
40 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 1, FEBRUARY 1997

Xunet 2: Lessons from an Early
Wide-Area ATM Testbed

Charles R. Kalmanek,Member, IEEE, Srinivasan Keshav, William T. Marshall,
Samuel P. Morgan,Life Fellow, IEEE, and Robert C. Restrick, III,Member, IEEE

Abstract—This paper is a retrospective on the design of Xunet
2, one of the earliest functional wide-area asynchronous transfer
mode (ATM) networks. Work on Xunet 2 began in 1989 and the
network, consisting of experimental ATM switches, IP routers,
and 45 Mb/s transmission lines, has been operational since Octo-
ber 1991. The network serves as a “laboratory without walls” for
eight research groups across the United States. While Xunet 2 has
only a small number of nodes, it was designed as a prototype of a
nationwide ATM network. This paper reviews some of the design
decisions and lessons learned in the project and points out the
research directions motivated by this work, focusing on the areas
of traffic management, ATM switch design, network control, and
the implementation of an IP router.

Index Terms—Asynchronous transfer mode, available bit rate,
constant bit rate, and variable bit rate.

I. INTRODUCTION

T HE EXPERIMENTAL University Network (Xunet) pro-
gram began in 1986 when AT&T Bell Laboratories

formed a research collaboration with the University of Cal-
ifornia at Berkeley, the University of Illinois at Urbana-
Champaign, and the University of Wisconsin at Madison. The
collaboration emphasized student research and the sites were
linked by a network of Datakit Virtual Circuit Switches
[13] joined by 1.544 Mb/s transmission lines. This network
has since become known as Xunet 1. The focus of the
Xunet program was broadened in 1989 when AT&T started
to plan a high-speed asynchronous transfer mode (ATM)
network: Xunet 2. Our research group at AT&T planned to
use the new network as a model for a multiservice ATM
backbone. In addition, Xunet 2 would be managed as a wide-
area systems research laboratory where student researchers
could sign up for time to run network experiments. Xunet
2 has been operational since October 1991. Over time, the
Xunet program has grown. The network was extended to
include Sandia National Laboratories and Lawrence Livermore
National Laboratories in January 1993 and Rutgers University
in April 1993. The University of Pennsylvania and Columbia
University joined the collaboration, although we were never
able to fund their connection to the network. In addition,

Manuscript received December 29, 1995; revised September 6, 1996;
approved by IEEE/ACM TRANSACTIONS ON NETWORKING Editor G. Parulkar.

C. R. Kalmanek, W. T. Marshall, and R. C. Restrick III are with AT&T
Labs-Research, Murray Hill, NJ 07974 USA.

S. Keshav is with the Department of Computer Science, Cornell University,
Ithaca NY 14850 USA.

S. P. Morgan is with Bell Labs/Lucent Technologies, Murray Hill, NJ 07974
USA.

Publisher Item Identifier S 1063-6692(97)01638-5.

Fig. 1. Network topology.

AT&T upgraded some segments of the network to 622 Mb/s to
support the BLANCA project, one of five “Gigabit Testbeds”
in the National Research and Education Network (NREN)
initiative [10].

Xunet 2 consists of ten experimental ATM switches (two
in Murray Hill, NJ) interconnected with 45 Mb/s transmission
lines (Fig. 1). There is an ATM switch at each user site and
switches at three AT&T central office locations: Oakland, CA,
Chicago, IL, and Newark, NJ. A high performance workstation
at each user site acts as an IP router between a local FDDI
ring and the ATM network. The routers provide a local-area
network (LAN) interconnection service, carrying encapsulated
IP packets over ATM virtual circuits. In addition, a native ATM
protocol stack on each of the workstations supports end-to-end
communication over switched virtual circuits.

Xunet 2 was designed as a small-scale prototype of a
nationwide ATM network. Thus, we made decisions that were
both pragmatic and scalable to larger networks. Our research
focused on three main areas: LAN interconnection over a
wide-area ATM backbone, performance issues in supporting
multiple types of traffic, and the issues of controlling and
managing large-scale ATM networks.

The paper presents our work in four sections: performance
and traffic management (Section II), the design of our experi-
mental switch (Section III), network control and management
(Section IV), and the design of our IP router (Section V).
In each section, we present our goals, the architecture that
resulted, and the lessons we learned trying to turn vision into
reality. We also present the research directions motivated by
our experience.

1063–6692/97$10.00 1997 IEEE

KALMANEK et al.: XUNET 2: LESSONS FROM AN EARLY WIDE-AREA ATM TESTBED 41

II. PERFORMANCE AND TRAFFIC MANAGEMENT

A. Goals

An important goal in Xunet was understanding how to
support multiple traffic types on a shared public ATM network.
This section describes the evolution in our thinking about ATM
traffic management, and summarizes the studies that reinforce
our conclusions. Implementation issues are discussed in later
sections.

We wanted to support three service classes, now called
available bit rate (ABR), constant bit rate (CBR), and variable
bit rate (VBR). ABR service was intended for interconnection
of conventional IP-based LAN’s, which we foresaw as the
initial application of ATM. CBR service would be used for
constant bit rate traffic such as voice and circuit emulation,
while VBR was studied as a means of carrying variable-bit-rate
video traffic.

Our traffic management architecture was guided by three
principles. First,the network exists to serve the needs of its
users. A network designer’s role is to provide the mecha-
nisms and policies that satisfy the quality-of-service (QoS)
desired by users. Second,network users expect to receive a
predictable quality-of-serviceeven though facilities are shared.
Thus, safeguards are needed to protect against users who
misbehave, either maliciously or inadvertently. This suggests
that while users may agree to use end-to-end mechanisms
which are cooperative, the network cannot assume the correct
operation of end-to-end mechanisms: some form of policing is
required. Third,the network must use resources efficiently, so
that high-speed communication is affordable. This precludes,
for example, using CBR connections to interconnect local-
area networks (LAN’s), since this would not provide the
tremendous cost saving arising from statistical multiplexing.

B. Traffic Management Architecture and ABR Service

Our traffic management architecture has a number of fa-
miliar elements. Users request a particular class of service
during virtual circuit setup. Once a connection is established,
users regulate their traffic within a certain “user behavior
envelope” to avoid loss. Schedulers in switches distinguish
between virtual circuits of different service classes in order
to meet their quality-of-service requirements. Policing insures
that users who violate their behavior envelope do not affect
the performance seen by other users.

We spent considerable effort understanding ABR service
and believe that we have gained valuable insights.1 We first
focus on three aspects of the problem: scheduling, buffer man-
agement, and flow control, before returning to other service
classes.

We believe that ABR service will be used to support
computer traffic with widely divergent characteristics and
requirements. Some applications will send short messages
and want low delay, while others will want to maximize

1The term “ABR” has come to refer to the rate-based flow control
framework defined by the ATM Forum [7], [12]. We use the term more
generically to refer to the service model that we describe in this section,
unless the work of the ATM Forum is specifically referred to.

throughput. Since the scheduler at a switch is responsible for
allocating bandwidth, and thus controlling delay, it plays a
crucial role in providing this service. Fundamentally, in order
to avoid congestion, it is necessary to control the offered load.
Over the years, we have explored a number of mechanisms
for doing this. Since these mechanisms operate on individual
virtual circuits, we rely on end-to-end flow control to avoid
complexity in the center of the network, which operates at
high speed and where a large number of virtual circuits are
present. In addition, the network protects itself through the use
of per-virtual-circuit queueing, round-robin scheduling, and
intelligent buffer management, all of which act to separate
virtual circuits and put limits on or “police” user behavior.

1) Scheduling:The importance of per-virtual-circuit queue-
ing and round-robin scheduling in data networks has been
addressed elsewhere [11], [16], [21], [27], [28], but we briefly
summarize the argument. A round-robin scheduler is one in
which each virtual circuit has its own, logically distinct, data
queue and the scheduler serves nonempty data queues in turn.
When a link is lightly loaded, there is little difference between
round-robin and first-come-first-served (FCFS) scheduling.
However, when a link is congested, unweighted round-robin
scheduling allocates bandwidth equally among the virtual
circuits. Short messages typically see low delay. Provided that
sources control their offered load appropriately, no queue will
grow very large. But if a source consistently sends too mcuh,
its queue will overflow and its data will be dropped. Moreover,
round-robin scheduling provides a more consistent service rate
than FCFS. In an FCFS scheduler, the service rate of a virtual
circuit is linked to the detailed arrival pattern of every other
virtual circuit sharing the link. Even short messages can be
subjected to long delays, and a user who sends at a sustained
high rate can effectively consume an arbitrary fraction of the
network bandwidth. These problems are avoided by using
round-robin service. Our architecture thus calls for the use
of a round-robin scheduler for ABR traffic.

2) Congestion Avoidance:While round-robin scheduling
shares bandwidth appropriately, it is up to end systems to
control the offered load. We have explored several approaches
to controlling load: end-to-end window flow control with both
static and dynamically adapted windows, as well as adaptive
rate control.

The intuition behind the window schemes is that a source
never needs a window size larger than its bandwidth-delay
product since that is the largest amount of unacknowledged
data that must be in transit to achieve the maximum through-
put. The research version of the Datakit switch [13] provided
static buffer allocation of a full round-trip window at the output
queue of every switch for each virtual circuit. Thus the total
buffer allocation at an output queue would be

(1)

where is the total number of virtual circuits that can
simultaneously share the queue. In this equation, we assume
that all virtual circuits have the same round-trip delay and are
bottlenecked at the same output queue. Thus,is the end-to-
end round-trip window, that is, the bandwidth-delay product,
of each virtual circuit.

42 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 1, FEBRUARY 1997

Static buffer allocation implicitly polices user behavior,
since a user sends more than the buffer allocation of data
into the network at its own risk. Furthermore, allocation of
a full round-trip window to a virtual circuit guarantees that
the source will not lose data even if there is momentary
congestion while it is transmitting at full speed, since there is
always a large enough buffer to accommodate the data in the
pipe. However, intuition suggests that static buffer allocation
according to (1) uses more memory than necessary. When the
network is congested, the bandwidth available to an individual
virtual circuit is reduced, and so is the round-trip window
needed for it.

