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Abstract—Variable bit-rate (VBR) compressed video traffic
is expected to be a significant component of the traffic mix
in integrated services networks. This traffic is hard to manage
because it has strict delay and loss requirements while simul-
taneously exhibiting burstiness at multiple time scales. We show
that burstiness over long time scales, in conjunction with resource
reservation using one-shot traffic descriptors, can substantially
degrade the loss rate, end-to-end delay, and statistical multiplex-
ing gain of a connection. We use large-deviation theory to model
the performance of multiple time-scale traffic and to motivate the
design of renegotiated constant bit rate (RCBR) service.

Sources using RCBR service are presented with an abstraction
of a fixed-size buffer which is drained at a constant rate. They
may renegotiate the drain rate to match their workload. Because
all traffic entering the network is constant bit-rate (CBR), RCBR
requires minimal buffering and scheduling support in switches.
We show that the service is suitable for both stored and online
video sources.

An RCBR source must decide when to renegotiate its service
rate and what the new service rate should be. We present: 1)
an algorithm to compute the optimal renegotiation schedule for
stored (offline) traffic and 2) a heuristic to approximate the
optimal schedule for online traffic. We also discuss measurement-
based admission control (MBAC) for RCBR traffic.

Simulation experiments show that RCBR is able to extract al-
most all of the statistical multiplexing gain available by exploiting
slow time-scale variations in traffic. Moreover, simple admission
control schemes are sufficient to keep the renegotiation failure
probability below a small threshold while still offering high link
utilization. Thus, we believe that RCBR is a simple, practical,
and effective service for carrying multiple time-scale traffic.

Index Terms—Compressed video, multiple time scales, renego-
tiation, variable bit-rate service.

I. INTRODUCTION

V IDEO TRAFFIC is expected to be a significant compo-
nent of the traffic mix in integrated services networks.
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Video is invariably compressed with either constant quality
[and variable bit rate (VBR)] or constant bit rate (CBR)
(and variable quality). CBR compressed video, which is pre-
dominant in current networks, may exhibit visual glitches
in information-rich scenes. To minimize these glitches, the
coding rate has to be large enough to encode all but a few
of the scenes in the video stream, leading to a reduction in
the available statistical multiplexing gain [44]. This has led to
great interest in VBR video compression and techniques for
carrying such traffic in computer networks [6], [7], [32], [33],
[29], [1].1

A key characteristic of a compressed video source is its
burstiness. A bursty source occasionally transmits at a peak
rate significantly larger than its long-term average rate. Recent
research has determined another key characteristic: the pres-
ence of traffic variations over multiple time scales [34], [35],
[12], [13]. Intuitively, there is a variation in source rate not
only over a period of milliseconds to seconds, corresponding
to variations within a scene, but also over a period of tens
of seconds to minutes, corresponding to scenes with differing
information content. Taken together, these facts imply that a
compressed video source can transmit at its peak rate over
multiple time scales.

We discuss in Section II how burstiness at multiple time
scales, in conjunction with a traditional one-shot traffic de-
scriptor (such as a leaky bucket), leads to performance prob-
lems. Instead, we argue that arenegotiated servicebest ad-
dresses the presence of burstiness over multiple time scales.
This motivates the design of renegotiated constant bit rate
(RCBR) service for carrying compressed video traffic. Sources
using RCBR service are presented with an abstraction of
a fixed-size buffer drained at a CBR called thedrain rate.
Sources choose the drain rate to match their current short-term
average rate and renegotiate this rate in response to changes
in their workload. Because all traffic entering the network
is CBR, RCBR requires minimal buffering and scheduling
support in switches. We show in Section III that the service
is suitable for both stored and online video sources and
that its signaling overhead is likely to be manageable with
current technology. Note that RCBR is the simplest possible
renegotiated service.

An RCBR source must determinewhen to renegotiate and
what rate to choose during a renegotiation. These decisions
constitute a per-sourcerenegotiation schedule. We present
algorithms for choosing renegotiation schedules in Section IV.

1For notational convenience, we will refer to a VBR compressed video
source simply as a “compressed video source.”
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We evaluate RCBR both analytically and through simu-
lation. Our results in Section V indicate that RCBR allows
a network operator to extract almost all of the statistical
multiplexing gain achievable by multiplexing large numbers
of compressed video sources. For example, if an MPEG-1
compressed version of theStar Wars movie is transferred
through our service, and if the average service rate over the
lifetime of the connection is 5% above the average source
rate of 374 kb/s, then 300 kb worth of buffering at the end-
system and an average renegotiation interval of about 12 s
are sufficient for RCBR. In contrast, a nonrenegotiated service
with the same service rate would require about 100 Mb of
buffering at the end-system (Fig. 5).

A natural question is how to admit RCBR sources into the
network while still allowing network operators to stochasti-
cally bound performance metrics such as the renegotiation
failure probability and link utilization. We discuss simple
measurement-based admission control (MBAC) schemes suit-
able for RCBR sources in Section VI. We show that a memo-
ryless scheme is not robust. We advocate the use of memory,
i.e., history about the past bandwidth of calls, to achieve
satisfactory robustness.

While our focus is on compressed video traffic, our re-
sults are applicable to multiple time-scale traffic in general.
Sections VII and VIII present related work and place our work
in context of other services for carrying VBR traffic.

II. PERFORMANCE PROBLEMS FOR

MULTIPLE TIME-SCALE SOURCES

It has been observed by several researchers [34], [35], [12],
[13] that compressed video traffic typically exhibits burstiness
over multiple time scales. While the short-term burstiness of
MPEG sources due to the I, B, and P frame structure is well
known, they have found fairly long duration, as long as 30
s, when the data rate of the video source is continuously
near its peak rate. This is due to scenes with considerable
motion or rapid chrominance and luminance changes such
as those caused by flashing lights, where, independent of the
coding algorithm, the coder generates traffic near its peak rate.
Unfortunately, these peak rates are much higher than the long-
term average rate. For example, we find that for an MPEG-1
compressed version of theStar Warsmovie, there are episodes
where a sustained peak of five times the long-term average
rate lasts over 10 s.

Compressed video traffic is expected to be carried in asyn-
chronous transfer mode (ATM) networks using either CBR
or VBR service, and in the Integrated Services Internet using
guaranteed service [5] (The Integrated Services Internet also
allows for a VBR-like controlled load service, but this service
is too imprecisely defined at the time of this writing to map to
any of the ATM classes. Therefore, our remarks apply only to
the Internet’s guaranteed service class.) With CBR service, a
source is restricted to a bit rate that it chooses at the time
of connection setup. With VBR or guaranteed service, the
source chooses both atoken bucket sizeand atoken rate. These
correspond roughly to the largest size burst allowed from the
source into the network and its long-term average rate.

