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An Empirical Evaluation of Virtual Circuit Holding 
Time Policies in IP-Over-ATM Networks 

Srinivasan Keshav, Carsten Lund, Steven Phillips, Nick Reingold, and Huzur Saran 

Abstruct- When carrying Internet Protocol (IP) traffic over 
an Asynchronous lkansfer Mode (ATM) network, the ATM 
adaptation layer must determine how long to hold a virtual 
circuit opened to carry an IP datagram. In this paper we present 
a formal statement of the problem and carry out a detailed 
empirical examination of various holding time policies taking into 
account the issue of network pricing. We offer solutions for two 
natural pricing models, the first being a likely pricing model of 
future ATM networks, while the second is based on characteristics 
of current networks. For each pricing model, we study a variety of 
simple nonadaptive policies as well as easy to implement policies 
that adapt to the characteristics of the IP traffic. We simulate our 
policies on actual network traffrc, and find that policies based on 
LRU perform well, although the best adaptive policies provide a 
significant improvement over LRU. 

1. INTRODUCTION 

T IS GENERALLY accepted that, in the near future, I large computer networks will be connection-oriented, with 
at least the data-link layer connectivity being provided by 
Asynchronous Transfer Mode (ATM). These networks will 
need to communicate with existing networks. The world's 
largest computer network, the Internet, with more than a 
million computers, uses the connectionless Internet Protocol 
(IP). For the huge existing investment in IP networks to remain 
useful, we must devise mechanisms to carry IP traffic over 
ATM networks. A fundamental issue is how to carry datagrams 
over virtual circuits. It is clear that the arrival of an IP datagram 
should cause a virtual circuit to be opened, if one is not open 
already. However, it is not clear how to handle the open circuit 
thereafter. It would be desirable to keep it open for some 
time, to amortize the cost of opening the circuit over many 
packets. On the other hand, if no more packets will arrive 
soon, it is better to close the connection. The ATM adaptation 
layer must decide heuristically how long to hold the circuit 
open, since the IP datagrams do not contain information about 
the length and rate of any higher layer conversations. Similar 
problems arise in carrying IP traffic over other connection- 
based networks, such as X.25. In this paper, we present an 
empirical study of the arrival process of IP datagrams to the 
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ATM adaptation layer. We find that the data shows temporal 
locality of reference, and therefore holding time policies based 
on Least Recently Used (LRu) perform well. However, we 
obtain a significant improvement over LRU by using adaptive 
policies that conform to the inter-arrival time distribution of 
each conversation. 

In the next section we discuss previous work in this area. 
Section I11 presents the necessary background and details of 
the network pricing models. In Section IV we describe and 
analyze the empirical data used in this study, while classes of 
holding time policies are discussed in Section V. Section VI 
presents the policies for a pricing model with holding costs, 
together with a comprehensive comparison of the policies. 
Section VI1 presents the holding policies for a pricing model 
with a maximum number of connections, together with an 
empirical evaluation of their performance. Finally, Section IX 
closes with some discussion and conclusions. 

11. PREVIOUS WORK 

The holding time problem arises naturally in carrying con- 
nectionless protocols such as IP over connection-oriented 
networks such as X.25 and Datakit. While existing imple- 
mentations embody several holding time policies such as 
Least Recently Used [l], a formal statement of the holding 
time problem and a comparative study of these policies was 
presented by Saran and Keshav [ 2 ]  and further studied by 
Lund, Phillips, and Reingold [3]. 

Lund, Phillips, and Reingold [4] gave a theoretical treatment 
of the pricing model with a maximum number of connections, 
described below. Their theoretical algorithm is the basis of 
one of the adaptive algorithms studied in this paper. Harita 
and Leslie 151 studied the related problem of dynamically 
allocating bandwidth when carrying ATM on a narrowband 
ISDN network. 

111. BACKGROUND AND PRICING MODELS 

The most important factor in determining a virtual circuit 
holding time policy is the pricing model of the network. The 
pricing model determines which parameters the VC holding 
time policy should seek to minimize. We study two pricing 
models: the first is a possible pricing model of future ATM 
networks, while the second is based on characteristics of 
current networks. 

In both cases, we assume that IP packets are partitioned into 
conversations based on their source and destination Internet 
addresses. (The ATM adaptation layer may offer a finer grained 
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connectivity by further partitioning conversations based on the 
port number of the IP source and destination.) Throughout 
the paper we will simplify the presentation by the following 
slight abuse of terminology: we often refer to a conversation 
as a circuit that can be repeatedly opened for transmission of 
a packet, and closed sometime thereafter. In actuality a new 
virtual circuit must be set up each time. 

There are additional issues that might arise when carrying IP 
traffic over an ATM network, such as deciding what bandwidth 
to request when opening a VC to transmit an IP datagram 
[5] .  If insufficient bandwidth is requested or available from 
the ATh4 network, queueing of IP datagrams at the IP-ATM 
interface would become necessary. We do not consider such 
issues in this paper, instead only focusing on the problem of 
finding good holding time policies. 

In the rest of this section we describe the two pricing 
models. 

A. A Pricing Model with Holding Costs 

Future ATM networks are expected to support a large 
number of virtual circuits that will be available to end-users 
on a pay-per-use basis. The manner in which users are charged 
is likely to be analogous to telephone billing, hence we study 
the following pricing model: there is a call connect charge of 
C monetary units, and a holding cost of H monetary units 
per time unit that a circuit remains open. The holding cost 
serves as an incentive for a user to return unused resources 
to the network. For convenience we assume that monetary 
units are scaled so that H = 1. There may be other charges 
associated with a circuit, such as a per-packet usage charge, 
but these charges do not affect the choice of virtual circuit 
holding policy. 

Setting up a virtual circuit involves both a financial cost of 
the call setup and a user delay waiting for the call connect. To 
quantify the loss of utility to the user due to the call connect 
delay we define an open cost, 0, measured in monetary units, 
that is an estimate of the combined financial and user cost of 
a call setup. A system manager can vary the value of 0 to 
reach a satisfactory price/performance tradeoff. 