In dynamic window flow control, virtual circuits start with
a small default buffer allocation and set their window size
to the same value. A virtual circuit can request a larger
buffer allocation from the network. When the network is
uncongested, the virtual circuit can potentially send at the full
rate of its access line, so the network grants a buffer allocation
corresponding to the round-trip window at that rate. As the
network becomes congested, however, the buffer allocation
that is granted is reduced. When virtual circuits become idle,
the buffer allocation returns to the default. In the dynamic
buffer allocation scheme described by [17], the total buffer
requirement per output port is approximately

(2)

where is proportional to the renegotiation interval after
which an idle circuit’s allocation is returned to the default. For
realistic parameter values, (2) represents an order of magnitude
less memory than (1), but can still amount to several tens
of round-trip windows for each output port.

Dynamic buffer allocation guarantees that a user will never
lose cells due to buffer overflow if the user adheres to the
current window size granted by the network. On the other
hand, dynamic buffer allocation requires a fairly elaborate
signaling mechanism between end systems and the network,
as well as a scheme for monitoring buffer fill in the switch.
Moreover, it requires that the queue handler discard data from
a virtual circuit queue when it exceeds the current allocation,
which changes dynamically. Thus, it requires a mechanism
to coordinate between the state machines which manage the
buffers, which necessarily reside in high-speed logic, and a
processor which runs the buffer allocation algorithm. The
Xunet queue handler supports these mechanisms, but their
widespread adoption is unlikely. On the whole, we prefer to
minimize the mechanisms needed in a switch.

Substantially smaller buffers and simpler switch mecha-
nisms are possible if one gives up the requirement that cells
areneverlost due to buffer overflow within the network. ABR
traffic can tolerate occasional cell losses. This observation has
led us, as it has led others, to prefer rate control rather than
window flow control for avoiding congestion of ABR traffic
on high-speed wide-area networks (WAN’s).

We described above how a round-robin scheduler allocates
bandwidth to each virtual circuit sharing a link. The service
rate will vary over time as virtual circuits become active and
inactive, but suppose a source could determine the service
rate of the bottleneck link as a function of time and adapt its

Fig. 2. Packet-pair behavior under overload.

sending rate to match this rate. This would have the effect of
avoiding congestion and is one of the key ideas behind the
packet-pair flow controlscheme [22], [23].

With packet-pair, a source probes the network by sending
packets in back-to-back pairs and measures the spacing of
the acknowledgments to estimate the service rate and amount
of data buffered at the bottleneck link. The source uses these
estimates to adapt its sending rate to keep the bottleneck buffer
content close to a desired setpoint. The choice of setpoint
permits a tradeoff between queueing delay and link utilization.

Although round-robin service allocates bandwidth fairly and
separates data from different virtual circuits into different
queues, a buffer management policy is needed to prevent an
aggressive user from consuming more of the buffer than its fair
share. A number of policies are possible. For example, each
user could be allocated a static buffer. We have found that a
simple and effective policy is to allocate a certain fraction of
the total buffer in a queue handler to the ABR service and,
when that buffer becomes full, to discard all of the data on the
longest virtual circuit data queue. Simulations show that with
this policy users who attempt to get more bandwidth at the
bottleneck by “cheating” always end up hurting themselves,
while users who correctly adapt their sending rate get good
service. An example is shown in Fig. 2.

In Fig. 2, ten statistically identical sources share a trunk
whose speed determines the maximum speed of each virtual
circuit. All of the sources share the same round-trip delay.
Nine sources adapt their sending rate with the packet-pair
rate control algorithm and one does not. The nominal offered
load, which is the sum of the offered loads due to each source
individually, varies from 0.5 to 5.0 times the capacity of the
bottleneck link. The total buffer space, measured in terms
of round-trip windows, varies from 0.25 to 1.00. When an
arriving cell would overflow the buffer, the entire longest
queue is discarded. The plots2 represent the average goodput
achieved by packet-pair and non-packet-pair sources. Perfect
fairness under overload would correspond to a goodput of 0.10

2The vertical bars represent approximate 95% confidence intervals of the
simulations.

KALMANEK et al.: XUNET 2: LESSONS FROM AN EARLY WIDE-AREA ATM TESTBED 43

times the capacity of the bottleneck link for each source, in
the absence of losses. Fig. 2 and other simulations show that
packet-pair reveals no sign of congestion instability, at least
for offered loads up to 5.0, that total goodputs in the 0.8–0.9
range can be achieved with buffering equal to a fraction of a
round-trip window per output port, and that non-packet-pair
sources damage only themselves in the presence of overload.

C. Other Traffic Classes

In addition to ABR traffic, it is generally expected that ATM
networks will carry continuous-media traffic such as constant
bit rate traffic and real-time audio and video. The different
types of traffic interact at the scheduler in a switch and through
the network’s admission control policy. We focus on these
topics in this section.

1) Constant Bit Rate:Constant bit rate traffic consists of
cells that are approximately equispaced on entry to the net-
work. As the cells of a given connection pass through the
network, they are subject to queueing delay so that the exiting
cell stream is no longer equispaced. An elasticity buffer at the
destination is used to absorb the delay jitter introduced by the
network so that cells can be read out at equispaced intervals.
Since the size of the elasticity buffer often needs to be known
in advance, the network seeks to control the delay jitter. Both
the size of the elasticity buffer and of the switch buffers are
of interest.

One approach to controlling delay jitter involves retiming
or reshaping of traffic within the network, as in stop-and-go
queueing [14] or hierarchical round-robin scheduling (HRR)
[18], [41]. For example, HRR insures that a traffic stream can
transmit up to a maximum number of cells in aframe time.
These disciplines allow the network to control the burstiness of
the traffic streams exiting a server, which affects the amount of
delay jitter that can be introduced by the downstream switch.
However, our analytic and simulation studies indicate that it
is sufficient for most applications to give CBR traffic priority
over other types of traffic, rather than doing reshaping. This
simplifies the design of the scheduler, but requires policing at
the edge of the network to insure that users don’t send faster
than their negotiated rate.

Thus, in our traffic management architecture, CBR traffic is
given highest priority at a priority scheduler. There is no need
to do anything more than FCFS scheduling among CBR con-
nections, although round-robin scheduling also works. Peak
rate policing is implemented using a leaky bucket, with burst
tolerance equal to one cell, at the edge of the network.

Admission control insures that sufficient capacity is avail-
able for CBR traffic. However, cell level queueing will occur
as a result of the detailed arrival patterns of the input streams.
Cell level queueing resulting from the superposition of de-
terministic streams having the same or different spacings has
been extensively studied [37]. The simplest case occurs when

streams with the same spacing but different phases are
multiplexed onto a single link. In an ideal model, the merged
arrival process will be periodic, as will the output of the link. In
the worst case, the phase relationships of the different streams
might cause cells from all streams to arrive simultaneously,
which would result in cells of queueing delay (or cell

Fig. 3. Cell-level delay distributions for CBR traffic.

loss if insufficient buffers are available). However, only a small
fraction of the possible phase relationships among the input
streams lead to substantial queueing, and ensemble averaging
is conventionally used to estimate the probability of queueing
delay.

The ensemble average queue length for a large number of
deterministic streams arriving at the output queue of a switch
can be approximated by the queue length distribution for an
M/D/1 queue with the same utilization [37]. Fig. 3 gives an
approximation to the delay distribution for an M/D/1 queue at
90% utilization, as well as the cumulative delay distribution
for a series of 10 independent but statistically identical M/D/1
queues, each at 90% utilization. In the figure, is the
probability that the queue length exceedscells. We note
that the transmission time for one ATM cell on a 45 Mb/s
link is about 10 s. Fig. 3 shows that the probability that
the delay through ten switches exceeds 2 ms is 7.410 .
Buffers roughly 2 ms in length at the output ports of each
switch should therefore provide adequately for cell loss rates
of 10 An elasticity buffer roughly 2 ms in length is also
needed at the destination to absorb the delay jitter introduced
by the network. For applications for which these buffer sizes
and delays are acceptable, there is no need to do more than
FCFS scheduling for CBR traffic at a switch. The queueing
delay decreases sharply with decreasing utilization.

2) Variable Bit Rate Video:Current designs for ATM net-
works include a variable bit rate (VBR) service. It is expected
that a user will negotiate a traffic descriptor, typically a leaky
bucket, with the network, and the network will agree to meet
certain quality-of-service parameters for users whom it admits
into the network. The VBR service is intended to be used for
traffic that has a well-known long-term average rate, but that
periodically generates bursts, hence a leaky bucket involves
three parameters: the average or sustainable rate, the peak
rate, and the burst tolerance. Since users will presumably not
burst simultaneously, the network can statistically multiplex a
number of VBR users. However, the choice of the leaky bucket
parameters determines the amount of statistical multiplexing
that can be achieved for a given cell loss rate, delay variation,
and switch buffer pool.

44 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 1, FEBRUARY 1997

VBR service has been extensively discussed as a vehicle for
carrying variable bit rate video traffic. However, measurements
[33], [44] of both teleconferencing and entertainment video
traffic suggest a number of problems with a VBR video service
based on leaky buckets.

One problem is that it may be difficult to pick reasonable
leaky bucket parametersa priori for any particular video
service. We found in in-house measurements that two 5-
min videoconferencing streams produced by the same H.261
codec differed in average rate by a factor of two, depending
on whether the speaker was sedate or agitated. In [41], we
supposed that VBR video traffic would be carried through an
HRR server, but again we had no waya priori of determining
the HRR rate. Of course, one might imagine the user picking
from a menu of “default” leaky bucket parameters provided by
the encoder, since codecs can be designed [35] to comply with
any given leaky-bucket parameters (CBR output is a special
case). However, default choices may lead to a video quality
that is no better than would be obtained by a CBR service
with the same average rate.

