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Abstract

Feedback flow control, in conjunction with lim-
ited buffering in the network, inevitably leads to
packet loss. Effective congestion control requires not
only intelligent flow control but also a good retrans-
mission strategy. We present a new retransmission
strategy called SMART (Simple Method to Aid
ReTransmissions), that combines the best features of
the traditional Go-back-N (GBN) and selective-ack
strategies.

We show, first, that GBN retransmission with
static window flow control leads to congestion col-
lapse when the nominal load exceeds the link capac-
ity. Second, we can avert congestion collapse by
replacing GBN with SMART retransmission, even
with static window flow control. Third, SMART
retransmission, when combined with intelligent flow
control, performs extremely well, both when losses
are due to buffer overflows and when losses are ran-
dom. Moreover, sources implementing intelligent
flow control as well as SMART have a substantial
advantage over static-window SMART sources under
overload. Finaly, in the presence of heavy random
losses, SMART plusintelligent flow control is far bet-
ter than TCP.

1. Introduction

Most current approaches to congestion control
focus on the problem of flow control, that is, tech-
niques that enable an end-system to match the cur-
rently available service rate in the network.While flow
control is an important problem, it often overshadows
the equally important choice of retransmission strat-
egy. If losses due to line errors (as in wireless net-
works) or due to buffer overflows (as with network

congestion) are common, a poor retransmission strat-
egy can lead to congestion collapse. It is important,
therefore, to develop robust and efficient retransmis-
sion strategies. In this paper, we present SMART
(Simple Method to Aid ReTransmissions), and use
exhaustive smulations to show that it satisfies both
the robustness and efficiency criteria. While SMART
was developed in the context of arate-based flow con-
trol protocal, it is equally applicable to window-based
protocols. We will show that SMART retransmission,
in conjunction with intelligent flow control, not only
performs extremely well with congestive losses, but
also performs nearly ideally in the presence of random
losses. In contrast TCP's performance grows rapidly
worse in the presence of frequent random losses.

The rest of the paper is organized as follows.
Section 2 describes the SMART retransmission pol-
icy. Section 3 studies the baseline case with GBN
retransmission and static window flow control. Sec-
tion 4 shows that adding SMART to the baseline case
avoids congestion collapse. In Section 5 we describe
how a combination of SMART and intelligent flow
control alows a source to not only avoid congestion
collapse, but also obtain nearly optimal performance.
Section 6 is a brief description of TCP's retransmis-
sion policy and an analysis that shows that TCP will
behave poorly when the loss rate is high or the
bandwidth-delay product is large. Section 7 shows
that SMART + intelligent flow control behaves nearly
optimally in the presence of heavy random losses.
Finally, Section 8 presents our conclusions.

3. SMART Strategy

SMART is a novel retransmission strategy that
combines aspects of the two traditional techniques:
Go-back-N and selective-retransmit. We first outline
the traditional schemes and their drawbacks, in order
to motivate the design for SMART.

Go-back-N

In GBN, a source keepstrack of an error control
window, which is the set of sequence numbers that it
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has transmitted, but the receiver has not acknowl-
edged. Typicaly, the receiver writes the cumulative
acknowledgment (ack) number in the ack header: this
is the last in-sequence packet it has received, and is
the one smaller than the left edge of the error control
window. In strict GBN, on a timeout, the source
retransmits the entire outstanding  window
[SCHW?77]. This has the advantage of being conser-
vative, because the source treats every loss as a burst
loss, but uses bandwidth inefficiently. Moreover, loss
recovery depends on atimer, which is usualy hard to
set [ZHANBSG]. If the timer is set too low, the source
retransmits packets unnecessarily; if set too high, it
wastes time, waiting for a timeout.

Some of thisinefficiency is avoided by modified
versions of GBN, as in TCP [WRIG95]. In these
schemes, on a timeout, the source marks the entire
window eligible for retransmission, but flow control
ensures that the source retransmits only the first
packet in the window. If incoming acks move the left
end of the error control window, the source unmarks
packets formerly marked eligible for retransmission.
Thus, it is unlikely that the source would retransmit
the entire error-control window. For example, suppose
the error control window is 6-10, and the actual
packet lost is 6. On a timeout, the source retransmits
the packet with sequence number 6, and flow control
ensures that the source sends no other packet for the
next round trip time. If the ack moves the left edge of
the error control window to 10, then the source does
not retransmit packets 7-10. This scheme is clearly
more efficient in its use of bandwidth. However, this
comes at the expense of reduced throughput during
the first round-trip-time after a loss. Besides, the
source still depends on a timer to initiate retransmis-
sion.