We model all three services as follows. Traffic from a source
is queued at a buffer at the end-system, and the network drains
the buffer at a givendrain rate. The drain rate for a CBR
source is the connection rate, and for a VBR or guaranteed
service source is the token rate. With VBR service, data may
leave the buffer at a rate greater than the drain rate if the token
bucket is nonempty. The key fact is that with a nonrenegotiated
service, as is the case in both ATM and Integrated Services
Internet proposals, a source chooses the drain rate exactly
once, at the time of connection establishment. (The Integrated
Services Internet proposal—specifically the RSVP resource
reservation protocol—does require a source to periodically
refresh its reserved rate, and renegotiation could be piggy-
backed with a refresh. However, refreshes are currently viewed
primarily as a mechanism for state management, rather than
for rate adaptation. Sources are therefore expected to choose
a token rate once and to merely repeat this request when
refreshing their reservation [49]).

If sources exhibiting bursts at multiple time scales are
allowed only a single drain rate to describe their behavior,
they are faced with a series of poor choices. Assume, for the
moment, that the drain rate is chosen close to the long-term
average rate in order to maximize the statistical multiplexing
gain in the network. Then, during sustained peaks, the source
buffer fills up at the peak rate and is drained at the drain
rate. If the peak rate is much higher than the average rate,
either the data buffer has to be very large or the loss rate
will be unacceptably high. If the loss rate is made small by
provisioning large data buffers, this leads to expensive buffers
at end-systems and long delays for the sources. Even if the
data buffering costs are not excessive, the ensuing delays may
not be tolerable for interactive applications.

With VBR or guaranteed service, we can deal with sustained
bursts by choosing a large token bucket, thus admitting part or
all of the burst into the network. We call this theunrestricted
sharingapproach to dealing with bursts. The problem with this
approach is that unless intermediate switches and the receiver
have large data buffers (which, in some cases, may need to be
on the order of tens of megabytes), sources have no assurance
that their data will not be lost if bursts coincide. We call this
loss ofprotection. Providing protection with unrestricted shar-
ing is expensive and can potentially lead to excessive queueing
delays. Note that there is a tradeoff between the drain rate and
the largest size burst that may enter the network. A source
can minimize delay and reduce the probability of cell loss, but
only at the expense of a reduced statistical multiplexing gain.

Thus, burstiness at slow time scales with a nonrenegotiated
drain rate leads either to: 1) loss of statistical multiplexing
gain; 2) large data loss rate; 3) large buffers in end-systems
or switches, leading to delays and expensive line cards; or 4)
loss of protection. Current (nonrenegotiated) services cannot
simultaneously avoid all four problems because sustained
peaks in workload are not adequately captured by a static
descriptor, such as a leaky bucket. We argue that these peaks
are better captured by renegotiation of the drain rate at a slower
time scale. A more detailed discussion of the effectiveness
of renegotiation in solving these problems can be found in
Section VIII.
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III. T HE RCBR SCHEME

A. RCBR Service Description

With static CBR service, during call setup, a source requests
a constant bandwidth from the network [24], [25]. Because
a source is described by a single number, the admission
control test is trivial. Moreover, because traffic entering the
network is smooth, internal buffers can be small and packet
scheduling need only be first-in first-out (FIFO) [17]. With
RCBR, a source can renegotiate its service rate. Renegotiation
consists of sending a signaling message requesting an increase
or decrease in the current service rate. If the request is
feasible, the network allows the renegotiation. Upon successful
completion of the request, the source is free to send data at
the new CBR rate. RCBR therefore retains the simplicity and
small buffer requirements of CBR service.

1) Renegotiation Failure:What happens if a renegotiation
fails? A trivial solution is to try again. Of course, data will
build up in the source’s data buffer while the second request
proceeds and there is the possibility of excessive delay and
even data loss. This may not be acceptable for some sources.
Such sources might reserve resources at or close to the peak
rate, so that the frequency of renegotiation is highly reduced
and so is the possibility of renegotiation failure. There is a
three-way tradeoff between buffer size (and delay), requested
rate, and the frequency of renegotiation. In any case, note that
even if the renegotiation fails,the source can keep whatever
bandwidth it already has.

Second, during admission control, a switch controller might
reject an incoming call even if there is available capacity, if the
resources used by the new call will make future renegotiations
more likely to fail. This allows the network operator to tradeoff
call blocking probability and renegotiation failure probability.
We consider admission control in more detail in Section VI.

Finally, the signaling system could ask the user or applica-
tion (perhaps out of band) to reduce its data rate. Since the
network interface [i.e., the session layer or network interface
unit (NIU)] is expected to be no more than a few milliseconds
away from the end point, the control loop between the network
interface and the user will be tight, so that responding to
such signals should be easy, particularly for adaptive codecs
[27]. Recent work suggests that even stored video can be
dynamically requantized in order to respond to these signals
[38], [10].

Thus, there are several viable alternatives for dealing with
renegotiation failures. With an appropriate combination, some
users can choose to see few or no renegotiation failures, while
others might tradeoff a nonzero renegotiation failure rate for
a lower cost of service.

2) Stored and Interactive Sources:Stored video (offline)
and interactive (online) applications use RCBR services
differently. Offline sources can compute therenegotiation
schedule in advance and can initiate renegotiations in
anticipation of changes in the source rate. Moreover, if all
systems in the network share a common time base, advance
reservations could be done for some or all of the data stream
[47]. Interactive applications must compute the renegotiation

schedule on-the-fly. For such applications, we propose that an
active component monitor the buffer between the application
and the network and initiate renegotiations based on the buffer
occupancy. This monitor could be part of the session layer
in an International Standards Organizations (ISO) protocol
stack, or reside in the NIU for “dumb” endpoints. It would
need to be activated only when data is written to or drained
from the buffer. Note that in both the online and offline cases,
renegotiation signaling and data transfer occur in parallel.
Algorithms for computing the renegotiation schedule for
offline and online applications are presented in Section IV.

B. Implementation

During renegotiation, a switch controller neednot recom-
pute routing, allocate a connection identifier, or acquire house-
keeping records. Thus, signaling for renegotiation is much less
expensive than signaling for call setup and need not use the
same protocol. This allows us to exploit lightweight signaling
mechanisms for renegotiation. A hardware implementation of
signaling for renegotiation is described in [3].

In an ATM network, sources can reuse the resource manage-
ment (RM) cell mechanism, originally proposed for available
bit rate (ABR) service, for lightweight signaling. An RCBR
source sets the explicit rate (ER) field in the RM cell to the
difference between its old and new rates.2 On receiving an
RM cell, a switch-controller (or a dedicated hardware module,
as in ABR) determines the output port of the virtual channel
identifier (VCI) in one lookup, and the utilization and capacity
of the output port in a second lookup. With this information, it
checks if the current port utilization plus the rate difference is
less than the port capacity. If this is true, then the renegotiation
request succeeds, and the VCI and port statistics are updated.
Otherwise, the controller modifies the ER field to deny the
request. Note that the logic to modify the ER field with
RCBR is simpler than that required for fair-share computation
in ABR. Thus, the deployment of ATM switches with ABR
support is an existence proof that RCBR support in ATM
switches is feasible.