Leaky-bucket descriptors ofunconstrainedvideo encoder
output require a large burst tolerance [34], unless the average
rate is nearly equal to the peak rate, which would not allow for
much statistical multiplexing gain. The reason is that encoder
output, especially for entertainment video, can have peak-rate
bursts lasting for several seconds. VBR video service needs to
be able to accommodate such sustained peaks.

There are in principle two approaches to handling large burst
tolerances. In the first approach, mean cell loss ratios are kept
low by keeping the probability low that enough sources are in
burst mode simultaneously to overload the link [46]. Since few
sources are admitted into the network, this approach results
in poor statistical multiplexing gain. A different approach
increases the number of sources that could be accommodated
at a given cell loss ratio by providing buffering in the network.
The drawback is that switch buffers of a size comparable
with the large burst tolerances of unsmoothed video traffic
(potentially tens of megabytes per source for entertainment
quality video) would introduce unacceptable delays, at least
for real-time video. Moreover, large switch buffers cost.

A final issue is that the amount of statistical multiplexing
gain that can be achieved with video sources may be rather
small. The video community now appears to expect potential
gains in the range from 1.5:1 to 2:1 [34], but it is hard to get
a handle on this number because there are so many alternative
video system configurations, and because there is no easy way
to relate subjective judgments of video quality to quantities
that can be computed in a network performance analysis.

Our present view is that the need for VBR video service
over ATM networks using the “conventional” model, which
involves leaky bucket traffic descriptors, is questionable, al-
though the jury is still out. We will mention briefly some
alternatives for video transport in Section II-D.

D. Lessons

We conclude that ATM networks should support CBR and
ABR service, and we propose an architecture for doing so. Our
notion of an ABR service is similar in spirit to the ATM Forum

UBR (unspecified bit rate) service. For this service we are con-
vinced of the importance of per-virtual-circuit queueing and
round-robin scheduling. The simple buffer management policy
of dealing with overflow by discarding all of the data from the
longest queue provides protection against misbehaving users.
The amount of buffer required at an output queue in a switch
depends on the approach to congestion control. It is likely that
we can get by with about a round-trip window of memory
shared among the virtual circuits, while achieving quite low
packet loss rates, so long as a well designed congestion control
scheme is used. As we shall discuss in the next section, this
amount of memory is both practical and affordable, even for
155 Mb/s access lines.

CBR service can use either priority FCFS or priority round-
robin scheduling, with policing at the network’s edge. Of
course, CBR traffic can also be policed by reshaping traffic
at the scheduler in a switch. The decision between these two
approaches is one of cost and complexity of implementation.
Our view is that the simpler switch scheduler is sufficient.

Congestion avoidance requires end systems to participate
in controlling the offered load. We believe that some form
of end system rate adaption is most appropriate in WAN’s
since it does not impose onerous requirements for buffering
or complexity on switches. In our view, host computers
that attach directly to ATM networks should run packet-pair
or some equivalent rate adaption algorithm. If the network
provides explicit rate feedback through the use of Resource
Management cells, as specified in the ATM Forum ABR
service [7], [12], a host would simply use this rate instead
of making its own rate estimates. When ATM networks are
used to interconnect conventional LAN’s, hosts will be running
conventional TCP/IP. If routers run a congestion control
protocol such as packet-pair over a WAN, our experience
suggests that the TCP hosts will see good performance and
the network will be used efficiently.

It is not clear to us that a leaky-bucket-controlled VBR
service is of much use for traffic that is as bursty as variable
bit rate video. Two recent approaches to carrying VBR video
are attractive. First, [20], [25] demonstrate that it is possible
to achieve good video quality by adapting the sending rate
of a video coder in response to network congestion. Our
simulations show that video carried using the ABR service,
with the coder’s sending rate controlled using packet-pair,
gives a perceptually high quality even in the presence of
congestion. Reference [39] shows how to adapt the sending
rate for stored video. Second, [15] describes a scheme based on
renegotiation of a CBR rate. Renegotiation allows the network
to extract statistical multiplexing gain on a time scale that is
slow compared to the feedback-based rate adaption schemes
such as packet-pair. Since coded video exhibits sustained
periods where the output frame sizes are roughly constant,
renegotiation may be well suited to the traffic requirements.
By matching network mechanisms to the traffic dynamics, we
should be able to get good performance at a low cost.

III. X UNET SWITCH

A. Goals

The design of an ATM switch for Xunet began in 1989 with
the goal of creating a flexible platform for experimentation in

KALMANEK et al.: XUNET 2: LESSONS FROM AN EARLY WIDE-AREA ATM TESTBED 45

network performance and control. The switch was designed
for a wide-area backbone network with 45 Mb/s interswitch
trunks and access lines at 1.5 Mb/s and 45 Mb/s. Though we
expected computer traffic to predominate on this network, we
wanted the switch to support multiple traffic types effectively.
Thus, a major focus of our effort in the design of the switch
was on the architecture of the queue handler responsible for
cell scheduling and buffer management.

A second set of goals is related to switch administration and
maintenance. We planned to run call processing, administration
and maintenance software on an external workstation and
wanted a control interface to the switch which was independent
of the fabric in order to promote modular design and to
allow the switch hardware and the control software to evolve
independently. Our previous experience with call processing
led us to incorporate consistency checking in the switch
software to deal with various error cases. Finally, given
the difficulty of maintaining and operating a cross-country
network, we thought carefully about how to build switches
that could be maintained.

B. Switch Architecture

The Xunet switch was designed as a bus-based output
queued switch with support for per-virtual-circuit queueing
at the output ports, similar to the Datakit switch [13]. The
switch architecture is shown in Fig. 4. In the figure, each
port controller consists of two cards: a queue handler and a
line interface card. The queue handlers communicate with the
header translation card via a switch fabric consisting of a set
of time-slotted busses on a printed-circuit backplane. When a
cell arrives from a transmission line, the line interface card
terminates the physical and link layers and transfers the cell
to its queue handler. The queue handler buffers the cell and
subsequently schedules it to be sent to the header translation
card. The queue handler arbitrates with other queue handlers
for permission to send the cell on thecontention bus. When
its arbitration succeeds, the queue handler transmits the cell
on the contention bus to the header translation card. The
header translation card updates the cell header and sends the
cell on thebroadcast busto the output queue handler(s). The
destination output queue handler buffers the cell and schedules
it for transmission via the output line interface card.

Themaintenance busis based on the Signetics bus and
is used for transferring commands and status reports between
the various circuit cards in an equipment shelf. Fig. 4 also
shows that the switch is controlled by an external switch
controller. The controller can connect to the switch through
a line card, or via an Ethernet connection to the header
translation card as shown in the figure.

The queue handlers arbitrate for access to the contention bus
using a distributed group arbitration protocol [45]. Arbitration
is pipelined, so that queue handlers arbitrate during one time
slot for permission to send a cell during the next time slot.
During each arbitration cycle, a queue handler that wishes to
transmit asserts its slot address on the arbitration bus. The
protocol insures that all but one competing card withdraws
from the competition and the address of the winning card

Fig. 4. Switch architecture.

remains on the bus. A traffic priority bit gives CBR traffic
priority over other traffic types, and a “group prority” bit
insures that within each traffic class the queue handlers share
the bus backwidth fairly.

The contention and broadcast busses are 32 b wide (plus
4 parity bits) and are clocked at 18.5 MHz. Since a cell
transfer takes 14 clock cycles, this gives a payload rate of
over 500 Mb/s. Our prototype of the Xunet switch has eight
ports. Thus, with 45-Mb/s access lines, the 500 Mb/s bus
bandwidth exceeds the aggregate bandwidth of the trunks and
queues will only build up on the outputs. Since we operate
these busses an order of magnitude faster than the access lines,
input queues should occur infrequently even in a switch with
a larger number of ports [29].

1) Header Translation Card:The header translation card
serves multiple functions. First, the card does the VCI transla-
tion needed for cell switching. In support of this function,
a processor on the card audits the translation memory for
consistency. Second, the card interfaces the switch controller
to the switch, which avoids dedicating a port on the switch
for this purpose. Finally, it supports a fabric-independent
protocol used by the switch controller to control, administer
and maintain the switch. We first focus on header translation.

The header translation card supports virtual circuit switching
with a 1 M-entry translation memory supporting 64K virtual
circuits for each of 16 ports. The translation memory is indexed
by the source port address and source virtual circuit identifier.
Each entry contains a destination port, a destination virtual
circuit identifier, a cell count (for billing), and some control
bits which allow the consistency of the memory to be audited.
A processor, called themonitor (MON), can read and write
the translation memory. The MON also runs an auditing task
in the background that we will discuss below.

The header translation card interfaces to the switch con-
troller via a point-to-point Ethernet segment. The switch
controller communicates with thehost interface processor
(HIP) over the Ethernet. The HIP deoes segmentation and
reassembly and routes control packets between the Ethernet,
ATM fabric, MON, and amaintenance processoron the header
translation card.

46 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 1, FEBRUARY 1997

Fig. 5. Header translation card data paths.

Fig. 5 gives a high-level diagram of the data paths in the
header translation card. A cell arriving on the contention bus
is shifted into a shift register while a translation memory
access is initiated. After a one cell delay, the cell with its
modified header is shifted out, in most cases onto the broadcast
bus. Cells that are destined for an endpoint on the card are
shifted into the input FIFO, which interfaces to the HIP.
A second FIFO, thespy FIFO, is used for troubleshooting
network problems: it receives cells for connections that have
been marked with a special bit in the translation memory. The
HIP sends cells to the fabric by writing to theoutput FIFO.
After the HIP writes a complete cell to the output FIFO, the
card arbitrates with other cards in the switch for access to the
contention bus and then sends the cell. The HIP interface to
the Ethernet and maintenance processor are also shown.

Software in the HIP and MON processors implement an
abstract model of the switch which hides the details of the
header translation card design. The interface is designed to
allow switch hardware and control software to evolve inde-
pendently. The commands fall into two categories: commands
to manipulate the translation memory are sent to the MON and
commands that provide switch maintenance and administration
are sent to the maintenance processor.