el ective acknowl edgement

Several  selective-acknowledgment  schemes
have been proposed in the literature [DOSH93]. In
these schemes, every acknowledgment carries a bit-
mask of the packets seen so far. Since the sender
knows which packets have been received, only pack-
ets that are actually lost are retransmitted. Thus,
selective-acknowledgment alows a source to use
bandwidth efficiently. Besides, there is no need for a
timer to decide that a retransmission is necessary.
However, every ack header must carry the bit-mask,
which can be a significant overhead if the window

size islarge. Moreover, the scheme incurs this band-
width overhead even if there is no packet loss, which
is the common case.

SMART

The SMART retransmission strategy seeks to be
as efficient as selective-ack in its choice of packets to
retransmit, and as conservative as GBN in the pres-
ence of burst losses. We would like to avoid using
timers to the extent possible. Finally, we would like
to achieve our objectives without coupling flow and
error control.

The key ideain SMART isto build the bit-mask
of correctly received packets at the sender, instead of
carrying it in the ack header. Each ack therefore car-
ries two pieces of information: the cumulative ack, as
in standard GBN, and the sequence number of the
packet that caused the ack to be initiated. As we will
show below, the second piece of information not only
alows the sender to know which packets have been
correctly received, but also allows the sender to cor-
rectly infer which packets have been lost, and to take
corrective action, that, for the most part, does not
require the intervention of atimer. Thisrelative inde-
pendence from timers is the key to its success — as
Zhang has shown, retransmission protocols that are
strongly dependent on timers have severe problems
[ZHANS6]. However, we do use timers as a mecha
nism of last resort. Thus, in the common case,
SMART is as efficient as selective ack, and in the
worst case, it is as conservative as GBN. We remark
here that the scheme is particularly well suited to
wireless environments that are characterized by sud-
den burst losses.

Detailed description

We now present a detailed description of
SMART. For the moment, assume that every packet
is acked. When a source receives an ack, it compares
the cumulative acknowledgment with the sequence
number of the packet that caused the acknowledg-
ment. If the two are not the same, then the source
guesses that all the packets in the sequence space
between the cumulative ack and the packet being
acked are lost, and places them in the transmission
queue for subsequent retransmission. For example: if
the source receives an ack that has a header (2,7),
where 2 is the cumulative ack, and the ack was caused
by the receipt of a packet with sequence number 7,
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then the source guesses that packets with sequence
numbers 3, 4, 5, and 6 are lost. It may be that these
packets are actually misordered. SMART is aggres-
sive about retransmission, and so when it is uncertain
whether a packet is misordered or logt, it aways
guesses that the packet is lost, and retransmits it.
(Note that this is similar to the fast retransmission
policy in TCP Reno, except that in TCP Reno, three
duplicate acks have to be received before the source
initiates afast retransmission.)

There is one exception to this rule. If a source
has aready done a fast retransmission of a packet,
then it will not be retransmitted by the receipt of a
subsequent ack. For example, if acks (2,7), and (2,9)
arrive to a source, on receiving the first ack, the
source retransmits 3, 4, 5, and 6. However, on receiv-
ing the second ack, the source only retransmits 8,
because packets 3-6 have been retransmitted earlier.
This rule catches amost al packet losses. It fails
only when the fast retransmission itself is lost. In
order to detect this, we use a different heuristic,
described next.

Lost fast retransmissions

The intuition behind the scheme is that if a fast
retransmission succeeds, then the cumulative ack
should increase one round trip time after the fast
retransmission was sent. Otherwise, the fast retrans-
mission must have been lost. Suppose that the source
sends a packet with sequence number P at time t(P)
that is lost in the network. If the source sends packet
P+1attimet(P+1) = t(P)+¢, and the round-trip-
time is Tgr, then a time t(P)+&+ Tk, the source
can discover that P islost (because the cumulative ack
and sequence number for this ack differ). Thus, the
source retransmits P at time t +&+Tgy. In the inter-
val [t+e+Tgr, t+£+2Tgkr], the cumulative acks
received by the source cannot increase, since the lost
packet causes a hole in the sequence space at the
receiver, that isfilled only when the retransmission is
received. However, after time t+e+2Tgy, if the
fast-retransmission indeed reached the receiver, the
cumulative acknowledgment received by the source
should have increased. In fact, if the cumulative ack
received after time t+&+2Tgy is not larger than the
cumulative ack received at time t +&+Tgy, then the
fast-retransmission must surely have been lost. Of
course, we need to alow for some variation in the
round-trip-times, to alow for variable queueing

delays. However, this logic lies at the basis of two
agorithms to correct for most lost fast-
retransmissions that we discuss next.