After each packet arrives on a circuit, we must decide how 
long to keep the circuit open. This length of time is the 
timeout-if no packet arrives before the timeout, the circuit is 
closed and must be reopened when a packet eventually arrives. 
Keeping a circuit open too long results in a large holding cost, 
while closing it too early results in an unnecessary open cost. 
Thus the problem that the ATM adaptation layer must solve is 
to determine a timeout that incurs a low cost. 

B. A Pricing Model with a Maximum Number of Connections 

Some traditional virtual circuit oriented networks regard 
virtual circuits as a valuable resource, and have a limit on 
the number of virtual circuits that an end-user may have open 
simultaneously. This is often true of X.25 networks [ 11, where 
the limit is typically between 32 and 128. For these networks 
we use the following pricing model: the user pays a fixed 
charge for a block of connections to a site, and is then charged 
for each call setup. Since there is no cost for holding a circuit 

open, it makes sense for the user to keep the maximum number 
of connections open all the time. As observed in [l] this 
pricing model is closely related to paging: the connections are 
analogous to page slots in memory, while the conversations 
that are competing for the connections are analogous to the 
pages of virtual memory. When a packet arrives on a virtual 
circuit that is closed, the virtual circuit must be opened to 
transmit the packet, and some other virtual circuit must be 
closed to satisfy the bound on the number of connections. 
This corresponds to a page fault in the paging problem. 

The cost of a call setup might include a loss of utility to 
the user due to the time delay in performing the call setup. 
In any event, the quantity we wish to minimize is the number 
of call setups. 

IV. WORKLOAD ANALYSIS 

We collected traces of packet arrivals from Ethernet net- 
works, using the SunOS etherf ind  command. This com- 
mand places the Ethernet interface in promiscuous mode and 
collects all the Ethernet headers received on the board, along 
with time-stamps. The command was run on Ethernets at 
AT&T Bell Laboratories in Murray Hill, the University of 
California at Berkeley, the University of Southern California 
in Los Angeles, Yale University in New Haven, and the Indian 
Institute of Technology in Delhi. We collected a total of 53 
traces, each consisting of between 2000 and 20000 packets, 
with broadcast packets filtered out. The five networks all cater 
to research communities, but offer widely varying computing 
environments, ranging from primarily PC’s in Delhi to high- 
performance workstations at Berkeley. 

The five environments had quite distinct characteristics: the 
data from UCB and USC were taken from LAN’s with a 
large number of active workstations, and there were many 
simultaneously active conversations. The data from IIT Delhi 
were taken from a LAN that had a few workstations and 
a number of PC’s using TCP/IP. The number of active 
connections here was significantly lower and the data consisted 
of a smaller number of connections being sampled for a larger 
period of time. The AT&T Bell Labs and Yale data were taken 
from networks with a small number of active workstations and 
had somewhat similar characteristics to the IIT Delhi data. 

In gathering traces from LAN’s, we are assuming that this 
traffic will actually be carried over a WAN. This assumption 
may seem surprising at first, since current LAN and WAN 
traffic characteristics differ widely. However, we anticipate 
that as high speed ATM WAN’S become available, higher 
throughputs and lower delays will significantly alter wide area 
traffic patterns. Given high speed wide area networks, it is 
feasible to mount remote file systems (NFS), and run client 
server applications (such as X) over a WAN, whereas these 
options are not common today. 

A.  Data Analysis 

Based on the application level characterization work by 
Caceres et al. [6], our intuition was that conversations in the 
traffic traces we collected would show behavior on widely 
varying time-scales, including a user time-scale and a network 
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Fig. 1. Conversations with different inter-arrival distributions. 

time-scale. The idea is that some usage of the network must be 
mediated by a human user, and thus shows somewhat larger 
inter-arrival times, while other usage is mediated directly by 
a computer, and so will have shorter inter-arrival times. As 
an example, during an FTP session, a human user may type 
“get jilename,” where each keystroke is at the user time-scale. 
However, the response, which (in an uncongested network) is 
a stream of back-to-back packets, would be at the network 
time-scale, since a user would usually not generate packets at 
that speed. Similarly a Mosaic session may involve a burst of 
activity when a user follows a hyper-link, followed by a period 
of inactivity while the user digests the received information. 

Results in Paxson and Floyd’s recent paper [7] empirically 
confirm our intuition about the existence of user and network 
time scales. Specifically, they found that both Telnet and FTP 
data packet arrivals are bursty over multiple time scales. At 
the slower time scales, these correspond to user interactions 
(typing, or FTP get commands), and at faster time scales, 
these reflect network dynamics. 

These observations are reflected in the packet traces we 
collected. Fig. 1 shows a representative trace from the data 
we use. Each line is a simplex conversation between a pair of 
Internet hosts, and each diamond represents a packet. Different 
conversations have very different inter-arrival characteristics, 
and there is also variation in inter-arrival times inside a 
conversation. Incidentally, in Fig. 1, the reader may notice 
that some pairs of conversations are correlated; such pairs 
correspond to duplex conversations. 

The observed inter-arrival distribution of conversation num- 
ber 10 is shown in Fig. 2. This is a bursty distribution, that 
displays the clustering phenomenon described above. Under 
most reasonable pricing policies, the best way to handle such 
a conversation is to hold its connection open while the inter- 
arrival times are drawn from the faster time-scale and drop the 
connection at the end of a burst, when we anticipate that the 
next inter-arrival time will be drawn from the second-level 
time scale. 

On the other hand, conversation number 4 displays very 
different characteristics. This conversation has a lot of traffic, 
but does not display burstiness at this time scale, see Fig. 3. 
(However, at a larger time scale this conversation may also 
appear bursty.) Another nonbursty distribution is represented 
by conversation 12, which has fairly regular inter-arrival times 
on a much larger time scale than conversations 4 or 10. 
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Fig. 3. Inter-ai-rival time distribution for a less bursty conversation (number 
4 from Fig. 1). 

There are two observations to be made from examining 
the data. Firstly, across all conversations in a trace there is 
locality of reference, i.e., the next packet to arrive is likely to 
be in a conversation that has recently had a packet. Secondly, 
individual conversations have characteristics that remain fairly 
consistent for periods of time. These two observations are 
discussed in more depth in the following sections. 