In the Integrated Services Internet, sources and receivers
periodically refresh their network reservation state using the
RSVP signaling protocol [49]. A source periodically emits a
PATH message describing its characteristics, and each receiver
periodically emits a RESV message requesting a reservation.
To renegotiate its service rate, a source should change its traffic
description (flowspec) in the PATH message, and the receivers
should correspondingly change their reservation in the RESV
message. We do not have enough experience with RSVP to
determine whether this mechanism is sufficiently lightweight
for renegotiation. If this is not the case, we may need to
augment RSVP with a lightweight renegotiation protocol. In
any case, we anticipate that renegotiations will happen only
around every 10 s or so (see Section V-B), so the overhead
for RCBR at each source is inherently small.

2We use a difference because this simplifies the computation at the switch
controller, which need not keep track of the source’s rate. This has the
problem of parameter drift in case of RM cell loss. To overcome this, we
can resynchronize rates by periodically sending an RM cell with the true
explicit rate, instead of a difference.
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Note that in order to limit the renegotiation rate, it is likely
that a user will be charged for each renegotiation, just as users
are now charged per call setup. This affects the choice of
renegotiation schedule, as discussed in Section IV.

C. Scaling

We now consider how well RCBR scales with latency in
the path, number of sources, and number of hops. Scaling
with path latency is different for online and offline appli-
cations. Offline applications are insensitive to path latency
because they can compensate for an increased latency by
initiating renegotiation earlier. However, the performance of
applications with online RCBR decreases with an increase in
latency because these applications must predict their future
data rate, and prediction accuracy decreases with increased
latency. This can be compensated for by increasing the end-
system buffer or by asking for more bandwidth than needed,
thus reducing the statistical multiplexing gain. We do not yet
have analytical expressions or simulation results studying the
effect of renegotiation delay on RCBR performance.

Signaling load increases linearly with the number of RCBR
sources in the network. With hardware support, we believe
that an ATM switch can support several tens of thousands
of simultaneous RCBR sources. The bottleneck in RM cell
processing is the time taken to lookup per-VCI state. Since
RCBR support does not require per-VCI state, we do not
anticipate difficulties in scaling ATM switches to handle more
renegotiating sources. Scaling of Integrated Service routers is
still a matter of speculation.

As the mean number of hops in the network increases,
the probability of renegotiation failure is likely to increase
since each hop is a possible point of failure. Moreover, the
net renegotiation signaling load on the network also increases.
However, if there is a simultaneous increase in the number of
alternate routes in the network, then load balancing at the call
level might reduce the load at each hop, thus compensating
for this increase. This is still an open area for research.

IV. COMPUTATION OF RENEGOTIATION SCHEDULES

In this section, we address the problem of deciding when
to request a bandwidth renegotiation from the network and
how much bandwidth to ask for. We present two algorithms
that transform a given data rate function into a stepwise CBR
data rate function. The first algorithm determines an optimal
schedule for a playback application based on total knowledge
of the user’s data rate function and a pricing model discussed
below. The second algorithm is a causal heuristic that could
be used for interactive users where the rate function is not
known in advance.

A. Optimal Renegotiation Schedule

We model the problem with a slotted time queue. For
video, a time slot would typically be the duration of a frame.
Renegotiations occur on the boundary between slots. Let

denote the amount of data entering
the queue during time slotand let denote the service rate
during time slot . The session duration is time slots. We

Fig. 1. An illustration of the trellis to be used for the Viterbi-like algorithm.

assume the service rate during any time slot is in a given set
.

We have assumed a constant cost per renegotiationand a
cost per allocatedbandwidth and time unit. Therefore, the
total cost is given by

(1)

with

if
otherwise

For a given , the optimal allocation minimizing the total cost
has to be found subject to the buffer constraint

for (2)

where is the queue size at the end of time slotwith

if

(3)
We solve this optimization problem with a Viterbi-like

algorithm [45]. Let us first introduce some notation (cf. Fig. 1).
A node is a four-tuple , where denotes (discrete)
time, denotes a bandwidth allocation

, denotes a buffer occupancy, and
denotes the weight, which equals the partial cost of the best
path to this node. Abranch connects a node to
another node if .
It has an associated weight of .
A branch represents one step in the evolution of the system
state, given a choice of the new rate allocation. A path
is a sequence of branches. The cost of a path is the sum of
the cost of its branches. All possible paths form thetrellis. A
full path is a path connecting a node with with a node
with , and corresponds to a feasible renegotiation
schedule.

Now we can formulate the optimization problem as follows:
find the shortest path from some node at time zero to some
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node at time . The algorithm to do this is presented
below.

1) Set . Create the initial set of nodes for
.

2) Create all the branches between nodes of slotand nodes
of slot . Set the weight according to (1) for the
nodes of slot .

3) Prune paths according to Lemma 3 given below.
4) Increment and go back to step 2 if .
5) Choose one of the paths with the minimum weight as

the solution.

We now present a lemma that governs the pruning of paths.
Lemma 1: A path going through a node

is not optimal if there exists a path
through a node such that3

and
if
otherwise

(4)

Proof: Assume the condition is true. First, if ,
then path has smaller or equal buffer occupancy and smaller
or equal weight than path . Due to the buffer constraint, for
all future time slots, the best full path containingmust have
a bandwidth allocation that is at least the bandwidth allocation
of the best full path containing path. Therefore, it cannot
have a lower weight than the best full path containing.
Second, if , then for any such
that a branch from to a node exists,
there exists a branch fromto a node
such that , as the service rate in interval is the
same and by assumption . As the difference in cost of
the branch connecting to and the branch connecting to

cannot be larger than, the first part of the proof applies
to and .

Instead of the buffer bound (2), it is also possible to
enforce a delay bound. This might be desirable in real-time
applications, if sufficient buffer space is available, but the
quality of service (QoS) still requires to keep delays low. The
condition for all data entering during time slot to have
left at the end of time slot is

(5)

The runtime complexity of the optimization algorithm very
much depends on the cost ratio , the buffer size , and,
above all, the number of bandwidth levels. Also, the user
rate function has has an impact on how many candidate
paths remain valid at each time slot. We have found that
if we restrict to about 20, optimizations can be done in
reasonable time, even for long traces like theStar Warsmovie
(approx. 174 000 samples) [12]. For larger, e.g., 100, it
quickly becomes impracticable because of an explosion in the
number of paths that have to be considered. For example, with

(with the bandwidth levels chosen uniformly within
48 kb/s and 2.4 Mb/s), the computation took

3Note that this allows us to do more than the “standard Viterbi” pruning,
i.e., among paths terminating in a common node, keep only the one with the
lowest weight. We can also prune across nodes.