In the first algorithm, every time the source
sends a fast retransmission, it sets a timer to expire
one round-trip-time from the current time. If the
cumulative acknowledgment does not increase by the
time the timer expires, the packet with sequence num-
ber one larger than the cumulative-ack is retransmit-
ted. In order to account for variations in the round-
trip-time, the timer should be set to a value somewhat
larger than the measured smoothed round-trip-time.
This scheme allows us to reliably detect lost retrans-
missions. However, it not only requires a fair amount
of work in setting and resetting timers, but aso is
dependent on accurate measurement of round-trip-
times for its success.

We can avoid these problems at the expense of
another field in the packet header. In the second
algorithm, the source maintains an id state variable
that is guaranteed to be monotonically increasing with
time (unlike the sequence number field, which can
decrease because of retransmissions). We also add an
id field to the transport-layer packet header. Every
time the source sends a packet, it writes the current id
value in the packet header, and increments the state
variable. The id field is copied into the acknowledg-
ment by the receiver. Theid field allows the source to
measure round trip times without timers. For exam-
ple, if the source sends a packet with id 5 at time t,
then it should receive an ack with id 5 one round trip
time later.

Recall that the source would like to measure one
round-trip-time from the time it sends the fast retrans-
mission. Thus, when it sends a fast-retransmission, it
stores the current cumulative-ack and the id of the
fast-retransmission packet in two state variables. On
receiving an ack, if the id of the packet is larger than
the stored id, but the cumulative ack is the same as the
stored value, then the fast retransmission must have
been lost. For example, if the source does a fast
retransmission of packet 52 (cumulative ack is 51)
when the next packet would have id 213, if the cumu-
lative ack is still 51 when an ack with id 213 is
received, the source retransmits 52.

If asource loses afast retransmission, thelineis
probably quite lossy, because the source has lost the

1 This version was used in the simulations of the present paper.
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same packet twice. To avoid losing the packet three
times, the source thus places two copies of the same
packet in the retransmission queue. This ensures that
the sender will make progress (since the cumulative
ack isvery likely to increase — it won't increase only
if both of the retransmissions are lost) even on very
lossy lines.

Thus far, we have discussed how to recover
from lost packets, and lost retransmissions, without
using timers. However, timers are always needed, if
only to deal with the worst case, where al packets and
al acks are lost. Thus, SMART uses timers as a
recovery mechanism of last resort. The source mea-
sures round trip times and exponentially averages
them as in TCP. On packet transmission, a per-
connection timer is set to twice the smoothed round-
trip-time estimate. On a timeout, the entire window,
other than packets that are known to have been cor-
rectly received, is retransmitted. The timeout thus cor-
rectly retransmits lost packets even when the heuris-
tics described above fail.

Error-control window size

We distinguish between the error-control win-
dow and the flow-control window at a source. The
error-control window Wege is the largest number of
out-of-sequence packets that can be buffered at the
recelver. For a window-controlled source, the flow-
control window W is the largest number of packets
that the source may send without an acknowledgment.
Limiting the flow-control window allows us to
implicitly control the transmission rate of a connec-
tion, since the connection’s rate is restricted to one
flow-control window worth of packets per round-trip-
time.

There are two requirements on the flow-control
window: 1) It must be at least as large as the round-
trip window Wpgr, defined as the bandwidth-delay
product of the connection. Otherwise the source can-
not utilize the full speed of the circuit when there is
no congestion. 2) It must not be larger than the
error-control window, otherwise the receiver can't
hold all the out-of-sequence arrivals that it might need
torearrange. If the round-trip window is less than the
error-control window, as is amost always the case in
practice, then the flow-control window can have any
valuein between.

For window-controlled circuits, where the
source may transmit at full speed until the flow-
control window is exhausted, too large a flow-control
window runs the risk of overflowing the buffer space
at bottleneck nodes. On the other hand, for rate-
controlled circuits a sufficiently large error-control
window permits the source to continue sending at the
rate determined by the rate-control agorithm while
the system recovers from packet |osses.