B. Temporal Locality 

To look for temporal locality, we looked at the frequency 
of reference to a least recently used stack corresponding to 
a trace. We built a small simulator that looked at a trace, 
and pulled each reference to a conversation to the top of a 
stack. We also kept track of the number of references to each 
level of the \tack. If our hypothesis about temporal locality is 
true, then the frequency of references to the top of the stack 
would be much higher than the frequency of references to 
the lower levels of the stack. Indeed, all our data show a 
steep decline in the frequency of reference to a stack level as 
the depth increases (see Fig. 4 for two sample traces), clearly 
indicating the presence of temporal locality. So, if at some 
time a conversation has been recently referenced, it is likely 
that it will 4oon be referenced again. 

C. Consistent Behavior of a Conversation 
for  Extended Time Periods 

Different conversations can have widely different character- 
istics, in terms of bandwidth, regularity, burstiness, or other 
measures. For example, a telnet session involving a user 
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Fig. 4. Cumulative references versus LRU stack depth. 

entering text in an editor will have fairly regular inter-arrival 
times, corresponding to user keystrokes, with occasional bursts 
when the editor reformats the display. In contrast, an FTP 
session will be much more bursty, with less activity at the 
user time scale. If we plot a histogram of the inter-arrival 
times between packets in such a session, we expect to see a 
bursty distribution as depicted in Fig. 2 .  

However a single session typically has consistent behavior 
over extended periods. For example, in our telnet example, 
the conversation will remain consistent as long as the user 
is entering text. Although the inter-arrival time distribution 
does not capture aspects of a conversation such as correlations 
between adjacent inter-arrival times, it provides a good method 
for predicting future inter-arrival times. 

How can we use this observed behavior? One possible ap- 
proach to developing adaptive holding policies is to construct 
a policy that works well against data generated according 
to some model of network traffic. For a model to be use- 
ful, it must allow for the wide variation in traffic observed 
in practice. However traditional models tend to be over- 
parameterized, while the self-similar stochastic model of [8] 
has parameters that seem computationally difficult to estimate. 

Instead of assuming a model for the data, our adaptive 
policies make the single assumption that the inter-arrival time 
till the next packet in a conversation is likely to be drawn 
from the same distribution as the inter-arrival times that have 
been observed so far in that conversation. Thus we can use 
the observed inter-amval distribution to make a good choice 
of timeout (in the holding cost model) or of which circuit to 
close (in the paging model). We make no assumptions about 
the structure of the inter-arrival time distributions, so our work 
is not based on any strict assumptions about the kind of traffic 
that will appear on future networks. 

V. HOLDING TIME POLICIES 

The simplest holding policy is not to hold a VC at all. That 
is, on every packet arrival, a VC is opened, and then closed. 
Given the round-trip-time delay in opening a circuit and the 
cost of call setup, this option is not particularly effective. 

The optimal holding policy is one that is noncausal, that is, it 
knows about the future. The specific optimal strategy depends 
on the pricing policy and system constraints. For example, in 
the paging model, the optimal strategy is to simply drop the VC 
on which a packet will arrive the farthest in the future. While 

the optimal policy is unachievable, it provides a benchmark 
against which to compare all other policies. 

In general, a holding policy gathers some statistics about the 
inter-arrival times and uses these statistics to decide when each 
VC should be closed. For each pricing model, we consider 
several different holding policies. The policies differ in how 
much, and what kind of information is gathered about the 
inter-arrival time distributions for each VC. 

In each pricing model the simplest policies we consider use 
no information at all about the observed inter-arrival times. We 
also consider a policy that maintains an exponentially averaged 
mean and deviation for each VC. One would expect that such 
a policy should be able to use this information to make better 
decisions regarding the closing of virtual circuits. However, 
our results indicate that this information is insufficient to 
design good holding time policies. 

The best policies in each pricing model are based on 
gathering more complicated statistics for each VC. Essentially, 
an approximation to the entire inter-arrival time distribution 
is kept and updated each time a packet arrives. We call these 
policies ADAPTIVE since the choice of holding time for a given' 
VC adapts to the inter-arrival time distribution for that VC. 
We show how to maintain the approximate inter-arrival time 
distributions with very little overhead. 

Our adaptive policies were first developed and tuned to 
optimize performance on data sets from Berkeley, USC, IITD, 
and AT&T. Afterwards, to ensure that the policies would 
perform well not only on the data for which they were tuned, 
the policies were run on a second set of data from AT&T and 
on the data from Yale. The simulation results for the new data 
sets are consistent with the results of the original data sets (see 
Sections VI-C and VII-C). It is therefore reasonable to expect 
that our findings will remain true for general Internet traffic. 

VI. THE HOLDING COST PRICING MODEL 

In the first pricing model we study there is a holding cost 
of 1 monetary unit per time unit that a circuit remains open. 
Each time a circuit is opened there is an open cost, U ,  that 
includes both the financial cost of a call setup and an estimate 
of the cost to the user of waiting for the call connect. A 
system manager can vary the value of U to reach a satisfactory 
price/performance tradeoff. 

After each packet arrives on a circuit, we must decide how 
long to keep the circuit open. This length of time is the 
timeout-if no packet arrives before the timeout, the circuit is 
closed and must be reopened when a packet eventually arrives. 
Keeping a circuit open too long results in a large holding cost, 
while closing it too early results in an unnecessary open cost. 

Note that the charging of each circuit is independent of other 
circuits. It is possible that packet arrivals on different circuits 
will sometimes be correlated, but we make no use of such 
possible correlations, and consider each circuit in isolation. 

A.  Holding Policies 

In this section we consider several different holding policies 
in detail. In the simplest policy, the same timeout is used 
for each VC, while in the others some information about the 
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previously observed inter-arrival times is used to set a timeout 
for each VC. 

The (noncausal) optimal policy for this pricing model is 
trivial-if the next arrival is more than 0 time units in the 
future, the VC is closed, else it is kept open. This policy 
guarantees the smallest possible cost for each Conversation. 
Although this policy cannot be used in practice since it relies 
information about the future, it is convenient to use as a basis 
for comparison with other policies (see Section VI-C). 

