
Environments for Active Networks
Rosen Sharma, S. Keshav, Michael Wu and Linda Wu

Cornell University

Abstract
Traditional networks expose a fixed set of network services, which are hard to modify and to customize. In contrast, active networks
seek to create an extensible system by providing an environment where nearly arbitrary applets can be executed, allowing new
services to be dynamically created. Applets executing inside the network or on servers allow the network to respond in real time to
asynchronous events. Such a framework allows us to rapidly deploy protocols and refine them, dramatically reducing the
development cycle. In contrast to declarative frameworks (like RSVP) which needs to encompass the needs a broad range of
applications and yet be compact to be useable, a procedural framework (like applets) allows the creation of customized application
level libraries, some of which maybe later made part of the declarative framework. An applet-based framework also facilitates the
mechanisms for developing the glue between different networks and protocols.

However, applets by themselves are not sufficient to achieve the goal of extensibility, We have shifted the problem from defining a
set of services to defining environments in which agents can execute. Creating interesting and useful agents requires us to design a
rich execution environments for network services.

Our work focuses on defining these environments, like object models for packet scheduling, packet routing and resource reservation.
In this paper we discuss our approach to this problem. We also describe how we defined and exposed the object model for a data
repository and present some preliminary results.

Introduction
We define active networks as networks that allow programs or applets to be executed
at intermediate nodes. Instances of active network components are already used for
mobile communication (for forwarding packets after a handoff), in video conferencing
(for prioritized dropping of multicast groups) and firewalls (for allowing
customizable filters) among others.

For example,Figure 1Figure1 describes the architecture of a firewall which allows
scripts to be uploaded from a server. On completion, a script can upload other scripts.
Scripts used in this way are very similar to applets. Such a scripting system provides
a mechanism to allow new application data streams to be filtered through the firewall.
For example, to permit an application to receive data on two UDP ports through the
firewall, only a small script needs to be written.

A sample script is shown inFigure 2Figure2. Implicit in the code is the fact that the
agent has access to the packets matching some flow specification. The execution
environment allows scripts (applets) to access flows (connections) through the
firewall in a secure and efficient manner.

A framework for agent execution consists of many small building blocks, such as
secure languages to write agent code, naming schemes for instances of agents,
mechanisms for rendezvous, languages for communication between agents, failure
semantics, accounting and storage. Some solutions to these issues exist and others are
being investigated as part of the CUFAN (Cornell University Framework for Active
Networks) initiative. In particular we plan to use the safe language kernel (SLK); a
multiuser Java Virtual Machine that allows applications to share classes as data
structures. For example a routing table may be shared between an application and the
router, where SLK guarantees that the applet cannot gain access to the private parts of
the routing table.

Our work focuses on defining object models, pertaining to networks, which agents can
access. In this position paper, we describe the scope of our work in this area using
selected examples in areas of protocol stacks, switching elements (routers and PBX’s) , signalling and SNMP.

Firewall

Server

Internet

Host

Figure 11 Firewall

if (pkt.protocol == udp)
if (pkt.src == s1 ) {

// 1. this is a setup packet
// 2. we know the application
// level protocol
// 3. read ports that the application
// will use from the data
......
// 4. upload script from the server to
// allow packets on these ports
// to be forwarded

}
}

Figure 22 Sample Script



Examples of Active Network Components

Protocol Stacks (Firewalls/Mobility)
As mentioned earlier a firewall allows applets to access the packets belonging to a flow. Firewalls can be implemented at several
layers of the protocol stack. For example a firewall can be implemented in user space at the cost of copying data into and out of the
kernel. Or it could be implemented in the transport layer where the inside and outside connections share buffers thus avoiding the
extra copies. Or as a packet filtering gateway at the network layer. We can migrate firewall functionality from one layer to another by
exposing all the layers of the protocol stack to the firewall applet.

A parallel problem arises in the use of applets in mobile TCP schemes. The mobile sends an applet to the base station, to improve the
performance of TCP connections. The applet can run at the network layer to give the abstraction of a reliable link or use intelligent
caching mechanisms at the transport layer or for forwarding packets after a handoff or in user space by splitting the tcp connection
into two connections.

Exposing the object model of a protocol stack allows us to unify the above individual solutions into one general framework, which
allows mobile schemes or firewalls to be implemented at any layer of the protocol stack. The framework also allows applets to
enhance functionality, for example provide QoS, by using other exposed models like those of scheduling and buffer management.