Call the time between transmitting a packet and
receiving its eventual acknowledgement, perhaps after
multiple losses and retransmission, the recovery time.
If the bottleneck has arate p, and the recovery timeis
T, then in order to keep the bottleneck busy, the
source should be able to send T packets without
waiting for a packet to be acked. In other words, the
error-control window should be at least as large as
TH.

For the SMART retransmission strategy, we
argued in the previous subsection that if the source
transmits a packet at time O and the transmission fails,
the source is aware of the failure at time Tgr +€. If
the first fast-transmission fails, the source is aware of
the failure at time 2T gt +€. A simple inductive argu-
ment shows that as long as losses are isolated, that is,
no loss occurs while the source is recovering from a
loss, if the same packet is lost x times, then the recov-
ery time is just greater than (x+1)Tgr, and the
error-control window needs to be at least (X +1) Wgr.
In principle, we cannot bound the number of times a
retransmitted packet is lost. However, increasing the
error-control window beyond a certain size provides
rapidly diminishing returns, since the events that
require very large error-control window sizes are very
unlikely.

If losses can occur while the source is recover-
ing from an earlier loss, then the analysis is substan-
tially more complicated, since the recovery time
depends in detail on which packets are lost, and on the
order in which the losses happen. For example, if two
packets are lost back to back (a burst of length 2),
then with our scheme, the recovery time is nearly
identical to the recovery time with a single loss. On
the other hand, if the second loss happens halfway
through the recovery from the first loss, the recovery
time is substantially longer than the recovery time
with asingleloss. A detailed analysis of the recovery
times for various combinations of losses and their rel-
ative probability of occurrence would alow us to
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Figure 1. Simulation scenario.

select a “'good’’ error-control window size, that is, a
window size that balances the benefit of dealing with
the most likely loss events with the cost of additional
buffering at the recelver. However, this anaysis
would be rather complicated. Instead, we have stud-
ied the effect of window size on throughput through
simulations (Section 7). We recommend that for nor-
mal operation, the error-control window be set to as
large a value as possible, at least 2Wgkt, and prefer-
ably closeto 4Wgt.

2. Basdline case

In order to measure the effectiveness of
SMART, we first study the performance of a baseline
scenario shown in Fig. 1. In this scenario, packets
from sources on access lines of speed S, and latency
L, are multiplexed at a Fair Queueing router, which
puts them onto a backbone link of speed S, and
latency L. The router has a fixed total buffer size
and maintains a separate logical queue for each
source. When a packet arrives that would cause the
total buffer space to overflow, the arriving packet is
discarded. The destination acknowledges every
received packet with an acknowledgment of length A.
Sources measure round-trip-times from the acknowl-
edgments, smoothing them with an exponentia aver-
aging filter, asin TCP [WRIG95]. The timeout value
is set to twice the smoothed round-trip-time. The
sources do GBN retransmission of the entire outstand-
ing window on a timeout, simultaneously doubling
the timeout value.

After a source has generated a message contain-
ing some number of packets, it waits until al the

packets have been correctly acknowledged. It then
goes OFF for an additional, randomly chosen ‘*think
time'’, after which it again goes ON and repeats the
cycle. Inthe simulation model, ON times are geomet-
ricaly distributed with mean Ty (each ON period
generates an integral number of packets). OFF times
are exponentially distributed with mean Tope. For
simplicity we assume that the link between the router
and the dedtination is the bottleneck, that is,
Sy £ S, , and we assume that during an ON period, a
source generates bits at a rate equal to the rate of the
bottleneck link, that is, Roy = S, . For the average
length of an ON period, we take Toy = 2Tk,
where Tgr is the round-trip time when only one
source is active, i.e., there is no contention. Thus the
average message length is2S, Trr = 2Whgt.

The nominal offered load r; due to a single
source is equal to the average utilization of the bottle-
neck link when only one source is present. Thus,

Ton
Ton + Trr + Tore

rA =

)

We can vary r,, within limits, by varying Toy and
Torr. Thenominal offered load due to N statistically
identical sourcesis Nr ¢, and this can made as large as
desired by suitable choice of N. The carried load can-
not exceed 100% of the capacity of the bottleneck
link, and the goodput is less than 100% if any packets
have to be retransmitted.