We first discuss the header translation commands. These
commands allow the switch controller to set the desired state
of a connection endpoint, e.g., the endpoint is idle, dialing
(connected to the controller), or active (connected to a distant
endpoint). The switching path is only set up by the MON
when the controller has set both endpoints of the connection
to active state. Since switch control software is often written
with separate modules for the incoming and outgoing ‘‘ends’’
of the connection, this model allows each module to continue
independently: the MON sets up the connection when the two
ends “rendezvous.”

In our experience, a switching fabric and its embedded
fabric control software can be designed to be more reliable
than either the commercial computer equipment that we are
using for the switch controller or the software that performs
call processing. This has a number of implications for building

switching systems with high availability. First, the control
interface to the MON allows the switch controller to quickly
recover connection state information stored in the translation
memory. If the switch controller crashes, connections that
were in a transient state may be lost, but connections that
were in a stable state are still set up through the switch and
can be recovered by the controller by sending a
command to the header translation card. The MON responds
with the switch state information. Second, the MON audits
commands that it receives from the controller and audits
the translation memory itself for consistency. The MON
rejects invalid commands and returns an error indication. In
addition, since the translation memory is audited, the switch
state can be cleaned up even if the switch controller or
one of its software components fails and the switch mem-
ory is left in an inconsistent state. The controller can poll
the MON for a list of translation memory inconsistencies
by sending an command. The card might respond,
say, with a message indicating that an active endpoint is
mapped to an idle endpoint, which should be a transient
condition.

2) Maintenance and Administration:The switch and switch
control software include a maintenance subsystem that detects
and isolates faults in switch components, and that supports
switch administration. Commands from the switch controller
to the header translation card control and collect status from
the switch. Our approach to status monitoring is based on
three key ideas. Status iscontinuously monitoredand filtered
by an embedded maintenance processor on each switch ele-
ment. Status iscollected periodicallyby the switch controller,
rather than having failures trigger messages. This avoids the
possibility of congesting the maintenance subsystem at a
time when its proper operation is crucial. Finally, the switch
contains aseparate maintenance network,connected to each of
the maintenance processors, for monitoring and control. This
network allows switch elements to be controlled even if their
interface to the cell data paths has failed.

On line interfaces, status such as line errors, loss of signal,
loss of clock, coding violations and transmission errors is
monitored. Data paths within the switch are monitored by
including a parity bit with each byte of cell data. When a
cell arrives from a transmission line, the line interface card
verifies the header error check (and discards it) and generates
the parity bit. The cell and parity information flow through the
queue handler to the header translation card, where the parity is
checked. If a parity error is detected, the cell is dropped and an
error is registered. The parity is used to monitor the integrity
of the path through the line card, queue handler, backplane
and part of the header translation card. By correlating errors
with the queue handler that generated them, fault isolation
is possible. The data path from the header translation card
through the queue handler to the line card is similarly checked.
In our experience, parity provides a good indication of the
integrity of board level electronics and a reasonably good
check on memories.

Each maintenance processor supports configuration com-
mands which remove the card from service or restore the card
to service. The switch controller polls the status of every card

KALMANEK et al.: XUNET 2: LESSONS FROM AN EARLY WIDE-AREA ATM TESTBED 47

in the switch periodically by issuing a poll command. Each
card responds with a status message that includes error status,
hardware type and version information, a serial number and
card-specific data. This information can be used to support
automatic configuration. Card-specific commands are used for
controlling loopbacks, bit-error rate testing, etc.

C. Queue Handler Architecture

A key goal of the queue handler design was to demonstrate
per-virtual-circuit queueing at high speeds. We also tried to
provide flexibility since we hoped to experiment with different
congestion control schemes. Each virtual circuit has aservice
class associated with it that determines its treatment by the
scheduler. In addition to ordinary round-robin, the scheduler
supports several levels of priority, so that virtual circuits in one
service class can be given higher priority than those in another
service class. The queue handler also supports two variations
of round-robin scheduling, weighted round-robin (WRR) and
framed round-robin (FRR), which we describe below.

The queue handler implements a buffer management policy
which allows the switch controller to limit the length of each
per-virtual-circuit queue. Cell arrivals which would exceed
this length limit are discarded. This buffer management policy
supports the dynamic window flow control scheme described
in Section II. The queue handler also includes specialized
hardware for manipulating an eight-bit congestion field that we
reserved in our ATM cell header. This feature was motivated
by the DECbit scheme [32], in which routers set a congestion
bit to indicate congestion to sources.

A schematic of the queue handler is shown in Fig. 6. The
card contains a large DRAM array which supports 64 K
virtual queues implemented by a high-speed queue control
state machine. Each virtual circuit has a receive queue for
cells that have arrived from a line card and a transmit queue
for cells that are to be sent to a line card. The virtual queues are
implemented using linked lists of cells. The queue control logic
allocates buffer space dynamically when a cell arrives and
frees the buffer space when a cell is transmitted. The “discard
longest queue” buffer management policy of Section II can be
implemented by updating a pointer to the current longest queue
during every cell arrival. The operation of the queue control
logic is affected by thequeue control table. The contents of
this table can be changed by an onboard processor, known as
the resource manager, which communicates with a module in
the switch controller as described in Section IV.

The DRAM array is multiported, with input and output ports
for the line interface card, broadcast and contention busses, and
resource manager. Data flows to and from the ports through
nine bit-sliced chips that implement a pipeline buffer, shown
in the figure. The buffer provides a pair of asynchronous shift
registers for each port; each shift register holds one ATM cell.
The pair of shift registers allows read and write operations on
the DRAM array to be pipelined with cell transfers from the
associated port. For example, a cell arriving on the contention
bus is shifted into a shift register and a request is posted to
the queue control logic for the cell to be written into the
DRAM array. The write operation can take place while a
second cell is shifted in from the contention bus. In order

Fig. 6. Queue handler architecture.

to support sufficient memory bandwidth, the DRAM array is
252-b wide and is organized with two half-cells in adjacent
locations. An operation to read or write a complete cell is
done as two page-mode writes of the DRAM. This takes 280
ns, which gives an aggregate queue memory bandwidth for
384-b ATM cell payloads of 1.3 Gb/s.

The queue control table has an entry for each virtual queue.
Each entry contains pointers to the head and tail of each
virtual queue and a 4-b service class. The table also contains
a cell count and a count of the number of AAL5 frames for
each virtual queue. The queue control machine contains logic
to modify the congestion field in the cell header. This logic
overwrites the congestion field in cells that are read out of the
queue with a value that is a function of the received congestion
field in the cell and a table entry which can be individually
set for each virtual circuit by the resource manager.

The queue handler supports round-robin scheduling at multi-
ple priorities in order to support multiple ATM service classes,
as shown in Fig. 7. In the traffic management architecture in
Section II, CBR traffic is carried at a higher priority than ABR
traffic. For each VC at the highest priority with data waiting
to be transmitted, the scheduler serves one cell and moves on
to the next VC. If no VC at the highest priority has data to
send, the scheduler serves VC’s at the second highest priority,
returning at the end of each cell service time to the highest
priority VC’s if necessary, and so on. The scheduler supports
16 priorities. The scheduler is implemented using acontrol
queuefor each level of priority. A control queue contains a
list of VCI’s with data waiting to be transmitted. The scheduler
removes a VCI from the head of the control queue when it is
served and returns it to the end of the queue if there is still
data waiting to be transmitted.

The scheduler also supports WRR and FRR scheduling. In
WRR, each VC conceptually has a weight orservice quantum

48 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 1, FEBRUARY 1997

Fig. 7. Priority round-robin scheduler.

associated with it.3 WRR allows different virtual circuits to
receive different proportions of the available bandwidth. When
a VCI is removed from the control queue to be served, the VC
is eligible to be served for a number of cells equal to the ser-
vice quantum, although it may be served fewer times if fewer
cells are waiting. WRR is equivalent to a scheduling discipline
known as rate-proportional processor scheduling [31] in which
the weight given to a VC is proportional to the fraction of link
capacity to which it is entitled. FRR is a simplified version of
HRR scheduling which, like HRR, insures that no more than
a given number of cells are transmitted during an interval
known as theframe time.

The scheduler provides optional support for the reassembly
of AAL5 frames in order to simplify the design of host
adaptors. The queue control machine increments a counter on
the arrival of a cell header with a payload type indicating that
it is an end of frame. Similarly, it decrements the counter on
the cell departure. When frame reassembly is enabled, a queue
is only eligible for service when the counter is nonzero.

D. Lessons

The Xunet switch has been in service since 1991. By and
large, it has met its original goals of providing a flexible,
reliable environment for experiments. At the time the switch
design began, the ATM standards activity in ITU was only
beginning and our architecture required design decisions that
would only later be addressed by standards. While details of
ATM have changed, it is rewarding that many of the issues
we faced and the design decisions we made remain relevant.

We chose to control the switch with an external switch con-
troller rather than integrating the controller into the switching
fabric in order to upgrade the controller more easily. However,
using an Ethernet for the control port limited the call setup
rate that we could accommodate. More typically, the switch
controller would use a port on the switch for signaling virtual
circuits.

The use of an abstract interface for switch fabric control
promotes modular software design. Moreover, our design is
intended to support both high reliability and high availability
through the built-in auditing mechanisms and the ability for
call processing software to recover state from the switch.
Switch maintenance is based on continuous status monitor-

3In the implementation, a weight is associated with each service class
rather than each VC, which limits the number of weights that can be used
simultaneously.

ing, periodic status collection, and the use of a separate
maintenance network within the switch. This approach to
maintenance has allowed us to detect most network problems
at their onset, before they affect service.