1 )  LRu-BASED Policies: The temporal locality in our data 
motivated us to explore LRU-BASED policies for holding VC's. 
In the simplest version, if a conversation has been idle for time 
t then we predict that the next arrival will be ct time units 
in the future, where c is a constant. Notice that the relative 
predicted arrival times correspond to relative depths in the 
LRU stack. Applying this method of predicting future arrivals 
we get a very simple policy: drop a conversation if it has 
been idle for 0 / c  time units. Thus this policy sets the same 
timeout, 0 / c ,  for all conversations. This policy has another 
very nice property: 

Lemma I: The cost incurred when using the LRU-BASED 
policy with parameter c is no more than max ( e ,  l /c)  + 1 
times the optimal cost. 

To prove this, observe that the worst case input is one where 
the packets arrive U / c  time units apart. The optimal cost of 
serving this sequence is min ( 0 , 0 / c )  per packet whereas the 
LRU-BASED policy spends ( 0 / c + 0 ) .  Thus, we can guarantee 
that the cost incurred is no more than max (c, l / c )  + 1 times 
optimum. In our study we examined a range of different values 
for e. 

2 )  The MEAN-VARIANCE Policy: The next strategy we con- 
sider is to predict the arrival time of a particular VC based 
on a small amount of history. The estimation algorithm was 
derived from Jacobson's work on good estimators for round 
trip times [9 ] .  We measure the inter-arrival time for each 
VC and compute an exponentially averaged mean and an 
exponentially averaged mean deviation from the mean. For 
a given VC, let t k  be the lcth inter-arrival time. For some 
fixed parameter 0 < a < 1 (we used a = O . l ) ,  the estimate 
of the mean inter-arrival time, pk+l, and the deviation, c r k + l ,  

are computed as follows: 

When a packet arrives, we use the current estimates p = 
pk+l and a = uk+l to choose a timeout. It is very likely that 
a packet will arrive to the VC in the interval [p - 2a, p + 2a] .  
If p - 2 0  > 0, then the VC should be closed immediately. 
Similarly, if p + 20  < 0, then the VC should certainly be 
kept open, at least till p + 2a. If U lies in the interval 
[pL-2u, p+20], then we have to make some assumptions about 
how the probability mass is distributed within the interval 
[p - 2a, p + Za]. We assume that the probability mass is 
concentrated around the mean and close the circuit if p > U 
and keep it open otherwise. Thus, if p > U the timeout is set 
to 0, otherwise it is set to niin ((3, max ( p  + 20, C)), where 

C is is a cutoi'f parameter that ensures that for very high rate 
conversations we do keep the circuit open for a reasonable 
time. In our work, we chose C = 01.5. However, we have 
seen that the results are insensitive to choice of C in the range 
0/3 to 016.  

3) The ADAPTIVE Policy: Our adaptive policy uses the sin- 
gle assumption that the inter-arrival time till the next packet 
in a conversation is drawn from the same distribution as the 
inter-arrival times that have been observed so far. Thus we 
can use the observed inter-arrival times to make a choice of 
timeout that is suited to the individual conversation. To design 
the best adaptive holding policy we need to decide first what 
information to gather about the inter-arrival time distribution, 
and second how to use that information to determine the best 
timeout, assuming the next inter-arrival time is drawn from 
the same distribution. The following sections describe the 
solutions to these problems. 

When D is  known: Assume that we know the distribution 
'D on the next inter-amval time. Suppose that D has a 
probability density function f ~ ,  so that if T is an inter-arrival 
time drawn from D, then 

We wish to set a timeout t . ~  that minimizes the expected 
cost of the next packet. This cost is the time the circuit is held 
open before the next packet arrives, plus 0 if the circuit must 
be reopened for the next packet. If the timeout is set to t,  then 
the expected cost of the next packet can be expressed as 

The first term is due to inter-arrival times of at most t .  where 
the cost is just the holding time (i.e., the inter-arrival time). 
The second term results from inter-arrival times greater than t,  
where the cost is the holding time plus the open-cost, (t + U ) .  

We seek to minimize the expected cost of the next packet, 
so we merely choose the timeout tD to be the value o f t  that 
minimizes C( t , 'D). Notice that tD is a parameter of the distri- 
bution function only, so the timeout is the same for each packet 
in the conversation. However, different conversations have 
different inter-arrival time distributions, so will have different 
timeouts. The timeout t D  is thus tuned to the characteristics 
of the particular conversation. This derivation for the optimal 
timeout has also been obtained in the context of spinning on 
a lock in a shared-memory multiprocessor [ 101. 

When D must be learned: The previous section assumes 
that the distribution D of inter-arrival times is known. In 
reality, D is not known, and must be inferred by observation. 
Hence we keep a histogram 7-L of observed inter-arrival times. 
For each i E (0 . .  . m - 1). W ( i )  is the number of observed 
inter-arrival times in the interval [i x M/7n, ( i  + 1) x hil/m), 
where the parameter m is the number of entries in 3-1 and M 
is the maximum timeout we will use. Experiments suggest 
that a good value for m is between 10 and 100 (see Section 
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VI-C). The value of M is not critical, as long as it is at least 
0; in our simulations we use M = 0. 

We would like to set a timeout tx that is a close approxima- 
tion to tv. Let n('7-l) = "(2) be the number of inter- 
arrival times observed so far. Using IFI as an approximation 
to D, we define the estimated cost of a timeout t analogously 

< 

to C ( t , D ) :  

'Ft(2) 2 x M -___ 
n(lFt) vi 

EC(t,IFt) = 
0 < i: (( i+ 1 )  x hf/rn) 5 t 

Notice that the true "cost" of samples in histogram i is 
between K(i)/n(IFt) and IFl(i + l)/n('Ft), depending on the 
exact inter-arrival times that were placed together in the bin. 
We have chosen % ( 2 ) / 7 ~ ( W )  in the above formula, simply 
because this choice gave slightly better empirical results. 

Lett '  be the value o f t  that minimizes E C ( t , X ) .  A natural 
strategy is to choose the timeout tx to he t'. However, t' 
is a biased estimator of t x ,  and on many distributions in our 
sample data, t' underestimates t H .  As an example, consider an 
inter-arrival time distribution D with the distribution function 
fv pictured in Fig. 2. 

The best timeout tv for D is at the end of the peak, at time 
1/2. However, the first few inter-amval times drawn from D 
are likely to be around 1/4, so at first t' will be around 1/4. 
This means that using t' as the timeout would have the costly 
result of the circuit initially being reopened more often than 
necessary. 