For the simulations, we chose:

P = 500 bytes = 4000 bits ,
A = 40 bytes = 320 bits,
Tgr = 0.05s,

and for the number of packets in around-trip window,
S Trr/P = 100 packets .

The above numbers give a reasonably large
number of packets in a round-trip window and still
achieve reasonable running times for the simulations.
Trandation from simulator numbers to real-world
numbersis straightforward. An ATM cell contains 53
bytes, including payload plus header. Assuming a
transcontinental round-trip time of 50 ms, at a back-
bone speed of 1.5 Mb/s the round-trip window sizeis
177 ATM cells. At 622 Mb/s, the round-trip window
is 73,350 ATM cells. The size of a simulated packet
is 1/100 of the round-trip window size.
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We have considered three values of router buffer
size, namely one round-trip window, 0.5 round-trip
window, and 0.25 round-trip window. Each of the
plots includes three curves, one for each value of the
ratio B of buffer sizeto Wgr.

In the simulations of congestion loss, we set the
error-control window equal to 600 packets, that is, 6
times the round-trip window. Such an window is
essentidly infinite for this scenario. The effects of
error-control window size in a random-loss scenario
are considered in Section 7.

We ran al the overload simulations with 10 sta-
tistically identical sources, that is, N = 10. Each
simulation run lasted for 400 simulated seconds after
aninitial ‘‘transient’’ period of 20 seconds. Since one
round-trip time is 0.05 seconds, each 20-second inter-
val corresponds to 400 round-trip times. During each
interval, the bottleneck link could have carried about
40,000 packets at full utilization. We varied the nom-
inal offered load of a single source from 0.05 to 0.5,
so that the total nominal offered load on the bottle-
neck link varied from 0.50 to 5.00. The ‘‘fair share’’
of a single source varied from 0.05 to 0.10, inasmuch
as under congestion no source would be expected to
get more than 1/10 of the available bandwidth on
average. Thus we would expect a typical source to
have a goodput of between 10 and 20 average-length
messages per 20-second interval We considered this
adequate for statistical purposes.

To estimate the reliability of the smulator out-
put, we went through the usual procedure of taking a
sample of n values of goodput corresponding to
n=20 intgrvals We computed a sample mean X and
variance G, according to [LAWS82],

X = (1/n)£ X; . )

i=1

~2

Sl 2%
P AR RS

The intervals (X -1.966, X +1.96G) are plotted on
Fig. 2. If the intervals are uncorrelated and the sam-
ple is large enough so that its mean is normally dis-
tributed, then the plotted intervals are ‘‘95%

confidenceintervals'.

1
Upper: B=1.0
Middle: B=0.5
Goodput Lower: B=0.25
0.5
. S—
0 I T [ | l
o 1 2 3 4 5

Nomina Offered Load

Figure 2. Goodput vs. offered load for 10 GBN sources.

Figure 2 shows the goodput as a function of the
nomina offered load. The maximum goodput is
between 25 and 35%, at an offered load of about 50%.
As the load approaches 1, the goodput decreases dra-
matically, displaying classic congestion collapse. This
is because GBN retransmits an entire window on a
single packet loss. As the load increases, the proba-
bility of a buffer loss increases, decreasing the good-
put. Note that, as might be expected, both the peak
goodput and the load at which this peak is achieved,
decrease with adecrease in the buffer size.

4. Basdinecase with SMART retransmission

We saw that static window flow control, in con-
junction with GBN retransmission, leads to conges-
tion collapse. One way to dea with this problem, as
in TCP, is to shut down the flow control window on a
loss, thus reducing the load. However, without
changing the flow control agorithm, if we simply
replace GBN with SMART, we find that the conges-
tion collapse disappears. Figure 3 shows the goodput
as a function of the nominal load for a simulation sce-
nario identical to the one above. It is clear that
SMART prevents congestion collapse as the hominal
load increases beyond 1.0. The achievable goodput is
smaller with decreasing buffer sizes, but even with a
nominal load of 500%, there is no decrease in the
achievable throughput. This is a clear indication of
SMART’ s effectivenessin dealing with buffer losses.
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Figure 3. Goodput vs. offered load for 10
static-window + SMART sources.