Perhaps the main contribution of the Xunet switch design
is in the implementation of the queue handler. The design
demonstrates the feasibility of per-virtual-circuit queueing and
a priority round-robin scheduler at 1-4 Gb/s rates in ATM
switches. The use of discrete DRAM chips and bit-sliced
buffer chips on the queue handler was suitable for a prototype,
but clearly too expensive for commercial use. Further work
in our group has demonstrated that these ideas can be made
cost effective. In 1992, H. Kanakia proposed Yswitch, which
integrated a packet buffer, switch control logic, and multiport
serial access memories onto a single VLSI chip. The concept
has been developed further in an experimental chip, the ATM
Datapath chip, which integrates a buffer of 8K cells and
16 serial access memories into a single “switch on a chip”
controlled by external queue control logic. The ATM Datapath
chip supports a wide range of ATM switching applications,
from switch line cards to the construction of multistage
switches. Since the chip is based on DRAM, it can ride
the technology curve, and soon a full round-trip window of
buffering per port could be provided for roughly the cost of
a 16 Mb DRAM chip. We are currently designing a single-
chip queue controller for the ATM Datapath, building on the
ideas developed in the Xunet queue handler. With the ATM
Datapath, this chip will enable very low cost ATM switches
to be built.

IV. NETWORK CONTROL AND MANAGEMENT

A. Goals and History

The Xunet control software was designed to support con-
nection control and remote switch maintenance and adminis-
tration. We designed a simple signaling protocol to establish,
maintain, and clear ATM connections. Connection control
requires a broad range of associated services, such as name
translation, routing, call admission, and resource management.
Initially, we needed fairly modest functionality in each of
these areas, but we wanted an organization that would allow
the software to evolve. We expected areas such as routing
and resource management to undergo substantial change over
time. In the long term, we hoped to support remote network
management from a network management station. These con-
siderations suggested a modular architecture in which pieces
could evolve independently.

The organization of software for call processing and switch
control has been a focus of our research group for some time.
TDK [26] provided switch control for the Datakit switch and
pioneered the notion of a “process-per-line” in which a light-
weight process is associated with each half-connection during
its transient states. Archos [9] explored the use of an object-
oriented operating system for Datakit switch control. Finally,
Milan Jukl in our group developed an early prototype for the
Xunet control software which aimed for high performance by
structuring the call processing software in a single process

KALMANEK et al.: XUNET 2: LESSONS FROM AN EARLY WIDE-AREA ATM TESTBED 49

executing an event-driven finite state machine. Background
and administrative tasks were handled by other processes.
Shared memory was used for communication between parts
of the system.

Both Jukl’s control system and the system we describe
below were designed to run on top of the Silicon Graph-
ics IRIX operating system. We chose to use a commercial
operating system to facilitate student research. In addition,
with a commercial OS we could use commercial distributed
systems software to explore the client-server approach to
network control suggested by the ISO-ODP (open distributed
processing) community and in the TINA-C standards [42].

Administration and maintenance of an experimental wide-
area network pose unique challenges, particularly when hard-
ware and software are still in flux. In addition, a goal of
Xunet was to allow research students to use the network as a
laboratory, perhaps running their own experimental software.
Support for student research required us to develop usage
policies and procedures and added an additional source of
instability to the network. Since most of the Xunet expertise
was in New Jersey, it was important that network adminis-
tration could be done remotely and we developed practical
procedures and simple software that we could count on when
all else failed. In Section IV-C, we describe these pragmatic
considerations.

B. Network Control Architecture

This section describes the software architecture of the Xunet
switch controller. Most of the software is designed as a client-
server system based on the ANSAware distributed systems
environment [5]. ANSAware supports RPC and includes a run-
time environment that runs on several commercial operating
systems. It also supportslocation transparencyso that servers
can be run on any machine in the distributed system. Servers
register service offers with atrader, and clients bind a service
name to the address of a server by contacting the trader.

Software on the switch controller communicates with the
embedded processors in the switch itself. This relationship is
shown schematically in Fig. 8, where the bottom half of the
figure represents the switch hardware while the top half of the
figure illustrates different modules, such as signaling, routing,
etc. that run as separate processes in the switch controller.
Most of the illustrated modules run on a single machine
in our implementation, although location transparency would
allow processes to be remote. For example, if performance
requirements dictated the use of a separate machine for routing,
that module could be accessed using cross-machine RPC. The
trader, an RPC-based network manager or a virtual console
are other examples of processes that might be remote.

Two hardware proxies and a fault management module are
tightly coupled to the switch and contain library routines that
support communication with the hardware. The queue handler
proxy communicates with the resource manager on the queue
handler card and presents an RPC interface to other parts
of the control system. This proxy is used during connection
establishment to set the service class and buffer size limit for
a virtual circuit. Similarly, a header translation proxy supports
an interface to the header translation card. This interface is

Fig. 8. Switch controller architecture.

invoked by signaling to modify the translation table during
connection establishment and is invoked by administration
software to restore cards to service during switch initialization.
Both of these interfaces could also be used by a “virtual
console” or network management system, as shown in the
figure. The functionality in the proxies can also be extended,
for example, one might wish to provide record locking to
synchronize writes to the same record structure.

The fault management module polls each of the elements of
switch hardware for status once each second, and does alarm
filtering and logging. Alarm thresholds are typically based on
an “ of ” rule: an alarm is set when of the last polls
indicates an error condition, and cleared whenof the last
polls are error free. Determination of the appropriate threshold
settings is often based on trial and error and an OSI agent was
developed for the switch which allowed the alarm thresholds
to be changed by a remote manager [2]. The fault management
software logs status information on each switch and the log
files are uploaded to New Jersey over the network each night.
The status history for the past 15 min can be accessed at a
virtual console.

The signaling module supports connection control of sim-
plex virtual circuits. It communicates with a peer module on
an adjacent switch or host over a permanent virtual circuit
that is established during switch initialization. The signaling
module imports services from most of the other modules in
the controller. When it receives a connection setup message,
it invokes an operation of the routing service to translate the
destination address to an output port. It then consults resource
management to see if the connection resources can be reserved
at that output port, and forwards the connection setup request
to the next hop over the signaling permanent virtual circuit.
If the setup request is successful, the next hop will eventually
allocate the virtual circuit identifier to be used and return this
in a connection accept message. The signaling module then
contacts the header translation proxy to write the translation
table entry in the switch hardware and contacts the queue
module proxy to commit the resources for the new virtual
circuit. Finally, it forwards the positive response upstream
toward the connection originator. Originally, the signaling
module was only a client: it did not offer any services. Later,
it was modified to allow an OSI agent to collect statistics such
as connection blocking from the signaling module [2], and a
central network manager used the blocking statistics to control
the capacity of virtual paths so as to minimize call blocking
and bandwidth requirements [3].

50 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 1, FEBRUARY 1997

We designed a simple resource management scheme for
CBR bandwidth reservation and ABR static buffer allocation.
During the hop-by-hop connection setup described above, a
Reserveoperation is invoked at each switch as a connection
request proceeds towards the destination (forward pass). A
switch or the destination can reduce the amount of the reser-
vation. When the response returns (reverse pass), aCommit
operation is invoked. Since the resources committed may be
less than those originally reserved, the commit frees the excess.
Finally, when the connection is cleared, aFree operation is
invoked.

The basic routing module supports an operation which takes
a destination address and returns the outgoing port number.
Routing in Xunet is based on a static routing table, but routing
was isolated in a separate module so that the module could
evolve to support dynamic routing without any change to
signaling.

A skeletal version of the architecture described above was
developed and was largely functional in the Summer of
1993. This version had a signaling module, a simple resource
management module supporting virtual circuit allocation, a
static routing module, a queue handler proxy and a queue
handler boot server. The fault management module and virtual
console were developed independently and did not make use
of ANSAware. At this writing, Xunet supports switched virtual
circuits for native ATM virtual circuits, while Xunet’s IP
service operates over a permanent virtual circuit mesh.

C. Practical Considerations

Operating an experimental network poses many pragmatic
difficulties, initially because the network itself is changing and
later as students begin to use the network. Hardware installa-
tion requires the support of on-site personnel, so we funded
a system administrator at each site to be “on call” for one
quarter of their time. However, this did not eliminate the need
for remote maintenance and administration, in part because of
delays in coordinating with the remote administrators. With
experimental hardware and software, we could not count on
maintaining the network over its own links, so we connected a
statistical multiplexor (stat mux) to a dial-up line at each site
as a backup. Using the stat muxes, we can either connect to the
consoles of the router, switch controller or header translation
card or we can remotely reset them through a relay connected
to their hardware reset button. The stat muxes provide a highly
reliable but inconvenient interface, so much of the day-to-day
administration and maintenance is done over the network. We
started off by setting up a PVC mesh network that could be
accessed through the header translation card. A daemon on
each switch controller allowed us to remotely log in, ship
files, etc. from any other switch controller over the PVC mesh.
Since the IP service became operational, it has been used for
day-to-day adminstration.

Network research is coordinated by allowing students to
sign up for use of the network via electronic mail. During
their time slot, students can change any of the software that
runs the network. Typically, a student creates a private copy
of the default network control software and modifies some
part of it. To run the modified software, the student changes a

single symbolic link in the file system on the router or switch
controller and reboots the machine. Students are instructed to
restore the default software to its original state when they have
finished their experiments. Applications researchers also sign
up for the network to insure that the network is running default
software during their time slot.

D. Lessons

There is relatively little published work on software struc-
ture for switch controllers. We make a few observations
based on our experience. The coding style that is encouraged
by ANSA threads is quite amenable to networking code,
since there is good support for asynchronous event handling,
timers, and synchronization. Location transparency proved
to be of surprising utility: debugging a system of programs
operating over multiple machines would have been intractable
if ANSAware had not made it possible to write location-
transparent debugging utilities.

The use of a commercial operating system for the controllers
has distinct advantages. Students are able to run small exper-
iments with a minimum of investment learning the system.
Moreover, in running the network, we make frequent use of
the general-purpose software available on the controllers. For
example, we use remote login programs for remote debugging,
use the file system for release management, and use electronic
mail as a primitive mechanism for distributing log files.