There are standard methods to approximate the bias of 
a biased estimator, for example using bootstrapping [ l  I].  
However, in our case a simpler method of countering the bias 
of t' works well: to simply set the timeout to be t' plus a 
small correction, 

tx  = t' + S. 
Experimentally we find that our results are quite insensitive to 
the value of 6, see Fig. 6. Using S = 0.1 x 0 gives roughly a 
5 %  improvement over S = 0, when 0 is large. 

A last optimization is that, if t' = 0, then few small 
inter-arrival times have been observed, so the underestimation 
problem does not arise. In this case we do not want to increase 
t R ,  as the holding cost would increase unnecessarily. Hence 
if t' = 0 we set tx = 0. Thus the formula for tx  is 

If t' = 0 then tx = 0 else tx = t' + 0.1 x 0. 

Computing t x  is very efficient, and can be done in linear 
time using a single pass through the histogram. 

On the arrival of the first packet in a conversation, no data 
are available about the distribution, but we must still set a 
timeout. Experimentally we find that the best choice of initial 
timeout is 0.1 x 0, though again the results are insensitive to 
the exact value, see Fig. 6. We have achieved some very small 
improvements over the empirical results described below by 
doing more detailed tuning. It is reasonable to expect that if 
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Fig. 5. Sensitivity of LRU-BASED policy to c in the holding cost model. 
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necessary, further improvements could be achieved by careful 
tuning on a collection of representative data. 

B. Sensitivity Analysis 

The LRU-BASED and ADAPTIVE policies have some param- 
eters that need to be set. The LRU-BASED policy has the 
parameter e ,  while the ADAPTIVE policy has parameters 6, 
the size of the histogram, the maximum timeout 111, and the 
initial timeout after the first packet in a conversation. To 
determine the best values of these parameters, we varied each 
one individually, running the policies on the data sets from 
AT&T, UCB, USC and IIT Delhi. The average relative costs 
normalized by the optimal cost from these locations are plotted 
in Figs. 5-7. 
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each of the original data sets. 

Normalized performance of policies in the holding cost model for 

We find that for the LRU-BASED policy, c = 2 works best, 
i.e., drop a conversation if it has been idle for 0 / 2  time units. 
We notice that c = 4 also performs well, so a value in the range 
2-4 will be acceptable. This insensitivity to the precise value 
of c has a very nice consequence, namely that if 0 is known 
only imprecisely, the LRU-BASED policy will work well. 

For the ADAPTIVE policy, the cost is quite insensitive to the 
precise values used for the parameters. There is remarkably 
little variation with changing histogram size, and a small 
histogram with 10 entries provides the full benefit of the policy 
with a negligible computational overhead. The best values for 
the other parameters are 6 = 0.1, M = 1, the initial timeout 
is 0.1 x 0, and these values are used in the evaluation below. 

C. Evaluation of Policies 

We simulated the LRU-BASED policy, the MEAN-VARIANCE 
policy, and the ADAPTIVE policy on each of the traces. Each 
policy was run for values of the open-cost 0 ranging from 
0.25-8. To be able to evaluate the policies across different 
values of 0 and different data sets, we normalize the cost by 
dividing by the cost of the optimal offline strategy (OPT) on the 
same data. The resulting normalized costs are plotted in Fig. 8 
for each of the original data sets. Each plot contains three lines, 
corresponding to the LRU-BASED policy, the MEAN-VARIANCE 
policy, and the ADAPTIVE policy using a histogram of size 10. 
Each line corresponds to an average over all traces from a site. 

We observe that the MEAN-VARIANCE policy is almost 

TABLE I 
NORMALIZED COSTS OF POLICIES IN THE HOLDLNG COST MODEL. EACH 
NUMBER IS TllE AVERAGE OF THE AVERAGE COST IN EACH DATA SET 

ADAPTIVE LRU MEAN-VARIANCE 
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the new data sets. 

always worse than the other two policies, while the ADAPTIVE 
policy is consistently better than the LRU-BASED policy. The 
only data point where ADAPTIVE is not doing better than LRU- 
BASED and MEAN-VARIANCE is at USC for 0 = 8. This can 
be explained by noting that because of high traffic density, 
the USC traces are very short. Thus many conversations have 
only a few (2 or 3) packets, and the ADAFTIVE policy does not 
have enough time to learn the inter-arrival time distributions 
for such conversations. 

To make a more comprehensive comparison of the policies, 
we took averages of the averages from each location. The 
result is shown in Table I. Each row corresponds to a value 
of 0. We note first that the LRU-BASED policy is consis- 
tently better than the MEAN-VARIANCE policy. This result 
was somewhat surprising, and we tried some variations in the 
MEAN-VARIANCE policy's use of the mean and deviation, but 
without much improvement. Therefore it seems that the mean 
and deviation alone do not give enough information about the 
inter-arrival time distributions to design a good holding policy 
in this model. 

Secondly we see that even the ADAWIVE policy is a 
significant improvement over the LRU-BASED policy, and is 
typically 35%) closer to the optimal (noncausal) optimal than 
the LRU-BASED policy. 

After finding the best values for the parameter of LRU and 
ADAFTIVE on some of the data sets, we ran the policies on 
the rest of the data, namely the new data sets from AT&T 
and Yale. This is necessary to ensure that the parameters are 
good for all Internet data, not just on the data for which they 
were tuned. In Fig. 9 we show the performance of the policies 
on the new data. The MEAN-VARIANCE policy performed 
significantly worse on these data, and these results are not 
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shown. The performance of the LRU and ADAPTIVE policies on 
this data is very similar to before, so we expect our conclusions 
to hold in general. 

VII. THE PAGING PRICING MODEL 

In the second pricing model we study, once the user has paid 
for a block of connections to a site, there is a fixed charge for 
each call setup (including both network cost and loss of user 
utility during the call setup time). Our results are valid whether 
or not there is also a per-packet charge. We assume that there 
is no holding charge, so it makes sense to close a VC only 
when the fixed upper limit has been reached. For example, 
if a site is authorized to have at most 32 circuits open, and 
is charged for 32 circuits (as opposed to a higher charge for 
a site that is allowed 128 circuits), then the site would like 
to have all 32 circuits open at all times. This type of pricing 
model is common in X.25 networks. 