5. Basdline case with SMART retransmission and
Packet-Pair flow control

SMART prevents congestion collapse, but does
not prevent packets from being lost in the first place.
This is why, in Fig. 3, the achievable goodput is
around 50%, instead of around 100%. In order to
achieve better goodput, we not only need smarter
retransmission, but also better flow control. In this
section, we study sources that implement both
SMART, and Packet-Pair flow control [KESH91,
KESH95]. Packet-Pair is a rate-based flow control
scheme designed for networks of round-robin servers.
It measures the bottleneck service rate by sending all
data in the form of back-to-back pairs, and measuring
their inter-ack spacing. A filtered version of the mea-
sured rate is used in conjunction with a control law to
ensure that the bottleneck’s buffers are neither too
full, nor too empty. If the network does not provide
round-robin queueing but does give explicit rate feed-
back through the use of RM cells [BONO95], a
Packet-Pair source would simply use this rate instead
of making its own rate estimates. A detailed study of
Packet-Pair performance can be found in [KESH95].

Figure 4 shows the goodput achievable with
Packet-Pair + SMART, in the same scenario as
before. Comparing this figure with Figs. 2 and 3, it is
clear that sources implementing both PP and SMART
not only avoid congestion collapse, but also get close
to 100% goodput even when the buffer size isonly a
fourth of the bandwidth-delay product. For a fixed
offered load, the goodput decreases, but not very fast,

1
Goodput
0.5

Upper: B=1.0
Middle: B=0.5
Lower: B=0.25

0— i i i i i

0 1 2 3 4 5

Nomina Offered Load

Figure 4. Goodput vs. offered load for 10
Packet-Pair + SMART sources.

as the buffer size B decreases. This result helps to
quantify the widespread belief that dynamic rate con-
trol should work satisfactorily with atotal of less than
one round-trip window of buffering. With PP, the
buffer size needs to be at least 2N packets for N con-
nections. In the present simulations, 2N packets
would correspond to B = 0.20. Using smaller pack-
ets, SMART + Packet-Pair would undoubtedly func-
tion with still lower values of B. Inan ATM network
using AALS, the spacing between cells of a single
AAL frame could be measured at the receiver, reduc-
ing the buffer requirements still further.

We conclude this section by studying the behav-
ior of mixtures of PP and non-PP sources when both
are using SMART. The non-PP sources are ON-OFF
with static window flow control, that is, they are iden-
tical to the sources in Section 4. The simulation sce-
nario isthe same asin Section 3.

The results of the simulations are plotted in Fig.
5. We have considered two combinations, namely 9
PP and 1 non-PP source, and 1 PP and 9 non-PP
sources. Each plot shows per-source goodput, for
each type of source, vs. nominal offered load,

Figure 5 shows that in general, when PP and
non-PP sources are mixed, the PP sources capture
more bandwidth per source than the non-PP sources,
both when the PP sources are in the majority (Figs.
5(@)(b)) and when they are in the minority (Figs.
5(c)(d)). This is because they gain goodput at the
expense of the non-PP source (to see this, compare
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Figure 5. Goodput vs. offered load for PP and non-PP sources + SMART.

panel 5(a) with Fig 3). Under heavy load, several PP
sources can essentially drive out a non-PP source.

When a single Packet-Pair source shares a link
with many non-Packet-Pair sources, Figs. 5(c) and
5(d) show that the Packet-Pair source gets substan-
tially more than its share, which would have been
10% of the congested link under the present scenario.
Furthermore, the single Packet-Pair source actually
does better with a smaller total buffer (Fig. 5(c)),
because it knows how to behave while the non-
Packet-Pair sources do not. These results clearly indi-
cate that while SMART can prevent congestion col-
lapse, by itsalf, it is not sufficient to efficiently use the
link. To do so, it must be used in conjunction with an
intelligent flow control algorithm that explicitly tries

to match its sending rate to the bottleneck capacity. If
used with a naive flow control scheme, SMART can
reduce the number of retransmissions, but packet
losses will till occur because of rate mismatches.
The implication is clear: with Fair Queueing routers,
there is a strong incentive for sources to implement
PP + SMART.

In work not shown here for lack of space, we
have also simulated a packet-drop strategy in which
the arrival of a packet that would overflow the total
buffer space triggers the discard of the longest queue,
whether or not the arriving packet belongs to that
queue. Drop-longest queue is easy to implement in
some switch controllers. Under overload, drop-
longest-queue give somewhat lower total goodput
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Figure 6. Tahoe goodput for two random-error scenarios.

than drop-last-packet, but the difference between the
two disciplines is not large. Drop-longest-queue is
harder on non-Packet-Pair sources than it is on
Packet-Pair, because non-Packet-Pair sources keep
bumping into the buffer limit and losing their entire
queue.