There were some problems with the architecture. The heavy
use of RPC requires a large number of context switches to
establish a virtual circuit—a severe penalty when building
a controller on top of a heavyweight operating system. A
production call processing system requiring high through-
put and low latency would need to be carefully tuned to
minimize system call overhead. Slower time scale functions
such as administration, maintenance, logging and boot service
place different requirements on the operating system than
call processing does, and an environment that supports both
lightweight and heavyweight processes seems attractive.

While most routine network maintenance and administration
can be done using the network itself, there will always be
cases where a “back door” is needed to recover from failures.
In Xunet, the back door is based on the telephone network
and statistical multiplexors. Our policies for managing use of
the network are simple and reasonably effective. Nonetheless,
there are rough edges. There is an inherent conflict between
doing network research and simply using the network. Users
are not accustomed to scheduling their network use and even
friendly users lose interest quickly if the network fails to meet
their expectations. In Xunet, the biggest cause of network
down-time is that a student doing network research has failed
to follow the instructions for restoring the default software to
operation.

V. XUNET ROUTER

A. Goals

The initial focus of our endsystem work was support for IP
encapsulation over ATM virtual circuits for a high quality LAN
interconnection service. The performance goal was an end-to-

KALMANEK et al.: XUNET 2: LESSONS FROM AN EARLY WIDE-AREA ATM TESTBED 51

Fig. 9. IP service architecture.

end throughput from a single router of at least 75% of a DS3
line in an otherwise unloaded network. We planned to have
routers at the edge of the network participate in congestion
control so that the wide-area network would offer a service
with little or no congestion loss.

A second goal was efficient use of network resources.
Routers would be interconnected using ABR virtual circuits
and would benefit from statistical multiplexing within the
network. The desire for efficiency also led us to develop a
frame-oriented adaption layer similar to AAL5 that used trans-
mission bandwidth more efficiently than the AAL4 standard
of the time.

A third goal was flexibility for experimentation. The im-
plementation uses high-performance Silicon Graphics Power
Series workstations as routers, with a home-brew ATM inter-
face card interfacing to the VME bus. Using a workstation-
based router provided the greatest amount of flexibility for
experimentation and gave us, fortuitously, an environment in
which we had hosts directly attached to an ATM network. We
therefore got early experience with host computers that use
both IP encapsulation and a native ATM protocol stack.

B. IP Service Architecture

Our implementation of an IP service on Xunet is similar to
the Classical Modelof IP over ATM [36]. Hosts or routers
which attach to Xunet are part of a logical IP subnetwork.
When an IP packet arrives from a LAN, the router forwards it
over an ATM virtual circuit to the egress router, as illustrated
by the dashed line in Fig. 9. If no virtual circuit exists,
signaling software sets one up. The path across the ATM
network is considered a single IP hop.

IP packets can be multiplexed over virtual circuits in a
number of different ways, with some differences in end-to-
end performance. For example, all packets from a router to a
given egress router might use the same virtual circuit. Another
possibility is that packets for a given destination host or
source–destination host pair might use the same virtual circuit.
Multiplexing different traffic types and different end-to-end
sessions on a virtual circuit means that a packet that expects
low delay, such as atelnetsession, may suffer queueing delays
behind a large block because the round-robin scheduler is not
scheduling individual sessions. These issues were studied in
conjunction with Xunet in [8] and [40].

In order to provide a good quality LAN interconnection ser-
vice, end systems and/or routers must avoid inducing conges-
tion on the wide-area network. Using simulation, we explored
end-to-end performance when TCP’s end-to-end congestion
control scheme (TCP-Tahoe) is used in conjunction with an
“edge-to-edge” congestion control scheme between routers.
The router-based flow control approach, based on the dynamic
window flow control scheme of Section II [17], insures that no
packets are lost in the wide-area network due to congestion.
As a result, packet losses only occur in the router or local-area
network. Losses can occur at the input router, but our work
showed that the throughput is high with appropriate choice
of parameters. Recent work on TCP performance in ATM
networks has suggested early packet discard policies [38], [43]
which discard an entire TCP packet if a queue length threshold
is exceeded, indicating congestion. However, this work relies
only on end-to-end flow control and does not explore use of
congestion control between routers at the edges of the ATM
network.

When we began work on Xunet, AAL4 had been proposed
for data service on ATM and we investigated the efficiency
of IP encapsulation using this adaption layer. Cáceres [8]
collected packet traces from our Internet gateway and we used
the histogram of packet sizes to estimate efficiency. In some
cases, IP encapsulation in AAL4 resulted in link utilizations
as low as 65%. As a result of this study, we defined a
payload type in the ATM cell header to mark the end of an
IP packet and designed a frame-oriented adaption layer called
AALX [19] that eliminated the per-cell overhead of AAL4.
Eliminating the per-cell overhead improved the efficiency for
the same mix of packets from 65% to 85%, since many small
packets would now fit in two cells rather than three. Both of
these ideas have since been incorporated in standards.

In developing our architecture, we planned to develop a
route server in the backbone to collect routing information
from the routers and to control routing policy by determining
what routing information to distribute. The ATM ARP server
in the classical model would have been implemented by the
route server. However, administrative issues prevented us from
propagating routes among the sites and the routing tables are
administrated statically rather than by a route server. Each site
has an “experimental” FDDI ring that is attached to the Xunet
router at that site. The routers run thegated routing daemon
which is configured to allow machines on any of the FDDI
networks to communicate using the Xunet IP service.

C. ATM Adaptor

The design of an ATM host adaptor involves a set of
tradeoffs that depend on the cost and performance targets, host
architecture, operating system, and workload. ATM introduces
two new problems to adaptor design: reassembly of small cells
into packets on the receive side, and possibly the need for
cell-level transmission scheduling on the transmit side. Packet
reassembly can be done in the switch, in adaptor memory, or
in host memory. Our design is unique in taking advantage
of per-virtual-circuit queueing in the switch to reassemble
packets. Queue handlers that communicate with routers have
the reassembly option enabled as described in Section III. The

52 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 1, FEBRUARY 1997

Fig. 10. Host adaptor.

scheduler delays the service of a virtual circuit queue until
a cell with an end-of-frame payload type has arrived. Once
service is started, it serves the virtual circuit until the end-of-
frame cell is reached. The adaptor card receives a string of
cells from the same virtual circuit and uses AALX or AAL5
to verify that the packet is correct. This approach eliminates
the need to manage multiple reassembly buffers on the host
adaptor or the need to manage partial state for the AAL5 CRC
computation.

The adaptor design [6] is based on a RISC CPU, the
AT&T Hobbit, acting as an intelligent DMA engine (Fig. 10).
Fiber transceivers operating at 200 Mb/s interface to the link
encoder/decoders which then feed a 16 KB receive FIFO buffer
and a 4 KB transmit FIFO buffer. The fifos provide an elastic
store to smooth traffic flow to and from host memory. The
elastic store FIFO’s appear as a memory-mapped register in
Hobbit address space; transfers to and from host memory are
done by the Hobbit under program control. Generation and
checking of the AAL5 CRC is performed by a pair of field
programmable gate arrays which snoop on the Hobbit address
and data bus. The Hobbit accesses cell headers and payload
using a different address offset so that the CRC is only updated
during the transfer of payload words. In the figure, the dashed
line illustrates how a transfer to host memory updates the CRC
check logic in passing.

Hobbit accesses to host memory operate as follows. The
host initializes a receive and transmit ring buffer in a region
of memory called the communication area. Each ring entry is a
chain of , which contain a physical and virtual address
pointer to a host , as well as an ownership field. The
state of the ownership field can only be changed by the owner.
Initially, all receive ring entries are owned by the Hobbit and
all transmit ring entries are owned by the host. When data
arrives from the network, the Hobbit copies the payload into
host memory. When the packet end is reached, the Hobbit
changes the buffer ownership to host, possibly posts a receive
interrupt to the host, and moves on to the next entry in the
receive ring. The host unlinks the chain from the ring,
links in a fresh chain of buffers, and gives the entry back to the
Hobbit for a new packet. The transmit side works similarly.

D. Protocol Stack

The protocol stack shown in Fig. 11 includes a hardware
driver, the driver,4 to interface to the adaptor. Our software

4Orcs are a warlike people in J. R. R. Tolkein’sThe Hobbit.

Fig. 11. Router kernel implementation.

organization puts performance-critical code in the kernel,
primarily the code that is called during packet handling, while
code that is not performance critical is kept in user space. We
partitioned the functionality between user space and kernel
so that we could do experiments that involved signaling [3],
[4] or multiplexing policy without touching the kernel. The
remainder of this section focuses on the kernel code.

Consider a packet which arrives on FDDI that is to be
routed over Xunet. The FDDI driver appends the packet to
the IP receive queue and issues a software interrupt to the IP
input handler, which routes the packet and passes a pointer
to the packet into the Xunet interface code . This
routine determines whether the packet should be forwarded
over an existing virtual circit or if a virtual circuit needs
to be established. The kernel maintains a cache mapping IP
destination addresses to ATM virtual circuit identifiers in the
address resolution module and if there is a cache hit, the packet
is forwarded over that virtual circuit. If there is a cache miss,
address resolution calls up into a user-level IP connection
server which contacts user-level signaling software to set up a
virtual circuit to the appropriate destination. Once the circuit
is set up, the IP connection server loads the cache with the
mapping from IP packet header information to virtual circuit.
The address resolution module also maintains an activity timer
for each virtual circuit. When a connection has been inactive
for one second, it calls up to the IP connection server. The IP
connection server can choose whether to clear the connection
[40], in keeping with the idea that policy decisions are kept
in user space.

The interface presented by the driver to higher layers of
the protocol stack does not depend on IP and Fig. 11 shows
a native ATM protocol stack. The driver does protocol
demultiplexing using the virtual circuit identifier when receiv-
ing from the network. Application programs can communicate
using virtual circuits directly via a slight modification to the
socket library [1].