A. Holding Policies 

When a packet arrives on a virtual circuit that is closed, the 
virtual circuit must be opened to transmit the packet. Since 
in this pricing model there is a bound on the number of 
connections, an open virtual circuit may need to be closed. 
The holding policy must decide which of the currently open 
circuits is to be closed. 

We consider several different policies in detail. As in the 
previous pricing model, there is great variation in the amount 
of information about the observed inter-arrival times used by 
the various policies. 

The optimal (noncausal) strategy is to drop the conversation 
which will be inactive for the longest period of time. This is 
exactly the same as in the optimal page replacement algorithm 
in virtual memory systems. 

I )  The RANDOM Policy: One simple policy that uses abso- 
lutely no knowledge about the conversations themselves is to 
close one of the open conversations at random when a new 
one needs to be opened. We call this policy RANDOM. 

2 )  The LRU Policy: Since our traces indicated the presence 
of temporal locality of reference, it is natural to consider the 
LRU policy. This policy maintains an LRU reference stack, 
and closes the VC at the bottom of the stack when a new 
VC is needed. This policy uses no information about the 
inter-arrival time distributions, but does use information about 
recent packet arrivals. 

3) The MEAN-VARIANCE Policy: The MEAN-VARIANCE pol- 
icy, like the MEAN-VARIANCE policy for the holding cost 
pricing model, uses an exponentially averaged mean, and 
an exponentially averaged mean deviation from this mean. 
Suppose the estimated average is p and the current estimated 
deviation is cr. After each packet arrival on a VC, a timer is set 
which is equal to p + 20. If no reference has occurred to this 
VC in this period, the VC is marked eligible to be dropped. 
On a fault, we drop the eligible VC with the most elapsed 
time since the last packet amval. In the case that no eligible 
VC's are present, we drop the VC with the largest remaining 
timer value. 

4)  The ADAPTIVE Policy: Our ADAPTIVE policy is based on 
the Median Algorithm of [4]. For each open circuit, our policy 
estimates the waiting time until the next packet and drops the 
open circuit with maximum estimate. The estimated waiting 
time for a circuit is just the median of the tail of its inter-arrival 
time distribution, defined precisely below. In [4], the Median 
Algorithm was proved effective in the following theoretical 
sense: if the inter-arrival time distributions remain unchanging 
over time, and the conversations are independent of each other, 
then the expected cost of the Median Algorithm is at most a 
factor of 5 greater than the best adaptive algorithm, regardless 
of the inter-arrival time distributions. Here we show that the 
Median Algorithm works even better in practice. 

When D is known: Let 2) be the presumed underlying dis- 
tribution on inter-arrival times for some circuit, and suppose 
that D has probability density function fD .  For each circuit, we 
compute the estimated waiting time for the next packet given 
the amount of time, t ,  we have waited since the last packet. 
This estimated time, T ( t ,  D), is the median of the distribution 
after t ;  i.e., the least value of T such that 

dx 
2 112. 1% dx 

We close the open circuit with largest T( t ,  D). Note that 
we use only the tail of the distribution, since the initial part 
corresponds to time that has already passed since the last 
packet arrived. 

When D must be learned: As in Section VI we need to 
gather empirical information on each distribution D. For this 
pricing model, there is no natural choice for the last interval of 
inter-arrival times. Thus, instead of keeping a static histogram 
we use a dynamic histogram, in which the intervals change 
dynamically. A dynamic histogram Y consists of a collection 
of m disjoint intervals, where each interval I consists of a 
minimum inter-arrival time, mini, a maximum inter-arrival 
time, maxi. and a count, C I ,  of the number of observed inter- 
arrival times in the interval [minI,maxr]. We will describe 
how the intervals are maintained below. 

Let CP be the set of intervals with minr 2 t .  We define the 
estimated time E T ( t , Y )  to the next arrival as the minimum 
7 such that 

When CP is empty, and thus we have no data available about 
the distribution, we use the following rule. If only one packet 
has arrived on the conversation, we set ET(t, 'H) to be 25t ,  
while if more than one packet has arrived on the conversation 
we set E T ( t , Y )  to be t .  This tends to quickly close circuits 
where we have only observed a single packet. The value 25 
for the initial median estimate multiplier was optimized for 
the sample data, but its exact value is not very important, see 
Fig. 11 below. 
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Our policy closes the open circuit with largest value of 
ET(t ,  3-1). The value of E T ( t ,  X) can be easily computed in 
time linear in m, using a single pass through the histogram 3-I. 

Maintaining a Dynamic Histogram: Each time a new 
packet arrives on a circuit, if the inter-arrival time belongs 
to some interval I in 3-I then C I  is incremented. If no such 
interval exists, a new interval I is created with minI and maxI 
equal to the inter-arrival time and CI = 1. When the number 
of intervals exceeds VL some intervals are merged. The choice 
of the parameter m is not critical. Experiments suggest that a 
good choice f o r m  is between 10 and 100 (see Section VII-C). 

The merging of intervals is done as follows. Let n(3-I) be 
the number of inter-anival times observed so far. For each 
interval I such that C I  < ( 2 n ( N ) / m )  we merge I with its 
closest neighboring interval. We continue merging until no 
such interval exists. 

B. Sensitivity Analysis 

The ADAPTIVE policy has two parameters that need to 
be set: the maximum histogram size, and the initial median 
estimate multiplier. To determine the best values of these 
parameters, we varied each one individually, running the 
policies on the data sets from AT&T, UCB, USC, and IIT 
Delhi. The average relative costs from these locations are 
plotted in Figs. 10 and 11. 

Notice that the performance of the ADAPTIVE algorithm is 
relatively insensitive to choice of the maximum histogram 
size, with the maximum size of 10 giving nearly as good 
performance as 100. Notice also, that the performance of 
ADAPTIVE is relatively insensitive to the precise value of the 
initial median estimate multiplier, with values between 10 
and 50 giving nearly identical performance. In the evaluation 
below we have set the maximum histogram size to 100 and 
the initial median estimate multiplier to 25. 

