to suppose that 
positive and negative error should induce different behavior for a. The output of the controller is defuzzified 
using a standard centroid defuzzifier, and scaled up to fit the response range [0,1]. 

8 Smoothed proportional error 
If the controller input is the absolute value of the proportional error, then the value of a can change drastically 
due to a single observation with a large error. This is a problem, since if a drops to a small value, the entire 
past history can be quickly lost. We need a way to smooth changes in the error due to observation noise. 

Our solution is to use an exponential averaging filter to smooth the error as well. The value of the 
smoothing constant, say ,B, should usually be low so that the predictor is sensitive to errors, but high enough 
to eliminate spikes in the error. Thus, if the errors are consistent, then the result of the smoothing is the 
value of the error. However, if the error is transient high, probably due to observation noise, then the spike 
is effectively ignored, and the controller for a is unaffected by it.  The result is that the predictor for Bk 

responds to consistent errors in prediction, and is unaffected by single large errors. Such smoothing cannot 
be utilized in a system with a fixed a.  

Note that with this addition, the size of the observation noise variance in relation to the system per- 
turbation variance does not matter. Even if the observation noise variance is large, the smoothing of the 
observation noise removes the rapidly changing transients in the noise, and so the controller for a sees some- 
thing that reflects the system perturbations alone. Hence, the earlier assumption that the variance of the 
observation noise be smaller than the system perturbation variance may now be removed. 

The desired behavior for ,B is achieved by designing another fuzzy controller with the following rules: 

if change-in-error is high, ,B is high 
if change-in-error is low, p is low 

The linguistic values low and high are defined as triangles (see Figure 1). Note that there are no 
additional free parameters which require specification here. The change in error was initially defined to be 
the difference between the current value and the previous value of the proportional error. We found that this 
could eliminate only a single outlier in the error. If outliers can be of longer durations, due to  correlations 
in the observation noise, then change-in-error must be redefined. In practice, we found that defining it a3 
the change over 3 successive samples, which eliminates spikes of length upto 3,  works quite well. The value 
of ,B is computed before the error is smoothed; the smoothed value of error is then used to compute a .  

Figure 2 is the signal flow diagram of the resultant system. It incorporates two exponential averagers, 
and two fuzzy controllers. In general, because of the complexity of the system, it could behave poorly, and 
may even be asymptotically unstable. However, both the fuzzy system and the exponential averagers are 
robust and insensitive to small errors. Hence the system is quite well behaved. 

9 Sensitivity analysis 
This section studies the sensitivity of our system to its two descriptive parameters: me and ma. The first 
fuzzy component of the system provides a mapping from proportional error to a.  This mapping is nonlinear 
because of the defuzzification process. However, the map is continuous and differentiable a t  all points of 
interest. Continuity is due to the use of fuzzy sets (and their overlap), and differentiability is follows from 
the centroid defuzzification process. A typical response curve is shown in Figure 3: it is a rational function 
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Figure 2: Schematic flow diagram of the prediction system 
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Figure 3: The Input-Output Mapping of the a-computing system, as a function of its parameters (A) ma 
= 0.5, me varies from 0.1 to 0.9, (B) me = 0.5, m, varies from 0.3 to  0.7. 

(the quotient of a cubic and a quadratic polynomial). It has the desirable properties of being a smooth, 
monotonic interpolation between the extrema1 cases, with small gradient in the intermediate region. The 
exact derivatives a t  0, 0.5 and 1 are given by: 

-ma(4 - ma) (mm + 3)(1- ma) 
y o , -  

2me(l-  ma)  2mQ( - 

How critical is the choice of the two parameters ma and me?  We need to show that the response curve 
as well as its derivative are not sensitive to small changes in the values of these two parameters. The former 
is evident from the figures (it is easy to  prove this analytically as well). A similar analysis shows that the 
derivative af/az, at  z = 0.5,me = 0.5, is 0 and independent of the value of m,. If m, is fixed at 0.5, then 
this derivative at the same point varies as 3z/(1- lot) ,  where t is a small change in the value of me. For 
behavior at larger deviations, see Figure 3. 

Several qualitative observations can be made about the family of curves so produced : 

0 The effect of varying me, while holding m, fixed, is to smoothly shift the 0.5-crossing in the appropriate 
direction. This has the effect of stretching either the high or low error regions. If the user requires 
higher sensitivity in any of these, he can bring it about by tweaking the me value. However, the 
response curve (as a whole) is not sensitive to small changes in me around 0.5, so the exact value of me 
is not very important. Specifically, high precision in specifying this value is not needed, and fine-tuning 
may be dispensed with. 

0 The effect of varying m, (while me is fixed) is complementary. The 0.5-crossing remains fixed at 0.5, 
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whereas gradients are changed in the two regions. Again, around 0.5, variation in ma has only limited 
effect and does not change the qualitative behavior. 

A suitable combination of the two effects can be obtained by varying both parameters. Extreme values 
for either cannot be justified (given just a gross picture of the system dynamics), and should be avoided. 
The actual choices are left to the user and once chosen, can remain fixed. This is an advantage in 
real-world applications. 

We propose fuzzy control as a way to describe and manage a non-linear system. The main point to 
be made here is that the system response curve, though nonlinear, is well-behaved. This behavior can be 
analyzed and checked easily. Moreover, the nonlinearity is the result of using fuzzy logic control in a simple 
way. If an adaptive system were to be designed in the classical manner, the designer would have to  specify 
this nonlinearity in all detail. Since the parametric forms as well as the parameter values would have to be 
chosen (quite subjectively), such an approach seems impractical. 