E. Lessons

The Xunet router has been in service since April 1993.
The simple architectural model that we used for IP over
ATM service, in which routers attached to the ATM network
are part of a single logical IP subnet, was independently
developed in the IETF and is now quite widely deployed. As
for our implementation, the Xunet router achieved respectable
performance for the time. User-to-user performance between
a pair of FDDI hosts running the ttcp benchmark over Xunet
through the Xunet router was measured at 35 Mb/s. Moreover,
the router and architecture gave rise to a number of research
projects.

KALMANEK et al.: XUNET 2: LESSONS FROM AN EARLY WIDE-AREA ATM TESTBED 53

Implementation of packet reassembly in an ATM switch
simplifies the work of an adaptor card, although with VLSI
support for segmentation and reassembly, this may be of
diminishing importance. Another issue is that reassembly
increases the delay variance for CBR streams by reducing the
number of scheduler preemption points. However, reassembly
remains relevant to the design of ATM hubs interfacing to
conventional LAN’s. In an ATM hub, packet reassembly is
typically implemented on a line card, but reuse of the switch
buffer itself for packet reassembly would provide an significant
cost saving.

With or without switch-based packet reassembly, it is clear
that RISC processors are capable of performing ATM reassem-
bly at quite respectable speeds. With hardware assist for the
AAL5 CRC, ATM packet reassembly takes less than 100 RISC
instructions. On a 60 MIPS machine, this is approximately
1.6 ms, whereas a cell is transmitted every 2.7 ms at 155
Mb/s. Even if VLSI segmentation and reassembly engines
dominate for high-performance host adaptors, there is a role for
a processor-based approach to segmentation and reassembly
at the low end and in embedded controllers where a single
processor can support the network and application functions.
We recently applied our understanding to the development of
Euphony [30], a MIPS R3000-based processor with support
for ATM and digital signaling processing.

Our work on congestion avoidance explored whether the
performance of TCP could be improved by using flow control
between routers at the edges of the ATM network. This model
differs from the conventional model of an IP router, which
simply forwards packets. The interaction between TCP flow
control and a separate flow control protocol between ATM-
attached routers, such as the ATM Forum ABR protocol,
remains an interesting research topic suggested by our work.

The impact of the congestion control scheme on host
adaptor design is also important. It is commonly expected that
CBR service will require hosts to implement a fine-grained
cell transmission schedule, and adaptors can inexpensively
implement a transmission schedule for this service using a
variation of the HRR scheduler described in [18]. In our view,
however, an ABR service should be designed to allow a range
of options on host adaptors. The simplest and potentially most
cost effective approach would give the host responsibility for
transmission scheduling of one KByte or larger “transmission
blocks.” While packet-pair flow control allows this, the rate-
based proposals [7], [12] in the ATM Forum require a more
complex and more expensive host adaptor with finer-grained
scheduling and algorithms to modify the schedule based on
feedback or an explicit rate allocation.

The software organization on the router seems as valid today
as when it was done. Signaling and policy code should be
in user space. This differs from commercial implementations
today, but should be the direction for the future.

VI. CONCLUSION

Since the Xunet program began, interest in ATM has ex-
perienced dramatic growth. In 1991, the ATM Forum was
founded by four companies interested in developing ATM

products for use in the local area. At this writing, the ATM
Forum has more than 700 member companies. There are
solid technical reasons behind this enthusiasm. ATM offers
a common approach to multiplexing and switching that can
operate over a wide performance range. Moreover, ATM has
the potential to offer good performance to a broad class of
applications since switches maintain connection state and can
offer a QoS appropriate to individual connections. There is
presently commercial interest in using ATM for both facility
switching as well as statistical multiplexing in the wide area,
as a switch-based local-area networking technology, and as a
distribution technology for local access. In addition to these
commercial applications, there is fertile research exploring the
use of ATM for wireless communication, in desk area networks
and as the basis for networks in the home. In light of all this
activity, it is often hard to keep sight of fundamental principles.
This paper has attempted to glean some principles from the
work we have done over the years.

In traffic management, there is clearly a need for a CBR
service in ATM to support circuit emulation, voice and video
traffic. The principles here are well established and involve
a user traffic descriptor, call admission, priority at a switch
scheduler, and user policing. Recent efforts in the ATM Forum
to define the ABR and UBR service classes recognize the
desire by computer users to get “as much as possible” from the
network, while also recognizing the need to avoid congestion.
We are concerned that explicit rate allocation complicates
switches and that fine grain transmission scheduling compli-
cates host adaptors. In our view, round-robin scheduling for
ABR traffic achieves a fair sharing of bandwidth among active
users and an appropriate buffer management policy protects
one user from another. Congestion avoidance is a matter of
controlling the offered load using an end-system rate adaption
scheme such as packet-pair. However, even if explicit rate
adaption is used, round-robin scheduling will still be important
as a means of providing protection among users.

In the past, per-virtual-circuit queueing and round-trip sized
buffers have been considered to be prohibitively expensive. It
now appears that this approach may be commercially viable, at
least for 155-Mb/s lines and for switches in the 1–4 Gb/s range,
through the use of large scale integrated circuits incorporating
memory and logic. This will go a long way towards providing
a good quality ABR service.

We believe that the simple output-queued architecture of
the Xunet switch remains appropriate to the design of low-
cost ATM multiplexers and switches. Regardless of the switch
architecture, a well-designed maintenance subsystem can make
even inexpensive switches easy to maintain. The data paths in
a switch can be error checked and continuously monitored, and
the maintenance subsystem can support automatic configura-
tion and hardware fault detection. Switches that are designed
to provide high availability can use embedded processors to
do audits of internal tables.

The ATM community has only begun to scratch the surface
of network control and management. Our work suggests the
possibility of an open, modular call processing architecture.
Such an architecture might allow a single software system to
control different vendors’ switches and might allow protocols

54 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 1, FEBRUARY 1997

like signaling and routing to evolve independently. Whether
such an architecture is used or not, it is clear that building
switch controllers with high throughput and reliability will
require a serious committment to software architecture work.
The standards for end-system signaling and interswitch routing
have evolved to be much more complex than the simple
protocols used in Xunet. It is clear that such complex protocols
are not needed everywhere. For example, a desk area or home
network might use a lightweight signaling protocol, with a
concise encoding and good support for the “common case,”
along the lines of what we did in Xunet.

Although there has been a great deal of work on support
for IP traffic on ATM LAN’s, a number of issues remain. For
example, it should be possible for IP routers connected over
ATM networks to make use of ABR flow control to avoid
packet losses. This would make IP service over ATM networks
more predictable than in the current Internet. Currently, hosts
with ATM support typically run an IP stack over ATM. This is
necessary when communicating with IP-only hosts, but the IP
layer could be avoided when both hosts are attached to ATM.
Hosts can easily support a dual stack, including both IP and
a native ATM stack that allows applications to take advantage
of ATM quality-of-service guarantees. The ATM stack would
also improve performance by eliminating the redundant IP
network layer processing. However, there is significant inertia
to overcome in bringing this about.

Much has been written about host adaptor design issues in
the last few years. It is difficult to make generalizations since
the solutions depend strongly on the specific system and goals.
We do expect that embedded processors will be used for ATM
protocol processing in a wide range of applications. At the low
end, embedded processors can handle ATM segmentation and
reassembly directly with a small amount of hardware support
for the AAL5 CRC.

ACKNOWLEDGMENT

Xunet would not have been possible without the efforts
of many people. A. G. Fraser and R. L. Snowden deserve
the credit for creating the Xunet program. Fraser played a
major role in setting the technical direction and managing the
project. A talented group of hardware designers, “J&A, Inc,”
headed by J. H. Carran and J. A. Grandle at AT&T’s Columbus
Works designed and built the Xunet switches, transforming the
authors’ changing requirements into working hardware. P. E.
Parseghian deployed the network and managed its operations:
without her, it is hard to imagine how Xunet would have come
into being. M. J. Dixon was instrumental in the work described
in Section IV. In his year and a half at AT&T Bell Labs, he
proposed the network control architecture, implemented the
source control system, and wrote much of the code. A. D.
Berenbaum and A. Iyengar were responsible for the ATM host
adaptor and device driver. A. E. Kaplan worked on the DS3
and 622 Mb/s line cards. J. H. Condon consulted on hardware
and protocol issues. R. Sethi, E. K. Grimmelmann and G. S.
Subramanian provided funding and moral support as well as
running interference for us. The authors’ colleagues and their
students at the universities and research labs associated with
Xunet contributed to a rich and rewarding research program.

EPILOGUE

The Xunet 2 network was officially decommissioned in
February 1996, after this paper was submitted for review. We
left the paper in the present tense as was appropriate at the
time of writing.

REFERENCES

[1] R. Ahuja, S. Keshav, and H. Saran, “Design, implementation, and
performance of a native-mode ATM transport protocol,” inProc. IEEE
INFOCOM’96, pp. 206–214.

[2] N. G. Aneroussis, C. R. Kalmanek, and V. E. Kelly, “Implementing
OSI management facilities on the Xunet ATM testbed,” inProc. 4th
IFIP/IEEE Workshop Distributed Systems: Operations Management,
Oct. 1993.

[3] N. G. Aneroussis and A. A. Lazar, “Managing virtual paths on Xunet
III: Architecture, experimental platform, and performance,” inProc.
IFIP/IEEE Int. Symp. Integrated Network Management, Santa Barbara,
CA, May 1995.

[4] N. G. Aneroussis, A. A. Lazar, and D. E. Pendarakis, “Taming Xunet
III,” ACM Computer Commun. Rev., vol. 25, no. 3, pp. 44–65, Oct. 1995.

[5] “ANSAware 4.1: Application Programming in ANSAware,” Architec-
ture Projects Management Limited, Poseidon House, Castle Park, CB3
0RD, Cambridge UK, Feb. 1993.

[6] A. Berenbaum, J. Dixon, A. Iyengar, and S. Keshav, “A flexible ATM
host-interface for Xunet II,”IEEE Network, vol. 7, pp. 18–23, July 1993.

[7] F. Bonomi and K. W. Fendick, “The rate-based flow control framework
for the available bit rate ATM service,”IEEE Network, vol. 9, pp. 35–39,
Mar.-Apr. 1995.