C. Evaluation of Policies 

We simulated the RANDOM policy, the MEAN-VARIANCE 
policy, the LRU policy, and the ADAPTIVE policy on the 
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Fig. 12. Normalized performance of the strategies in the paging model for 
each of the original data sets. 
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datasets. Each trace has packets from a number of connections. 
However, some conversations may be active at different times 
in the trace, so we define the active conversation number of a 
trace to be the maximum over t of the number of conversations 
that have packets both before and after t in the trace. The 
policies were simulated with the ratio of the maximum number 
of open circuits to the active conversation number of the trace 
ranging from 1590%. We normalize the costs by dividing by 
the cost of the optimal offline strategy (On) on the same data. 
The resulting normalized costs are plotted in Fig. 12. Each line 
corresponds to an average over all traces from a site. 

As can be seen from Fig. 12, LRU is consistently better 
than MEAN-VARIANCE and RANDOM. Surprisingly, the MEAN- 
VARIANCE and RANDOM strategies are comparable in their 
performance. The ADAFTIVE policy is consistently better than 
LRU. 

To make a more comprehensive comparison of the policies, 
we took the average of all the location averages. The result 
is shown in Table 11. Each row corresponds to the number 
of available virtual circuits as a percentage of the active 
conversation number. 

After setting the initial median estimate multiplier to 25 and 
the maximum histogram size to 100, we ran the ADAPTIVE 
policy on the new data sets from AT&T and Yale. In Fig. 13 
we show the performance of the ADAPTIVE policy on the new 
data. The ADAPTIVE policy has similar performance on this 
data, so we expect the policy to work in general and not just 
for the originally collected data. 
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TABLE I1 
NORMALIZED COSTS OF POLICIES IN THE PAGING MODEL. EACH NUMBER 

IS THE AVERAGE OF THE AVERAGE COST IN EACH DATA SET 

ADAPTIVE LRU MEAN-VARIANCE RANDOM 

45% 2.12 
60% 1.34 1.73 2.24 
75% 1.34 1.59 1.84 2.20 
90% 1.30 1.45 1.62 1.84 

The extremely poor performance of MEAN-VARIANCE is 
quite surprising. We investigated to check whether the pre- 
diction strategy was doing a reasonable job. We found that 
62-69% of the inter-arrival gaps lie in the interval [p-a, p+a] 
and 78-87% of the inter-arrival gaps lie in the interval 
[p - 2a, p + 2a]. Thus, the packet-arrival pattern does seem 
to fit the model assumed by MEAN-VARIANCE. The problem 
is that while in a cluster of closely arriving packets, MEAN- 
VARIANCE predicts successive arrivals well, but when a large 
gap occurs, MEAN-VARIANCE does poorly, since it has tuned 
its parameters to the preceding burst. As such, even a small 
gap after a very high rate burst causes a timeout whereas a 
larger gap after a medium-rate burst does not cause a timeout. 

VIII. SYSTEM CONSIDERATIONS 

In this section, we describe some system considerations in 
implementing holding time policies. We expect a holding time 
policy to be implemented in dual-ported routers that link IP 
and ATM networks. In such routers, the arrival of an IP packet 
triggers a search of a VCI cache, and if no VCI is found, a 
signaling entity is invoked to establish a new virtual circuit. 
The new VC, when established, is placed in the VCI cache. 
Subsequent datagram arrivals result in VCI cache hits, and 
the datagram is forwarded to the ATM device driver along 
with the appropriate VCI. We now discuss how this picture is 
modified by the LRU and ADAP~VE holding time policies for 
each of the two pricing schemes. We evaluate the additional 
instruction and memory cost of the two policies. 

A. Holding Cost Pricing Model 

For both LRU and ADAPTIVE, after mapping a datagram to 
a VCI, the current timer for that VCI must be cleared and a 
new timer set. This timer is based either on a system wide 
timeout (LRu-BASED), or on per-VC information (ADAPTIVE). 
For ADAPTIVE, the inter-arrival histogram also needs to be 
updated. On a timeout, the signaling entity has to be notified, 
and the corresponding virtual circuit torn down. 

An efficient way to implement a timeout is using a calendar 
queue [12], a data structure that consists of an array of days 
where each day is a doubly linked list of events. On a clock 
tick, a pointer advances to the next day and the associated 
actions are taken. To set a timer, an event is added to the 
corresponding day queue. By rounding off timeout values 
to one day, the cost of setting or clearing a timer is a 
small constant number of instructions, since the operations 
are simply to unlink and link elements from the list. Thus, we 
believe that setting and clearing timeouts has little overhead. 

Second dataset from ATBT 
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Normalized performance of the strategies in the paging model for Fig. 13. 
each of the new data sets. 

The ADAPTIVE policy has the additional overhead of up- 
dating a histogram. This involves a comparison and addition 
step, followed by a scan through the array to calculate the 
new timeout value. For a histogram of size 10, which we 
have found to be adequate, this cost is around 50 instructions. 
However, note that these actions do not need to be in the 
packet forwarding path: they can be initiated after handing 
the datagram over to the ATM device driver. This minimizes 
the effect of the holding time policy on the packet forwarding 
delay. 

The LRU-BASED and ADAPTIVE schemes require differing 
amounts of state space. Let there be at most N active virtual 
circuits. Then, for both schemes, the calendar queue should 
be large enough to accommodate N events, where an event 
consists of a function pointer, a next and a previous pointer, 
typically 32 bits each. For the LRU-BASED scheme, we need an 
additional log N bits per VC to point to the the corresponding 
timer event, so that clearing the timeout can be done in 
constant time. For the adaptive scheme, we need an additional 
m log P bits per VC, where m is the number of buckets in 
the histogram, and P is the largest number of packets in a 
bucket. In order to adapt to changing conditions on a larger 
time scale, we should allow the histogram to change with time. 
The simplest method is simply to occasionally divide each 
histogram entry by two, say when the histogram contains 256 
packets. An alternative would be to keep two histograms H 
and H,,, for each VCI, as described for the paging model 
below. 

To summarize, the state overhead for the LRU-BASED policy 
is N(9G + log N )  bits, and for ADAPTIVE is N(9G + log N + 
m log P )  bits. Using typical values of N as 2K VCI's, m as 
10 and P as 256, the corresponding state requirement for the 
LRU-BASED scheme (including the calendar queue overhead) 
is 26.8 KBytes, and for the adaptive scheme is 46.8 KBytes. 
Given the consistent gains from the ADAFTIVE scheme, we 
feel that the extra memory overhead is insignificant. 