Routers
We believe that router operating systems are a neglected area of research. Most research testbeds use workstations as compared to
real routers. This discrepancy reflects itself in the design of protocols. For example, the shared explicit reservation style in RSVP is
simple to implement in a workstation kernel, but almost impossible to implement efficiently in hardware.

In traditional operating systems the hardware abstraction layer, makes the task of structuring and porting easier. Similarly by exposing
the object model for the hardware of a router, we provide a substrate over which protocols could be built. The decreased performance
is compensated by the richer development environment, which allows us to study several design issues.
PC’s can expose models for the hardware

PBX’s
Providing qualities of service that are customary in the phone networks on theIinternet seems to be a daunting if at all feasible task.
The Internet has the best effort delivery model and the telephone network provides guaranteed service. Voice traffic is constant bit
rate and is well understood; data traffic on the Internet is not well understood, ever changing in character and bursty on all time
scales. We believe that different networks will coexist atleast in the near future. There are many interesting applications that need to
use services provided by both networks. Consider for example an audio conferencing application which has audio and a whiteboard.
For the audio we may want to use the phone network, while we want to use the Internet for the shared whiteboard. This is an example
of what we call multi-mode communication. It tries to leverage the strengths of each network and provide interoperability in the
control plane. Exposing similar object models for switching elements, both IP routers and telephone switches, provides a framework
to developmulti-mixedmode applications.

State Establishment and Management

Signalling (RSVP)

Signaling protocols like UNI or RSVP are declarative in nature in that they only specify the quality of service a connection requires
and not how to obtain it. Efforts to make these protocols expressive, in order to deal with a broad spectrum of quality requirements,
leads to an exponential increase in the number of parameters. Moreover, the class of applications that may use these protocols is
unknown. We avoid these inherent problems if signaling is carried out by applets that access a a well understood interface at each
router and carry out reservations for the endpoints. Eventually, on gaining sufficient understanding of how to model the environment
we intend to come up with a declarative signaling protocol that is likely to be a more compact and usable version of the existing
protocols. Our approach here , therefore, is to built on top of the object models developed for routers (described above) and define
models for scheduling and routing.As the field of networking matures, many problems that arose in other fields are also begining to
arise here. For example, SQL, the query language for relational databases was declarative and thus abstracted out data
representations and procedural description of query execution allowing for optimizers to find the best way of executing a query. But
the downfall of a declarative language is that it needs to be sufficiently expressive to communicate information of widely varying
sorts and at the same time be reasonably compact. Similarly thatsignaling protocols like UNI or RSVP are declarative in nature -
they just specify what is required and not how to obtain that reservation. Efforts to make them expressive, to deal with a broad
spectrum of requirements, leads to an exponential increase in the number of options. Also the class of applications that would use
these services are unknown. The above points argue favorably for a procedural language where applets are presented with a well
understood interface at each router and carry out reservations for the endpoints. Upon gaining sufficient understanding of how to



model the environment, what is important and what is not we can come up with a declarative language and thus a more compact and
usable version of the existing protocols. Our approach here is to built on top of the object models developed for routers and define
models for scheduling and routing.

SNMP

The designers ofSNMPpurposely made itis simple becausethethey did not expectendpointsare not expectedto have adequate
computing power.Ttoday, however,managed entitiesendpointsrun operating systems (like pSoS) which supports java applets and
are powerful enough to do things beyond the scope of SNMP. We plan to enhance SNMP by allowing applets to be sent to the
managed entityendpoints, enabling real time control policies, fine-grained measurement,andandsophisticatedtrap generation
algorithms paradigms. This alsoallows and“semantic routing” , where applets move from one endpoint to another based on some
information present on the host.For example…

A Prototype Active Network Component
In order to understand some of the issues and potential benefits of an active
network component, we exposed the object model of a web server. Even a simple
object model, enabled clients to run complex queries involving conjunctions,
disjunctions, projections and user defined functions as applets.

The web server exported a set of tables to java applets.Figure 3Figure3 shows a
sample interaction between a client and server. The client (Netscape) connects to
the server which sends a description of it tables and query capabilities in
javascript. For a query language it specifies how relational operators can be
mapped into its language, allowing the user to query the web server or different
data repositories in a consistent manner. The user can also define some small
closed functions (applets) to be used in selection predicates. The queries are
processed by the perl engine, while the applets are run in the java virtual machine.

Accessing tupules from a table is similar to accessing rows of a table exported by
the web server. Since we cannot access all rows at once we needed to introduce iterators. Expressing the capabilities of an active
component (for example, the query capabilities in this case) is the generalization of the problem to provide similar models for
different switching elements. In order to establish state at the server, the client sends an applet and did not need to define a signalling
protocol. Our experience with this design was extremely positive. Defining the environment was hard and required several iterations.
Once defined it allowed rapid development of different clients.