10 Simulation Results 
We tested the fuzzy predictor using two kinds of simulations. In the first set, an artificially generated input 
was presented to the predictor, and the behavior of the predictor was compared to a system where the value 
of a is fixed. 

We used a few different types of system dynamics, corrupted with varying amounts of gaussian observation 
noise: 

system is sinusoidal, with noise 
0 super linear growth, with noise 
0 system is constant, observation noise increasing 

To compare our results with the standard approach of fixing a ,  we have fixed a at  0.9. This is because even a 
moderately low, fixed a (say, below 0.5), is very sensitive to noise and is bad as a predictor. Both estimators 
start with a value 10.0. The results of these simulations are summarized in Figure 4.  Some remarks on the 
observed characteristics of this predictor: 

A high, fixed a is very bad at  catching up with a varying system. This may happen for a globally 
convex function (such as a quadratic or cubic), or may happen over a shorter timescale for a sinusoidal 
form (near the zero-crossing). No exponential estimator can predict a value greater than the previous 
value seen when the system is increasing, because of the convex combination form used. Both the fixed 
and adaptive system underestimate in this scenario, but the fuzzy system has a much smaller lag since 
it has set (Y t o  be low, because of consistently high error. This improvement can be clearly seen in 
Figures 4A-D. It consistently does better a t  the expense of some smoothness. 

A related problem is that of the long initial transient for fixed a (Figures 4C and 5A). In contrast, the 
fuzzy system catches up as soon as the error is reflected in the input of the fuzzy map which computes 
a ,  since it causes a to drop suddenly, allows the estimator to catch up, andthen again raises a if the 
system is steady enough. This locks in the value. So the start-up value of 0 can be arbitrary for the 
fuzzy system. 

0 If the system is constant, the fixed-a system has a clear advantage, since fixing a at  1 would deliver 
perfect behavior. The fuzzy system’s behavior will worsen if noise variance increases with time. Figure 
5A shows this when the true value is constant a t  100 while observation noise increases with time. 
However, the variance in the estimator (which is entirely due to observation noise) is acceptable for a 
significant range of noise amplitudes. Note the long transient for a fixed a.  

The essential point in favor of the fuzzy system is adaptability. It can respond to changes in system 
behavior by changing a ,  depending on feedback. We see that only two or three rules are required to 
cover the entire range of possible scenarios and that fuzzy logic smoothly interpolates between the 
rules. 

We now turn to a real-world application - the problem of flow control in a high-speed wide area network. 
Essentially, each user determines its service rate by regularly probing the network. The sequence of probe 
values is used to predict the service rate in the next time interval, and the user matches its data transmission 
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Figure 5: (A) The error of the estimators as observation noise variance increases with time (mean=200). 
Note the long-lasting transient for fixed a. (B) The round-trip time estimation problem. The change in a is 
also shown. me = 0.7, ma = 0.5. 



rate to this predicted rate. Figure 5B is a sample trace showing the probe values and the corresponding 
choice of transmission rate over a period of 100 seconds. The averaging constant CY is also shown. 

The transmission rate, for the most part, tracks the probe value. Note that single spikes in the input 
are ignored, and that,  whenever the probe values stabilize, the transmission rate exponentially catches up to 
the probe value. The fact that  the source tracks the input rather closely shows the effectiveness of the fuzzy 
controller. Since the controller drops the value of (Y whenever the prediction error is large, it can quickly 
catch up with the probe value. Thus the source is able to send more data than it could otherwise. See [4] 
for further details. 

11 Drawbacks of the approach 
The most important assumption in our work is that system perturbation and observation noise are distin- 
guished by the time-constants associated with them. We do not need specific values but their ratio must be 
“high enough”. While dropping all distinction between the two would make the problem insoluble, it may 
be possible to  weaken the assumption to a constraint on the power laws obeyed by the frequency spectra of 
the two types of variation. 

Proportional error is a problem. It is better than using absolute error, but since it is measured relative 
to the magnitude of 0, it could get distorted significantly if the value of 6 is close to zero. One simple 
solution to  this is to artificially translate the input away from zero, then perform the inverse translation on 
the prediction. Presently, we tackle this problem by switching to absolute error when the proportional error 
gets drastically distorted. On the other hand, the cutoff for this switch in metrics is currently arbitrary, and 
absolute error is rarely a good metric since it is not scale-invariant. 

This happens because the p- 
computing system is unable to filter out all the spikes and any noise leaking through to the a-computing 
system will cause CY to drop, and the estimator will end up reflecting the noise. Thus noise with high variance 
does affect system performance. 

12 Conclusion 
We have presented a very general, intuitively appealing method for time series estimation in the presence of 
system perturbation and observation noise. This method uses fuzzy logic control to adaptively adjust the 
weighting factor in the exponential averaging scheme. It uses the performance of the system in the recent past 
as a feedback to  do this. Explicit models and variances for the two types of noise are not required. Transient. 
behavior is adapted to automatically. The control knowledge is simply heuristic arguments, interpreted as 
fuzzy if-then rules. The method is shown to work well for both synthetic input data as well as a real-world 
application. 

In addition to the problems outlined in the previous section, it would be interesting to apply this method 
to other applications. This would enable one to  test the application-dependence of the two user-controlled 
parameters. 
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