Fig. 2. The tradeoff between bandwidth efficiency and renegotiation fre-
quency for the AR(1)-based heuristic, compared to the optimum, for the
Star Warstrace. The parameters for the AR(1) heuristic areBl = 10 kb,
Bh = 150 kb, T = 5 frames, and� is varied from25 kb/s (left) to400
kb/s (right). In this example, the buffer occupancy never exceedsB = 300 kb.

about 20 min on a Sun UltraSparc 1, while with ,
the computation took more than a day.

We call bandwidth efficiencythe ratio of the original
stream’s average rate to the average of the piecewise constant
service rate, i.e.,

The graph “OPT” in Fig. 2 shows the mean renegotiation
interval and the bandwidth efficiency for various choices of the
cost ratio , for a buffer size 300 kb, which represents
a buffering delay of slightly less than 1 s (recall that the
average rate of the trace is 374 kb/s). It is clear from Fig. 2
that there exists a tradeoff between bandwidth efficiency and
renegotiation frequency. This tradeoff depends on the cost ratio

: raising the price for renegotiation results not only in a
lower renegotiation frequency but also in a lower bandwidth
efficiency, and vice versa. The network operator can announce
these prices to the user, and the user optimizes his network
usage accordingly. Note how close the bandwidth efficiency
gets to one with very reasonable renegotiation frequencies; for
example, with one renegotiation every 7 s, we achieve over
99% of bandwidth efficiency. This is a clear manifestation of
the slow time-scale behavior of compressed video streams.

B. Causal Renegotiation Schedule

For interactive (online) sources, the optimization algorithm
described above cannot be used to determine optimal rene-
gotiation points. For such sources, causal heuristics have to
be used to make decisions about requesting new rates. Such
heuristics predict the future bandwidth requirement based on
some statistics collected in the past. The goal of this section
is to show that heuristics resulting in satisfactory performance
do indeed exist, although their derivation is somewhatad hoc.
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(a) (b)

(c)

Fig. 3. The three scenarios to assess SMG of our proposed service.

The heuristic we present is based on a AR(1) bandwidth
estimator and on buffer thresholds. Three parameters have
to be tuned: a high and a low buffer threshold and ,
respectively, and a time constant, which should reflect the
long-term rate of change of the rate function. The rate predictor
we have used is

(6)

where is the actual incoming rate during slot, and
is the buffer size at the end of slot. The additional term

in the estimator adds the bandwidth
necessary to flush the current buffer content within. This is
necessary to have a sufficiently fast reaction to sudden large
buffer buildups.

The algorithm is very simple. Let

(7)

with the bandwidth allocation granularity. A new bandwidth
is then requested if

and or and (8)

It can be seen in Fig. 2 that using the heuristic, we need
about one renegotiation a second to achieve 95% of bandwidth
efficiency (with kb, kb, frames, and

kb/s). Although this is considerably less than what
can be achieved with the optimal allocation, it still represents
a relatively small load on the signaling system. However, this

gap suggests a potential for better heuristics, and we hope
to address this problem in future research. For example, the
prediction quality could be improved by taking into account
the inherent frame structure of MPEG encoded video.

V. PERFORMANCE OFRCBR

In this section, we would like to get a better understanding
of the statistical multiplexing gain (SMG) achievable using
the RCBR scheme, by means of both a theoretical analysis
of a multiple time-scale source model as well as simulation
experiments on real traffic. More specifically, we compare the
SMG of RCBR with that of two other scenarios (Fig. 3). The
first scenario [Fig. 3(a)] represents traditional CBR service,
with a smoothing buffer of size at the network entry
and a fixed CBR rate for each source. Here, there is
no multiplexing between traffic of different sources. The
second scenario [Fig. 3(b)] multiplexesstreams without any
restriction on a server with rate and buffer size . This
gives the maximum achievable SMG for the given sources.
The third scenario [Fig. 3(c)] represents the RCBR approach.
Each source is smoothed by a dedicated buffer of size
and transformed into a stepwise CBR stream, which is then
transported without further buffering in the network (except
some cell level buffering). The total service rate isand the
total amount of buffering is fixed at in all three scenarios.
While the theoretical analysis gives insight as to the nature
of the SMG captured by the RCBR, the experimental results
quantify the amount of gain for video traffic.
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Fig. 4. A multiple time-scale source with three subchains.

A. Analysis of a Multiple Time-Scale Model

We consider the following discrete-time traffic model for
an individual video source. Let be the amount of data
(measured in bits, bytes, cells, etc.) generated per time-slot
(duration of a frame, etc.). The process is modulated
by an irreducible finite-state Markov chain such that the
value of is a function of the current state. The Markov
structure models the correlation in the data generation rate
over time. The state space is decomposed into a union of
disjoint subsets ; each can be interpreted as
the state space of afast time-scale subchain. The dynamics
within each subchain model fast time-scale behavior (such
as correlations between adjacent frames). Transitions between
various subchains, on the other hand, happen very rarely
compared with the transitions inside each subchain; these
transitions model the slow time-scale dynamics of the traffic
stream (such as scene change). Let be the
probabilities of these rare transitions; these are very small
parameters. Thus, the source would typically spend a long
time in a subchain and then occasionally jump to a different
subchain. In the analysis below, we are interested in the regime
when the buffer time-scale is large enough to smooth out the
fast time-scale fluctuations of the traffic, but is small compared
to the slow transition time scale.

This multiple time-scale Markov-modulated model has been
used in several video traffic studies [40], [31]. The sustained
peak observed by several researchers corresponds to remaining
in a high-rate subchain for a long time in this multiple time-
scale model (see Fig. 4 for an example of a source with three
subchains).

We shall now characterize the resource requirements for
multiple time-scale sources under the three scenarios in Fig. 3,
for given loss probability requirements. Consider the first
scenario [Fig. 3(a)], when each individual stream is smoothed
by a buffer and allocated a fixed CBR rate of . The
minimum drain rate required to achieve a target QoS
buffer overflow probability is known as theequivalent
bandwidth of the source, and forsingle time-scale
Markov sources, this has been explicitly computed in terms
of the statistics of the source [14], [11], [28]. This equivalent
bandwidth is based on a large deviations estimate of the buffer

overflow probability in the regime of large buffer size. It can
be shown that the equivalent bandwidth is between the mean
and peak rates of the stream, and it measures the amount of
smoothing of the stream by buffering. A large bufferin this
context means that the buffer is sufficiently large to smooth
out the fluctuation of the traffic stream.