[8] R. Caceres, “Multiplexing traffic at the entrance to wide-area networks,”
Ph.D. dissertation, Univ. of California, Berkeley, Rep. UCB/CSD
92/717, Dec. 1992.

[9] R. H. Campbellet al., “Control software for virtual-circuit switches:
call processing,” inFuture Tendencies in Computer Science, Control and
Applied Mathematics, Lecture Notes in Computer Science 653. Berlin,
Germany: Springer-Verlag, 1992, pp. 175–186.

[10] On-line reference to the Gigabit Testbed Initiative at
http://www.cnri.reston.va.us/.

[11] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of
a fair queueing algorithm,” inProc. ACM SIGCOMM, Sept. 1989, pp.
1–12; alsoJ. Internetworking Res. Experience,vol. 1, no. 1, pp. 3–26,
Sept. 1990.

[12] K. W. Fendick, “Evolution of controls for the available bit rate service,”
IEEE Commun., vol. 34, pp. 35–39, Nov. 1996.

[13] A. G. Fraser, “Toward a universal data transport system,”IEEE J. Select.
Areas Commun., vol. 1, pp. 803–816, Nov. 1983.

[14] S. J. Golestani, “Congestion-free communication in high-speed packet
networks,” IEEE Trans. Commun., vol. 39, pp. 1802–1812, Dec. 1991.

[15] M. Grossglauser, S. Keshav, and D. Tse, “RCBR: A simple and efficient
service for multiple time-scale traffic,” inProc. ACM SIGCOMM ’95,
Boston, MA, Aug. 1995.

[16] E. L. Hahne, “Round-robin scheduling for max-min fairness in data
networks,”IEEE J. Select. Areas Commun., vol. 9, pp. 1024–1039, Sept.
1991.

[17] E. L. Hahne, C. R. Kalmanek, and S. P. Morgan, “Dynamic window flow
control on a high-speed, wide-area data network,”Computer Networks
ISDN Syst., vol. 26, no. 1, pp. 29–41, Sept. 1993.

[18] C. R. Kalmanek, H. Kanakia, and S. Keshav, “Rate controlled servers
for very high-speed networks,” inGLOBECOM’90, San Diego, CA,
1990, pp. 12–20.

[19] C. R. Kalmanek, B. Lyles, and W. T. Marshall, “Proposal for a robust
SEALprotocol,” Contribution to ANSI T1S1.5, Chicago, May 1992.

[20] H. Kanakia, P. P. Mishra, and A. R. Reibman, “An adaptive conges-
tion control scheme for real-time packet video transport,”Computer
Commun. Rev., vol 23, no. 4, pp 20–31, Oct. 1993.

[21] M. G. H. Katavenis, “Fast switching and fair control of congested flow
in broadband networks,”IEEE J. Select. Areas Commun., vol. SAC-5,
pp. 1315–1326, Oct. 1987.

[22] S. Keshav, “A control-theoretic approach to flow control,” inProc. ACM
SIGCOMM’91, pp. 3–15.

[23] , “Packet-pair flow control,”ACM Trans. Computer Syst., sub-
mitted for publication.

[24] S. Keshav and S. P. Morgan, “SMART retransmission: performance with
overload and random losses,” to be presented at IEEE INFOCOM’97,
April 1997.

KALMANEK et al.: XUNET 2: LESSONS FROM AN EARLY WIDE-AREA ATM TESTBED 55

[25] T. V. Lakshman, P. P. Mishra, and K. K. Ramakrishnan, “Transporting
compressed video over ATM networks with explicit rate feedback
control,” to be presented at IEEE INFOCOM’97, April 1997.

[26] L. E. McMahon, “An experimental software organization for a labora-
tory data switch,” inProc. ICC’81, pp. 25.4.1–25.4.4.

[27] S. P. Morgan, “Queueing disciplines and passive congestion control in
byte-stream networks,”IEEE Trans. Commun., vol. 39, pp. 1097–1106,
July 1991.

[28] J. B. Nagle, “On packet switches with infinite storage,”IEEE Trans.
Commun., vol. COM-35, pp. 435–438, Apr. 1987.

[29] Y. Oie, M. Murata, K. Kubota, and H. Miyahara, “Effect of speedup
in nonblocking packet switches,” inIEEE Int. Conf. Commun., 1989,
pp. 410–414.

[30] P. Onufryk, “Euphony: an embedded RISC processor for low-cost
ATM networking and signal processing,” inProc. SUPERCON’97—Dig.
Commun. Des., 1997.

[31] A. K. Parekh and R. G. Gallager, “A generalized processor sharing
approach to flow control in integrated services networks: The multiple
node case,”IEEE/ACM Trans. Networking, vol. 2, pp. 137–150, Apr.
1994.

[32] K. K. Ramakrishnan and R. Jain, “A binary feedback scheme for
congestion avoidance in computer networks with a connectionless
network layer,” inProc. ACM SIGCOMM, 1988, pp. 303–313.

[33] E. P. Rathgeb, “Policing of realistic VBR video traffic in an ATM
network,” Int. J. Digital Analog Commun. Syst., vol. 6, pp. 213–226,
1993.

[34] A. R. Reibman and A. W. Berger, “Traffic descriptors for VBR Video
teleconferencing over ATM networks,” inGLOBECOM ’92, Orlando,
FL, Dec. 1992, pp. 314–319; alsoIEEE/ACM Trans. Networking, vol.
3, pp. 329–339, June 1995.

[35] A. R. Reibman and B. G. Haskell, “Constraints on variable bit-rate video
for ATM networks,” IEEE Trans. Circuits Syst. Video Technol., vol 2,
pp. 361–372, Dec. 1992.

[36] M. Laubach, “Classical IP and ARP over ATM,” Internet Network
Working Group Request for Comments #1577, Jan. 1994.

[37] J. W. Roberts, Ed., “Performance evaluation and design of multiservice
networks,” Commission of the European Communities, Brussels COST
224 Final Report, 1992 , pp. 111–147.

[38] A. Romanov and S. Floyd, “Dynamics of TCP traffic over ATM
networks,” inProc. ACM SIGCOMM ’94, London, U.K., pp. 79–88.

[39] R. Safranek, C. Kalmanek, and R. Garg, “Methods for matching
compressed video to ATM networks,” inProc. IEEE Workshop Inform.
Theory, Multiple Access Queueing Theory, St. Louis, MO, Apr. 1995.

[40] H. Saran and S. Keshav, “An empirical evaluation of virtual circuit
holding times in IP,” inProc. IEEE INFOCOM’94, June 1994.

[41] H. Saran, S. Keshav, and C. R. Kalmanek, “A scheduling discipline and
admission control policy for Xunet 2,”ACM Multimedia Syst. J., vol.
2, no. 3, Sept. 1994.

[42] M. Chapman and S. Montesi, “Overall concepts and principles of
TINA,” Document Label TB_MDC.018_1.0_94, Feb. 1995, available
from http://www.tinac.com/.

[43] J. S. Turner, “Maintaining high throughput during overload in ATM
switches,” inProc. IEEE INFOCOM’96, pp. 287–295.

[44] W. Verbiest and L. Pinnoo, “A variable bit rate video coder for
asynchronous transfer mode networks,”IEEE J. Select. Areas Commun.,
vol. 7, pp. 761–770, June 1989.

[45] M. K. Vernon and U. Manber, “Distributed round-robin and first-
come-first-serve protocols and their application to multiprocessor bus
arbitration,” in 15th IEEE Int. Symp. Computer Architecture, 1988, pp.
269–277.

[46] C. J. Weinstein, “Fractional speech loss and talker activity model for
TASI and for packet-switched speech,”IEEE Trans. Commun., vol.
COM-26, pp. 1253–1257, Aug. 1978.

Charles R. Kalmanek (M’93) received the B.S.
degree in applied physics from Cornell University,
Ithaca, NY, in 1980, the M.S. degree in electrical en-
gineering from Columbia University, NY, in 1981,
and the M.S. degree in computer science from New
York University, in 1988.

He is currently Head of the Networking Research
Department, AT&T Labs-Research, Murray Hill,
NJ. His research interests include the design and
performance analysis of computer networks and
distributed systems, and hardware design.

Srinivasan Keshav, photograph and biography not available at the time of
publication.

William T. Marshall received the B.S. degree
in mathematics from Carnegie- Mellon University,
Pittsburgh PA, in 1974, and the Ph.D. degree in
computer engineering from Case Western Reserve
University, Cleveland, OH, in 1979.

From 1978 to 1979, he was an Assistant Pro-
fessor of Computer Engineering at Case Western
Reserve University, Cleveland, OH . He joined
AT&T Bell Laboratories in 1979, and is now a
Principle Researcher in the Networking and Dis-
tributed Systems Research Center of AT&T Labs-

Research, Murray Hill, NJ. His research interests include all aspects of data
communication networks, analytic modeling and performance measurement,
and operating system design.

Samuel P. Morgan(SM’55–F’62–LF’95) received
the B.S., M.S., and Ph.D. degrees in physics from
the California Institute of Technology, Pasadena,
CA.

He is a Distinguished Member of the Technical
Staff in the Computing Sciences Research Center,
Bell Labs/Lucent Technologies, Murray Hill, NJ.
His recent interests have included queueing and
congestion theory in high-speed communications
networks, and electromagnetic propagation prob-
lems related to wireless systems.

Robert C. Restrick III (M’71) received the B.S.
degree in electrical engineering from the Lawrence
Institute of Technology, Southfield, MI, in 1961,
the M.S. degree in electrical engineering from the
University of Detroit, MI, in 1963, and the Ph.D.
degree in electrical engineering from the University
of Michigan, Ann Arbor, in 1968.

He joined Bell Labs in 1968 and was appointed
AT&T Bell Laboratories Fellow in 1984. He is
currently a Principal Technical Staff Member of the
Networking and Distributed Systems Lab, AT&T

Labs-Research, Murray Hill, NJ. His research includes networking and
hardware design. He is a member of the Society of Sigma Xi.