6. TCP Performance with heavy random losses

So far, we have considered losses that occur
when many sources contend for a shared buffer (we
call this buffer loss). Another interesting error model,
which is common in wireless networks, is random
loss. In the baseline ssimulation, we saw that sources
using static window flow control and GBN do not
behave well in the presence of buffer loss. The
sources do equally paoorly in the presence of heavy
random losses, because GBN retransmits the entire
window on a single loss. Here, we are interested in
seeing how well TCP does with random losses.

The behavior of TCP, both Tahoe and Reno ver-
sions, under random losses has been extensively stud-
ied in [LAKS94]. The following argument displays
the important parameter for the small-loss case. Asis
well known, when there is a single virtual circuit with
no losses and no congestion, both versions of TCP
approach an ideal steady state in which a uniform
stream of packets flows at the speed of the network
backbone. If there is an isolated packet loss, TCP
cuts its window size and then goes through a two-
stage buildup. In the first stage the window size rises

quickly to one-half of the round-trip window, and in
the second stage the window size increases slowly to
the full round-trip window. Suppose we neglect the
first stage, and consider only the number of packets
transported during the second stage, as compared with
the number of packets that would have been trans-
ported if there had been no slowdown.

During the second stage, the window increases
by one packet after each round-trip time. The effec-
tive rate of the virtual circuit during the second stage
is 3S/4, where Sis the backbone speed. The duration
of the second stage is (W/2) Tgr, where Tgr is the
round-trip time. The difference between the number
of packets carried during the second stage, and the
number that would have been carried in the absence of
slowdown, is

(S - 3S/4)(W/2) Trr = STrrW/8 = W?/8 .(4)

If the one-way loss rate r is small enough so that loss
events do not usualy interfere with each other, the
effective goodput is approximately

Goodput = 1 — 2rw?/8 = 1 - rW?/4, (5)

assuming that the second term is small compared with
unity. Thus, for sufficiently small losses, the frac-
tional reduction in goodput is r'W?/4, where W is the
number of packets in a round-trip window. Of course
the throughput doesn’t entirely vanish if rw?/4 is
greater than 1, but as Lakshman and Madhow have
shown [LAKS94], the performance of TCP with ran-
dom packet drops is poor if rW? islarge. By way of
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illustration, if W = 100 packets and the one-way loss
rater = 1%, the parameter rw?/4 = 25,

We confirm this prediction by simulations. We
consider a single virtual circuit which has no specific
congestion point, but randomly drops packets at some
average one-way rate r. Assuming independent losses
in each direction, the failure rate for successful
acknowledgments is approximately 2r, if r is small.

We can generalize this model by assuming that
packet drops may occur in bursts. Then there are two
parameters, namely the average loss rate r and the
average length of aloss burst L. The average length
of agood burstisG = (1 - 1/r)L.

Figure 6 shows simulated goodputs for TCP
Tahoe with one-way loss rates from 0 to 1% and
mean loss bursts of 1 and 5 packets (exponentially
distributed burst lengths). In these examples, the
goodput is down to afew percent whenr = 1%. The
results for TCP Reno are similar.

It is clear both from the analysis and from simu-
lations that TCP performance deteriorates rapidly as
either the loss rate or the bandwidth-delay product
increases. As networks move towards higher speeds,
the bandwidth-delay product will inevitably increase.
We believe, somewhat counterintuitively, that in
future networks, the loss rate too will increase due to
three reasons. (a) the presence of wireless links sub-
ject to fading, multipath interference, and handoffs,
(b) increasing heterogeneity in the network infrastruc-
ture, leading to mismatches between link bandwidths
and buffer sizes, and (c) as link bandwidths increase,
more and more sources will transmit their entire data
before receiving any feedback; thus longer-lasting
connections are more likely to see losses due to buffer
buildups from uncontrolled, short-lived sources. We
conclude that there is an an urgent need for a better
retransmission strategy than that embodied in TCP. In
the next section, we show that, unlike TCP, sources
implementing PP+SMART behave nearly optimally
in the presence of random losses.