Analogous results have been obtained for multiple time-
scale Markov traffic [41]. For multiple time-scale sources,
one now has to look at thejoint asymptotic regime when,
simultaneously, the rare transition probabilities’s are close
to zero and the buffer size is large enough to absorb the fast
time-scale fluctuations of the stream. It is shown in [41] that
the equivalent bandwidth of the multiple time-scale
stream is given by

(9)

where is the equivalent bandwidth of theth fast
time-scale subchain when considered in isolation. The intuition
is that buffer overflows are due mainly to the effects of
the most bursty subchain and, thus, the drain rate needed
for the entire stream is the drain rate of that particular
subchain. In particular, the drain rate needed is greater than

, the maximum of the average rates of the subchains. This
implies that the gain due to buffering alone is rather limited
for multiple time-scale traffic, as the CBR rate needed for
the stream is determined by the worst-case subchain. The
theoretical result also makes precise the intuition we presented
in Section II that a static traffic descriptor (in this case, the
CBR rate) leads to a wasteful allocation of resources for
multiple time-scale traffic.

To get significant multiplexing gain beyond that obtained
by buffer smoothing, the limitation imposed by the slow
time-scale dynamics can be overcome by multiplexing many
independent streams. By a law of large number effect, the
probability that many streams are simultaneously in a bursty
subchain is small, so that a small loss probability can be
guaranteed even if the capacity allocated per stream is less
than . This is shown in the scenario in Fig. 3(b), where
independent and statistically identical streams are multiplexed.
If we scale the total link rate and the total buffer as

(i.e., the link capacity and buffer spaceper streamis fixed
in this scaling), an estimate of the buffer overflow probability
in the regime of large can be obtained in terms ofonly
slow time-scale statistics of the individual stream (with the fast
time-scale dynamics averaged out) [41]. Specifically, consider
a random variable which takes on the valuewith probability

where is the steady-state probability that the stream is
in subchain and is the mean rate of subchain. Let be
the log moment generating function of this random variable

and define by

the Legendretransform of . Then the asymptotic estimate
of the loss probability when there are many sources and the
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buffering per source large is given by

(10)

Note that (10) is simply the Chernoff’s estimate of the prob-
ability that the streams are in a combination of subchains
whose total mean rate exceeds the channel capacity [46], [23].
Note that this estimate does not depend on the fast time-scale
statistics of the streams nor on the specific value of buffer size

, provided that it is large enough to absorb the fast time-scale
variations of the streams. This result can be interpreted as a
decomposition of the gain from multiplexing a large number
of multiple time-scale streams in abuffered node into two
components. The first component is the gain obtained from
buffering—its effect is essentially to remove the time-scale
fluctuations of the sources. The second component is the gain
from averagingbetween sources—it only depends on the slow
time-scale statistics, and is the same as that obtained in a
bufferlesssystem with the fast time-scale fluctuations removed
from the traffic. At the slow time scale, the buffer is too
small to have any significant effect. Note also that for a target
overflow probability , the total link rate needed can be
computed from (10).

Finally, we consider the RCBR scenario, shown in Fig. 3(c),
where the multiplexing node is bufferless and users have a
dedicated buffer. We characterize how much of the multiplex-
ing gain in the shared buffer case [Fig. 3(b)] our proposed
scheme can capture. Assume that the scheme does an ideal
job in separating the slow and fast time scales, such that it
renegotiates a new CBR rate whenever the source jumps from
a fast time-scale subchain to another. For a buffer overflow
probability requirement , the new CBR rate it should
renegotiate for is the equivalent bandwidth of the
subchain the source enters. Since is the steady-state
probability that the stream is in subchain, the stream will
demand a CBR rate of for long-term fraction of
time. The probability of renegotiation failure is roughly the
probability that the total CBR bandwidth demand exceeds the
available capacity; for large, we can use Chernoff’s estimate
to approximate this as

(11)

where

and is the link capacity per source. Comparing this to the
loss probability (10) when there is a shared buffer of size,
we see that this renegotiation failure probability is larger since
the equivalent bandwidth of every subchain is greater
than its mean rate . Viewed in another way, the capacity per
stream needed for the same level of performance is greater
in our scheme. This discrepancy in bandwidth requirement
is due to the fact that our scheme does not take advantage
of a large shared buffer to effectively absorb all fast time-
scale variations through statistical multiplexing. Thus, out

of the two components of the SMG in the shared buffer
case, RCBR extracts the component obtained from averaging
between sources. Our scheme essentially focuses on the gain
in the averaging of the slow time-scale dynamics rather than
the smoothing of the fast time-scale dynamics. However, for
sources with small fast time-scale fluctuations superimposed
on larger slow time-scale variations, the equivalent bandwidths
of the subchains will be close to the mean rates for reasonably
sized buffers and the discrepancy will be small. This is further
substantiated by the experimental results presented next.

B. Experimental Results

We shall now present simulations results comparing the
performance in the three scenarios in Fig. 3. The stream we
have used is the MPEG-1 encoded trace of theStar Warsmovie
[12]. The sources are randomly shifted versions of this trace.
The buffer size was chosen as 300 kb, slightly more than the
maximum size of three consecutive frames in the trace. This
approximately corresponds to the buffering of current video
codecs. The renegotiation schedule used in the experiments is
computed using the offline optimization algorithm described
in Section IV-A, with a bandwidth granularity of kb/s and
an average of 0ne renegotiation every 12 s.

To assess the SMG for all three scenarios, we have deter-
mined the channel service rate per stream, as a function
of , needed to guarantee a desired bit loss probability. In
scenario (a) and (b), bits are lost due to buffer overflow. In
scenario (c), bits are lost due to failure in renegotiating for a
higher CBR rate (in which case we assume that the source has
to temporarily settle for whatever bandwidth remaining in the
link until more bandwidth becomes available). Determining

is straightforward for scenario (b). For scenarios (a) and
(c), we find for each the minimum that guarantees the
desired loss probability—for eachwe do a binary search on
; for each step in the search, we do many simulations, where

each simulation has a randomized phasing of the sources, and
compute the average fraction of bits lost as an estimate of the
loss probability. At each step, we repeat the simulations until
the sample standard deviation of the estimate is less than 20%
of the estimate. Results for 10 loss probability requirement
are depicted in Fig. 6.

In the CBR case (a), the bandwidth per stream is, of
course, regardless of the number of streams. Note that
can be determined from the corresponding curve of this
trace in Fig. 5. (For a given buffer size, this curve gives the
minimum service rate such that the fraction of bits lost is less
than 10 .) As has been previously observed in the literature,
this is close to the peak rate [35], [13]. For the given buffer
size and loss ratio, is 4.06 times the trace’s average rate of
374 kb/s.