Related Work
A similar vision for what future networks might look like is shared by other reasearchers [7,8,9]. In their network, applications send
capsules rather than packets. A capsule is a packet where the header identifies what piece of code should be run for the packet. Their
work, unlike ours, put applets in the forwarding path.

[1, 3, 4, 5] study the advantages and disadvantages of using agents. They conclude that agents offer significant advantages in cases of
disconnected operation, individualized service, server side execution, high bandwidth - low latency interactions, but they also
introduces problems like performance limitations, secure environments, transmission efficiency.

Other work focuses on different aspects of the agent framework. [5, 6] describe the the Arpa Knowledge sharing effort which led to
the definition of an agent communication language (ACL), which consists of a vocabulary, Knowledge Interchange Format (KIF) and
the Knowledge Manipulation and Query Language (KQML). ACL is a declarative language (similar to SQL), which represents
knowledge as tupules and first order logic. [2] classify frameworks based on their capability to support migrate agents and describe
how this is done in the visual obliq system. This is similar to the JavaBeans [16] effort for java. [11, 12, 13, 14, 15] describe various
aspects of Java and the Java virtual machine, which is the language in which agents are written.

[9, 10] describe operating systems that allow user code to be executed in a safe manner in the kernel. This allows user applications to
directly access hardware like MPEG boards or to customize the drivers. The work on Berkeley Packet filters, which allows arbitrary
filters to be installed in the kernel is also along the same lines.

Conclusion
We believe that active networks allow us to explore different approaches to solve several existing problems. Our work has
applicability beyond Active Networks as it helps us to gain a better understanding of some fundamental issues in networking. Our
focus is to define network environments where applets can do useful things. Our experience in exposing a simple object model for a
data repository has been very encouraging.

tables
capabilities,

etc..

N

Netscape
Browser

Web
Server

cgi-bin
Perl

Java
Virtual
Machine

Figure 33 Active Network Component



References
[1] Mobile Agents: Are they a good idea ?, Collin Harrison, David M. Chess, Aaron Kershenbaum, IBM Research Divsion, T. J. Watson Research Center, Yorktown
Heights, NY 10598, http://www.research.ibm.com/massive/mobag.ps
[2] Migratory Applications , Krishna A. Bharat, Luca Cardelli, http://gatekeeper.dec.com/pub/DEC/SRC/research-reports/abstracts/src-rr-138.html
[3] Is it an Agent or just a Program ?: A taxonomy for Autonomous Agents, Stan Franklin and Art Graesser, Institute of Intelligent Systems, University of Memphis
http://www.msci.memphis.edu/~franklin/AgentProg.html
[4] What's an agent, anyway ?, Lenny Foner (foner@media.mit.edu), http://fonner.www.media.mit.edu/people/foner/Julia/Julia.html
[5] Intelligent Agents: theory and practice, Wooldridge and Jennings, http://www.doc.mmu.ac.uk/STAFF/mike/ker95.ps
[6] Software Agents, Genesereth and Ketchpel, http://logic.stanford.edu/sharing/papers/agents.ps
[7] Request for Comments: From Internet to Activenet , D. L. Tennenhouse, S. J. Garland, L. Shrira and M. F. Kaashoek, Laboratory for Computer Science,MIT
[8] Towards an Active Network Architecture. David L. Tennenhouse and David J. Wetherall Telemedia, Networks and Systems Group, MIT,
[9] A Case for NOW (Network of Workstations), Thomas E. Anderson, David E. Culler, David A. Patterson, and the NOW team
[10] SPIN http://www.cs.washington.edu/research/projects/spin/www/
[11] Java Language Overview ftp://ftp.javasoft.com/docs/java-overview.ps
[12] The Java Language Environment White Paper, ftp://ftp.javasoft.com/docs/whitepaper.ps.tar.Z
[13] The Java Platform White Paper ftp://ftp.javasoft.com/docs/JavaPlatform.ps
[14] JavaOS(tm): A Standalone Java Environment ftp://ftp.javasoft.com/docs/whitePaper.JavaOS/JavaOS.cover.ps
[16] Java(tm) Beans: A Component Architecture for Java http://splash.javasoft.com/beans/WhitePaper.html
[17] Java Security Faq http://java.sun.com/sfaq
[19] Firewalls and Internet Security, William R. Cheswick and Steven M. Bellovin, Addison Welseley