B. Paging Model 

For the LRU scheme, on a packet arrival, the corresponding 
VCI has to be pulled to the top of the LRU stack. When a page 
fault occurs, the bottom element of the LRU stack has to be 
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dequeued. These are both constant time operations that take 
less than 10 instructions on typical RISC machines. If the stack 
is implemented as a doubly linked list, it requires k(64+log k) 
bits of state, where k is the maximum allowed number of open 
circuits. For k = 128, this amounts to 1.1 KBytes. 

For the ADAPTIVE scheme, on a packet arrival, we simply 
update the histogram. On a page fault, we need to compute 
the next packet’s median expected arrival time for each VCI 
to determine the largest such value. The computation involves 
scanning the per-VCI histogram, as before, and when m = 20 
we expect it to take around 100 instructions per VCI for 
every open VCI. This takes about look instructions (about 
0.5 ms on a 30 MIPS machine, for k = 128). This is too 
long a time, since in the worst case, page faults could occur 
more closely spaced than 0.5 ms. This is unacceptable even 
if the computation is not on the packet forwarding path. This 
problem can be solved using the following variation. When 
ADAPTIVE has computed the median for each VCI, it can 
keep a hit list of VCI’s in decreasing order of median. Each 
time there is a page fault, the VCI at the head of the list 
is closed. When a packet arrives, its VCI should be removed 
from the list. Thus the computed medians can be used to make 
a number of decisions about which VCI’s to close, during the 
time that -the next set of medians is being computed. Using 
this method, the number of instructions which occurs on the 
packet hnvarding path for each page fault is similar to the 
LRU scheme. 

Note that the packet forwarding path on a page fault can be 
shortened, both for the LRU-BASED scheme and for ADAPTIVE, 
by keeping a single VCI unused, so that when a page fault 
occurs, the unused VCI can immediately be assigned to that 
conversation. After the packet is forwarded, a VC can then be 
tom down in order to set aside the next unused VCI. 

Since ADAPTIVE keeps information about circuits for some 
time after they have been closed, there is an additional 
parameter N of the number of semi-active circuits, where the 
semi-active circuits are the N most recently used circuits. 
There is garbage collection on these circuits such that the 
number of semi-active circuits is bounded by N ,  using an 
LRU scheme. As in the holding cost model, the histograms 
should adapt to changing conditions on a larger time scale. 
We prefer to keep two histograms H and H,,, for each VCI. 
The histogram H is the one used to compute the median. 
When a packet arrives, the inter-arrival time is put into both 
histograms. When H,,, contains say 256 packets, we swap 
the names H,,, and H and empty the new H,,,. This way 
the median will be computed using data that is not too old. By 
using this scheme, P is at most 512, and the holding policy 
is made adaptive over longer time scales. 

The state information per VCI is a thus a pair of histograms, 
where each bin consists of the max and min element in the 
bin and a counter of the number of elements in the bin. 
ADAPTIVE also needs to store the ordering for the hit list 
of open circuits. Thus we find that the ADAPTIVE scheme 
uses 27nN(log P + 2T) + 32k + N(64 + log N )  bits of 
state, where T is the precision of the inter-arrival times. For 
N = 2K,k = 128,m = 20,P = 512 and T = 10, this 
amounts to 413.3 KBytes. 

IX. CONCLUSIONS 

We have studied the problem of how long to keep open a 
VCI opened to carry an IP datagram over an ATM network. 
We proposed a formal model for this problem and investigated 
two pricing schemes. For both pricing schemes we described 
the noncausal optimal holding policy and studied a number 
of nonadaptive and adaptive policies. In order to evaluate the 
policies we collected empirical data sets from Ethernet LAN’s 
located at sites around the world. We trained the policies on 
4 data sets and evaluated them on 2 others. 

We conclude that LRULRU-BASED policies do well in both 
pricing models. On the data we collected these policies have 
only 41.5% higher cost than the noncausal optimum in the 
holding cost model and 58.3% higher cost in the paging model. 
Further we found that the system costs for implementation 
are small; on the scale of 10 instruction per packet and the 
memory overhead is 1-27 KBytes for typical cases. On the 
other hand, the MEAN-VARIANCE policies that use information 
about the mean and standard deviation of the inter-arrival time 
distribution do surprisingly poorly (55.3% worse than optimal 
in the holding cost model and 85.7% worse than optimal in 
the paging model) in all the many variations that we tried. 
On the other hand the ADAPTIVE policies, that gather more 
information about the inter-arrival time distributions, do the 
best of the policies that we considered. They have only 25.8% 
higher cost than noncausal optimal in the holding cost model 
and only 34% higher cost in the paging model. The system 
costs for the ADAPTIVE policies are reasonable; in the holding 
cost model there are roughly 10 instruction per packet on the 
packet forwarding path and 100 off this path. In the paging 
model a page fault requires a longer computation outside the 
packet forwarding path; in typical cases this amounts to 1/2 ms 
on a 30 MIPS machine. This means that the scheme may not be 
as useful in situations where the average interval between page 
faults is very small. However the overhead may be alleviated 
by sharing the computation among a number of page faults. 
In both models the memory requirements are reasonable but 
somewhat larger than the LRULRU-BASED policies. In typical 
cases the ADAPTIVE policies uses 47-413 KBytes of memory. 

Based on performance and systems cost we propose that 
the ADAFTIVE policies be used, except when memory is very 
scarce or in the paging model if page faults occur very 
frequently, in which case the LRULRU-BASED policies are 
good alternatives. 

Lastly, we note that our policies for both pricing models may 
be useful in a wider context. In general terms, the holding cost 
model involves a resource that is intermittently used, and must 
be “open” to be used. There is a cost for opening it, and a cost 
for each time unit it remains open. This scenario describes 
many specific problems, for example disk management in 
portable computers: the “open cost” is the loss of utility to 
the user while spinning up the disk, while the holding cost 
corresponds to depletion of battery power. Similarly the paging 
model can be phrased more generally: a large number of 
entities are competing for the use of a scarce resource. This 
general model is also interesting in a variety of contexts. It is 
an interesting direction for further study to determine whether 
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‘ our adaptive methods can provide a performance benefit for 
related applications. 
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