Our scheme achieves slightly less SMG than the unrestricted
case because buffers are not shared and the fast time-scale
multiplexing gain is not exploited, as explained in the the-
oretical analysis. Nevertheless, we are able to extract most
of the SMG, especially for a large number of multiplexed
streams. For example, for streams, we require less
than a third of the bandwidth of the static CBR approach.
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Fig. 5. The(�; �)-curve of the video trace for 10�5 loss.

Fig. 6. SMG achievable for 10�5 loss probability.

Asymptotically, the value for for the stepwise CBR
function approaches the inverse of the bandwidth efficiency
obtained in the optimization algorithm.

VI. A DMISSION CONTROL

In this section we present some analytical and experimental
results on admission control schemes suitable for RCBR.
RCBR belongs to the class ofstatistical services. Statistical
services are based on a stochastic traffic model, and the
QoS guarantee to the user, in this case the renegotiation
failure probability, is stochastic in nature. The advantage of
a statistical service over a deterministic service is the higher
statistical multiplexing gain that can be achieved, as we have
noted in Section II. A statistical service has the disadvantage
of being hard to police. Also, it is cumbersome or impossible
for the user to come up with a tighta priori traffic descriptor.
Therefore, we propose to use MBAC in conjunction with
RCBR [26], [15], [42], [20]. MBAC shifts the burden of traffic
parameter specification from the user to the network. Instead
of the user giving an explicit traffic specification, the network
attempts to “learn” the statistics of existing calls by making

online measurements. This approach has several advantages.
First, the user-specified traffic descriptor can be trivially simple
(e.g., peak rate). Second, an overly conservative specification
does not result in an overallocation of resources for the entire
duration of the call. Third, policing is reduced to enforcing
peak rate. The goal of this section is to illustrate some of the
problems of MBAC as well as possible approaches to devise
robust schemes.

Let us first discuss the admission control problem assuming
the traffic specification is known. More specifically, given a
renegotiation schedule, we can compute the empirical dis-
tribution (histogram) of bandwidth requirements throughout
the lifetime of a call, i.e., the fraction of time that a
bandwidth level is needed during the call, .
This distribution can be viewed as the traffic descriptor of the
call. When there are such calls sharing a link of total capacity
, the renegotiation failure probability can be estimated by

Chernoff’s approximation as in (11)

(12)

where

Using this formula, the maximum number of calls the sys-
tem can carry for a given threshold on the renegotiation
failure probability can be computed, and new calls will be
rejected when this number is exceeded. Note that the system
will deny new calls even when there is available capacity, so
as to safeguard against fluctuations of bandwidth requirements
of the calls already admitted. Thus, Chernoff’s approximation
quantifies the amount of slack needed in the available capacity.

The accuracy of this approximation is quite good. We refer
the reader to [18] for an experimental verification of the
Chernoff bound.

In practice, we often do not have a reliable traffic descrip-
tor. Even for stored video, where the empirical bandwidth
distribution could be computed in advance, user interactiv-
ity (fast forward, pause, etc.) reduces the accuracy of this
descriptor. However, we can estimate the traffic descriptor
in the following way. The idea is simply to estimate the
distribution by measuring the current state of the network,
and use the estimate as the proxy for the true distribution.
More specifically, the scheme determines the number of calls

that is currently reserving bandwidth level, for each
( ). This yields an empirical distribution

of bandwidth requirements for a typical call, where
and is the number of calls currently

in the system at time. The empirical distribution is
then used in place of the actual distribution in (12) to
estimate the renegotiation failure probability, based on which
an admission control decision is made. In control theory, this
controller is said to becertainty equivalent— the controller
assumes that the measured values are the true parameters and
acts like the optimal controller having perfect knowledge of
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Fig. 7. The memoryless scheme—renegotiation failure probability.

the values of those parameters. Moreover, this scheme is also
memoryless, i.e., every time a new call arrives, the scheme
uses only information about thecurrent state of the network
in making the decision of accepting or rejecting the call. This
memoryless certainty-equivalent scheme has also been studied
by Gibbenset al. [16] in the context of admission control of
on–off sources.

Note that the error associated with any estimation proce-
dure can translate into erroneous call admission decisions,
which in turn can compromise the QoS provided to users.
Furthermore, a measurement-based call admission controller
is a dynamical system, with call arrivals and departures, and
parameter estimates that vary with time. The dynamics of this
system have a large impact on the performance of the MBAC.
In particular, we now show that a memoryless admission
controller as described above isnot robust.

We discuss our simulation results obtained for the memory-
less MBAC. We compare its performance with the scheme
having perfect knowledge, in the dynamic scenario where
calls arrive and depart from the system. In particular, we
are interested in two performance measures—the steady-state
renegotiation failure probability and the average fraction of the
total bandwidth utilized. The success of the MBAC scheme
is evaluated by how well it meets the QoS requirement (in
terms of renegotiation failure probability) and how close its
bandwidth utilization is to that of the optimal scheme with
perfecta priori knowledge of call statistics.

The simulation set-up is as follows. Each call is a randomly
shifted version of aStar WarsRCBR schedule. Calls arrive
according to a Poisson process of rate.4 We measure both
the average utilization and the renegotiation failure probability.
Each interval of the length of the trace (approximately two
hours) provides us with one sample for these probabilities.
We collect samples until the 95% confidence interval for
both probabilities is sufficiently small with respect to the
estimated value (within 20% of the estimated value). For

4Note that as a by-product of using RCBR schedules instead of full per-
frame traces as input, the simulation efficiency is greatly improved, as we
only need to simulate the renegotiation events instead of each frame.

Fig. 8. The memoryless scheme—normalized utilization.

the renegotiation failure probability, we also stop if the target
failure probability of 10 lies to the right of the confidence
interval, i.e., if we are confident that the actual failure prob-
ability is lower than the target. This is necessary in order
to terminate simulations within reasonable time when the
observed renegotiation failure is very low (e.g., 10).

Figs. 7 and 8 show the renegotiation failure probability and
the utilization for the memoryless scheme, respectively. The
link capacity is expressed as a multiple of the call average rate.
The normalized offered load is the offered load normalized by
the link capacity. The utilization is normalized to the utilization
that is achieved when call admission is performed based on
the Chernoff approximation (6) and perfect knowledge of the
call’s marginal distribution.

It can be seen from Fig. 7 that the memoryless scheme per-
forms very poorly for small link capacities. The renegotiation
failure probability is three to four orders of magnitude larger
than the target. From Fig. 8, it is clear that the memoryless
scheme admits too many calls for small link capacity, as
the utilization is much greater than the utilization under the
scheme with perfect knowledge, which matches the target
QoS precisely. We see that in this regime, the estimation
error severely degrades the performance of the system. For
larger systems, e.g., , the performance improves,
meeting the target QoS for low offered loads. Also note that
the renegotiation failure probability increases with the offered
load. This is because a higher call arrival rate results in more
“opportunities” to go wrong, i.e., to admit a call that should
not have been admitted.