7. Packet-Pair with SMART: Performance with
random losses

As we showed in Section 6, for a sufficiently
small one-way packet loss rate r, the goodput of a
TCP circuit on an otherwise idle network is given
approximately by (5), where W is the number of pack-

ets in a round-trip window, so that for a wide-area
network W? can be very large. We now analyze the
performance of SMART on avirtual circuit subject to
random packet drops (i.e., random losses by some
process not necessarily connected with buffer
overflow). We will assume that SMART is incorpo-
rated into a transport layer protocol that separates
error control and flow control (unlike TCP). By this,
we mean specifically that the flow control does not
slow down when the error control detects a dropped
packet, so long as the effective speed of the bottleneck
node does not decrease. Only the packets that are
actualy lost, or whose acknowledgments are lost,
have to be retransmitted. Therefore, with such a
transport layer, we expect the potential goodput to be
ashigh as

Goodput = (1 -r)2 H1 - 2r, (6)

if r isthe one-way loss rate.

However, as discussed in Section 2, to achieve
the maximum goodput, the error-control window may
have to be large enough to accommodate severa
round-trip windows of out-of-sequence packets while
lost packets are being retransmitted. We argued in
Section 2 that Wge = 4Wgkr would be sufficient
under normal conditions, but larger windows may be
required in the presence of heavy losses, or of
consecutive-loss bursts. The argument suggests that
the limiting goodput (6) can be achieved only as Wec
tends to infinity.

To verify our analysis, we simulated SMART
on asingle lossy link. We used the Packet-Pair flow
control protocol as the flow control component of the
simulated transport layer. We did not test SMART in
TCP because TCP' s flow and error control are inextri-
cably linked, and there is no clear way to study the
effectiveness of SMART without simultaneously
modifying TCP's flow control protocol. Because
Packet-Pair has a clean separation of error and flow
control, it is a better environment to test retransmis-
sion strategies in isolation. Incidentaly, this separa-
tion is likely to become more common for transport
layers layered over ABR service in ATM networks,
where the flow control is explicitly managed at the
ATM level, and the error control is relegated to the
transport level. Thus, our results are directly applica
ble to ATM transport layers, and have aready been
implemented in a prototype native-ATM transport
layer [AHUJO6].
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In the smulations, the offered load is 100%; the
source attempts to send continuously at the speed of
the bottleneck link. The one-way loss rate varies
from 0 to 5%. The mean loss burst sizeis 1 packet or
5 packets, geometrically distributed.

The router buffer size B = 1 round-trip window
(100 packets). The results with B = 0.25 and
B = 0.50 are satistically indistinguishable. In the
absence of congestion, a single Packet-Pair circuit
requires only a very small buffer. The error-control
window is equal to 3, 6. and 12 round-trip windows.

Figure 7 shows the results of simulations of
Packet-Pair with SMART for losses high enough so
that the small-loss approximations do not necessarily
hold. (A quick visual comparison of Figs. 6 and 7
may be misleading, because the scales differ on the
horizontal axes.) It is clear that SMART + Packet-
Pair is much better than TCP; it can achieve nearly
the maximum possible goodput under either isolated
or bursty losses, provided that the error-control win-
dow is severa times the round-trip window, in order
to allow space for sorting out the retransmissions. It
is clear from Fig. 7 that the transport layer’s goodput
tends toward its limiting value as Wgc increases,
although the approach is quicker for isolated packet
losses (the left side of the figure) than for burst losses
(theright side).

8. Discussion

We have presented a new retransmission strat-
egy, SMART, and studied its performance with ran-
dom line losses as well as buffer losses. The results of
our smulation study show that SMART, in conjunc-
tion with a rate-based flow control scheme such as
Packet-Pair is stable (for al engineering purposes)
under congestion, that it can live with a fraction of a
round-trip window of buffer space at each queueing
point, and that the asymptotic goodput is in the 80-
95% range, depending on buffer size. Even if used
with naive flow control schemes, SMART can still
avert congestion collapse. Our simulations make
another important point: a good retransmission strat-
egy aone is not sufficient to deal with packet losses.
It must be combined with a good flow control policy.
In particular, when Packet-Pair and non-Packet-Pair
sources share a congested transmission path, the
Packet-Pair sources have an advantage. This suggests
that if a vendor advertises per-virtual-circuit queueing

and round robin service, self-interest will lead users to
use Packet-Pair rate control.
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Figure 7. Packet-Pair goodput for isolated and clustered random errors.
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