We now discuss an approach for obtaining more robust
schemes. We propose a scheme that relies on more memory
about the system’s past bandwidth reservations to come up
with a more accurate estimate of the marginal distribution.
In this scheme, we keep track of how often each bandwidth
level has been reserved by any of the calls currently in
the system. In other words, we accumulate information about
the entire history of each call present in the system and
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(a)

(b)

Fig. 9. Two ways to estimate the call’s marginal bandwidth distribution: (a)
memoryless and (b) with memory, by collecting per-call history.

Fig. 10. Scheme with memory—renegotiation failure probability.

use this information to construct the empirical distribution
of bandwidth requirements for a typical call, and make

admission decisions based on the test (6) (Fig. 9). This scheme
is a considerable improvement over the memoryless scheme.
Its renegotiation failure probability is about two orders of
magnitude below that of the memoryless scheme over the
whole range of link capacities and offered loads we have
simulated (Fig. 10). Fig. 11 shows that like the memoryless
scheme, this scheme is too optimistic in admitting calls for
small link capacities. For larger link capacities, the utilization
converges to the one obtained with perfecta priori knowledge
of the call statistics.

In summary, we see that the memoryless scheme is not
robust over the range of parameters we have considered. The
performance of call admission can be enhanced by using

Fig. 11. Scheme with memory—normalized utilization.

more history about the past behavior of calls. In practice,
however, this gain will have to be traded off with the slower
responsiveness to nonstationarities in the bandwidth require-
ment statistics. A better understanding of this tradeoff from
both a theoretical and an experimental standpoint is needed.
In particular, it is of interest to identify a memory size which
can reap the bulk of the benefit of using more memory. Also,
both our theoretical and experimental results focus on the
homogeneous situation, where all calls have similar statistics.
It is important to look at the heterogeneous case as well. These
questions are outside the scope of this paper. We refer the
reader to some of our recent work on MBAC [20], [42].

VII. RELATED WORK

The key contributions of our paper are: 1) noting that
compressed video traffic has significant burstiness in the slow
time-scale; 2) showing that renegotiation allows us to extract
almost all of the SMG available from exploiting this varia-
tion; and 3) admission control for loosely-constrained traffic
sources. Recently Chonget al. [4] and Zhang and Knightly
[48] have independently published work that comes to the
same conclusions. Zhang and Knightly present a renegotiated
VBR service. Chonget al. have concentrated on the online
prediction problem using artificial neural networks. Our work
differs from theirs in some important aspects. First, our work
is based on the theoretical foundation of large deviation
analysis of multiple time-scale sources, which gives us deeper
insight into the nature of the multiplexing gain and allows
us to formally study the renegotiation failure probability for
ensembles of renegotiating sources, which is asymptotically
correct in the regime stated in the theorems. In contrast,
Chong et al. [4] based their analysis solely on the power
spectral density of the traffic and moreover do not consider
the statistical multiplexing issues. As pointed out by Hajek and
He [21], second-order statistics alone do not uniquely specify
loss probabilities and, thus, it is important to understand
the regime in which these approximations are valid. Second,
we have obtained an optimal offline renegotiation algorithm.
Third, we have considered admission control for renegotiating
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sources. Finally, we have considered the system aspects of
the problem in more detail. Nevertheless, we feel that their
work complements ours in that it reinforces the importance of
renegotiation for multiple time-scale sources.

The two core mechanisms for RCBR are renegotiation and
rate prediction. In-call renegotiation has been proposed for
bursty data traffic by Hui [23], Turner [43], Doshi and Dravida
[9], and Boyer and Tranchier [3]. In their work, a traffic
source sets up a burst level reservation before sending or,
in some cases, during a burst. However, since data traffic
bursts can occur every tens of milliseconds the reservation
process has to be fast. This speed is not essential for RCBR,
where renegotiations happen once every tens of seconds. In
addition, we believe that renegotiation is effective mainly as a
mechanism to extract SMG from slow time-scale variations in
source traffic. Data traffic exhibits burstiness in the fast time
scale, and thus renegotiation for data traffic is not likely to
be economical in practice. Nevertheless, the mechanisms for
renegotiation proposed in the literature can be used for RCBR
with minor changes.

De Veciana and Walrand have proposed aperiodic aver-
aging of ratescheme to smooth traffic at the network edge
[8]. Like RCBR, the output of their traffic shaper is also
a piecewise CBR stream. The basic difference, however, is
that they do not model the multiple time-scale nature of the
traffic stream, and their scheme is not designed to capture the
SMG from multiplexing many sources with slow time-scale
dynamics.

The offline schedule computation problem has also been ad-
dressed in Salehiet al.’s recent work [39]. They propose to use
a client buffer andwork-aheadsmoothing, i.e., sending data
ahead of schedule, in order to achieve an additional reduction
in the flow’s bandwidth fluctuation. They present anoptimal
smoothingalgorithm that transforms an arbitrary data stream
into a piecewise CBR stream that minimizes both the peak
rate and the rate variance, and they show that this approach
allows to considerably reduce the renegotiation frequency
under RCBR service. Their work provides an interesting
alternative for computing an optimal renegotiation schedule.
Rexford et al. [37] study the smoothing problem under the
assumption that only limited knowledge about the future frame
sizes is available. McManus and Ross discuss heuristics for
the same problem setting [30]. They show the condition on
the bandwidth , the number of prefetched frames, and the
client-side memory size , under which a sequence of VBR
video can be transmitted at a constant rate without overflowing
or underflowing the client buffer. Based on these conditions,
heuristics are developed that yield a piecewise constant-rate
transmission schedule. The client-side memory size and the
number of prefetched frames are shown to decrease with the
number of intervals, i.e., the number of renegotiations.

The online rate prediction problem has been extensively
studied from several different perspectives in the past. Adas
has addressed it using adaptive linear filtering [2] and he re-
ports good prediction performance over a range of compressed
video sequences. Other promising methods are described in
[22]. Chong et al. [4] have proposed an artificial-neural-
network-based approach for prediction, and have shown that

Fig. 12. Design space for traffic management policies.

it compares well with more traditional alternatives. Reininger
et al. [36] have investigated methods to renegotiate VBR
parameters including the peak rate, the sustained rate, and the
burst size. The focus of their work is on the online prediction
problem. A drawback of their scheme is the large number
of parameters to be tuned (sliding window size ;
aggressiveness factor; four buffer thresholds , , ,
and ; target quantization target; and renegotiation delay
parameters and ).

Current proposals in the ATM forum for dealing with ABR
traffic are similar in spirit to RCBR in that a source obtains
a stepwise CBR rate allocation from the network. However,
in the ABR framework, there is an assumption that the source
has an intrinsically infinite data rate that is modulated by the
fair share of the available network capacity. Thus, the data rate
from a source is dynamically adapted to the available capacity
in the network. This is the opposite of our situation, where
the source has an intrinsic data rate that the network tries
to accommodate. In other words, in the ABR case the rate
information flows from the network to the user; in the RCBR
case, the information flows from the user to the network.

Our work on admission control is related to that described in
Gibbenset al. [16]. They advocate an approach based on using
the current traffic load measurement in making admission
control decisions. However, their focus is on how the measure-
ment information can be combined witha priori knowledge
of the traffic sources, while we investigate the improvement
in performance through the use of more memory of the past
network state. Moreover, our schemes are evaluated on real
traffic sources while theirs are on synthetic on–off sources.
Recent work on MBAC has also been reported in Jaminet al.
[26]. However, their scheme has several parameters that have
to be tuned in order to compensate for the sources of error
discussed in the previous section (estimation error, dynamics);
clear insight into how to set these parameters is lacking.

VIII. D ISCUSSION AND CONCLUSIONS

We believe that the performance tradeoff space for traffic
management policies looks something like Fig. 12. Starting
from the right and moving to the left, we have the synchronous
digital hierarchy (SDH) for telephony, static CBR, static VBR,
RCBR, renegotiated VBR (RVBR), ABR, controlled load,
and, finally, unrestricted datagram service. In SDH, each call
is associated with a time slot, and thus a corresponding
bandwidth, that cannot be shared with any other call. Static
CBR and static VBR are described in Section II and have one-
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shot traffic descriptors. RCBR and its corresponding service,
RVBR, add renegotiation to CBR and VBR, respectively. ABR
service in ATM networks guarantees a connection zero loss,
but its service rate changes as a function of other traffic in
the network. With this service, the network agrees to perform
admission control such that a source’s performance does not
substantially degrade, but the degree of degradation is not
quantified. Finally, “datagram” refers to unrestricted sharing
of all network resources.

As we move from right to left the SMG achievable in-
creases, but if the network resources allocated to a stream are
kept the same, the protection between streams decreases. That
is, one stream can more adversely affect another’s performance
in terms of its service rate and loss rate. For example, as one
moves from static CBR to static VBR, more SMG is possible
but there is a greater loss of protection. This is because with
a fixed amount of buffering a VBR source could experience
packet loss due to a coincident burst from another source.
Note that in moving from static CBR to static VBR, similar
protection can be obtained but only at the cost of increased
buffering or by describing source traffic with more parameters
[29]. Similarly, as we move from static VBR to RCBR, we
incur renegotiation overheads but can potentially exploit slow
time-scale variations in the source rate to get increased SMG.
RVBR allows more SMG since both slow and fast time-scale
variations are exploited. However, there is more overhead
for renegotiation, per-stream regulation, and larger buffers at
each switch. The next step along the spectrum is to ABR,
where there is much less protection between streams, because
each user’s bandwidth depends on the demand of the others.
However, even more SMG is possible since SMG is extracted
at the burst level. Controlled load service offers potentially
even more SMG than ABR service, but at the expense of a
nonzero loss rate. Finally, with datagram service, the most
SMG is available since call level, burst level, and cell level
statistical multiplexing is possible. Unfortunately, datagram
service also has the least protection—a single burst from a
malicious or ill-behaved source can affect all of the others.

The point is that RCBR is not a panacea. It is one choice
in a spectrum of choices for carrying compressed video. We
feel that RCBR is best suited to traffic whose variation is not
confined to the fast time scale. This seems to match at least the
subset of the compressed video traffic workload that has been
measured in the literature. Other services could also be used to
carry compressed video traffic—ABR, static VBR, RVBR, and
static CBR have all been proposed in the literature. Ultimately,
a network provider and user must choose a service based on
its relative cost, efficiency, and afforded quality of service.

Nevertheless, we feel that RCBR has some clear benefits.
First, it is relatively easy to implement since we are adding
a renegotiation component to the well-understood static CBR
service. While RCBR admission control is potentially com-
plex, this is more than balanced by the fact thatneither
complex scheduling disciplines nor large buffers are required
in the network switches[17]. RCBR allows us to keep the
network core fast, cheap, and dumb (at least in the data path),
and put intelligence in the edges to extract the SMG from
slow time-scale variations.

Second, an RCBR network is always stable, in the sense
that the sum of arrival rates to a multiplexing point is always
smaller than the corresponding service rate. Each admitted
call or burst moves the system from a stable configuration to
another stable configuration. Thus, the network operator can
easily guarantee zero loss and small queueing delays within
the network.

We have already shown that RCBR gets more SMG than a
static service. There is another significant advantage. Users of
a static service get only one chance to provide the network
with a traffic descriptor. If they guess wrong, they either
get poor SMG or suffer from large delays, which might be
unacceptable. With RCBR, a source has the option to modify
its traffic descriptor over time. The danger is that the network
might admit too many ill-described users, so that at some
future time the renegotiation failure rate may be too high. This
is because there really is no free lunch. If a user is admitted
into a network before its traffic is characterized, then there is
always the possibility that mistakes will be made by admitting
too many users. However, Section VI indicates that we might
be able to exploit the law of large numbers to make this risk
acceptably small.

It is instructive to compare RCBR with unrestricted sharing.
With unrestricted sharing (datagram service) we achieve the
maximum SMG but the least protection. In practical terms,
with unrestricted sharing, a source must always be prepared
to deal with data loss (for example, by using forward error
correction or retransmitting data). Moreover, data loss is
unpredictable. The analogue to loss in RCBR is renegotiation
failure. With RCBR, however, a source retains its existing
bandwidth even if renegotiation fails. Besides, a source is
explicitly informed about renegotiation failure so that it can
take corrective measures. This makes it easier to integrate
RCBR with techniques such as dynamic requantization of
stored video, adaptive coding, and multilevel scalable coding.

To conclude, we have shown that a source with slow time-
scale variations would suffer performance problems when
carried over a static service. Large deviation analysis provides
theoretical insight into this problem and motivates the design
of the RCBR service. We have considered the system aspects
of implementing RCBR and have carried out several experi-
ments to measure its performance. The results in Section V-B
show that RCBR obtains most of the slow time-scale SMG
with a fairly small load on the signaling system. Further, it
is possible to compute the optimal renegotiation schedule for
a real traffic source in a reasonable amount of time. Finally,
we have studied the call admission problem and come up with
admission control tests based on a large deviation analysis.
Thus, our analysis and experiments show that RCBR service
is efficient and well suited for multiple time-scale traffic.
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