
1. Introduction

Routers knit together the constituent networks of the global Internet, creating the illusion of a
unified whole. While their primary role is to transfer packets from a set of input links to a set of output
links, they must also deal with heterogeneous link technologies, provide scheduling support for
differential service, and participate in complex distributed algorithms to generate globally coherent
routing tables. These demands, along with an insatiable need for bandwidth in the Internet, complicate
their design.

Routers are found at every level in the Internet. Routers in access networks allow homes and
small businesses to connect to an Internet Service Provider (ISP). Routers in enterprise networks link tens
of thousands of computers within a campus or enterprise. Routers in the backbone are not usually
directly accessible to end-systems. Instead, they link together ISPs and enterprise networks with long-
distance trunks. The rapid growth of the Internet has created different challenges for routers in
backbone, enterprise, and access networks. The backbone needs routers capable of routing at high
speeds on a few links. Enterprise routers should have a low cost per port, a large number of ports, be
easy to configure, and support QoS. Finally, access routers should support many heterogeneous, high-
speed ports, a variety of protocols at each port, and try to bypass the central office voice switch.

This paper presents the design issues that arise in these three classes of routers. Section 2
describes the structure of a generic router. Section 3 discusses design issues in backbone, enterprise, and
access routers, and Section 4 presents some recent advances and trends in router design. Finally we
conclude in Section 5 with a description of some open problems. We note that our main topic of
discussion is packet forwarding: routing protocols, which create the forwarding tables, are dealt with
only in passing.

2. Components of a router
Figure 1 abstracts the architecture of a generic router. A generic router has four components:

input ports, output ports, a switching fabric, and a routing processor. An input port is the point of
attachment for a physical link and is the point of entry for incoming packets. Ports are instantiated on
line cards, which typically support 4, 8, or 16 ports. The switching fabric interconnects input ports with
output ports. We classify a router as input-queued or output queued depending on the relative speed of
the input ports and the switching fabric. If the switching fabric has a bandwidth greater than the sum of
the bandwidths of the input ports, then packets are queued only at the outputs, and the router is called
an output-queued router. Otherwise, queues may build up at the inputs, and the router is called an
input-queued router. An output port stores packets and schedules them for service on an output link.
Finally, the routing processor participates in routing protocols and creates a forwarding table that is used in
packet forwarding. We now discuss the components of this generic router in more detail.
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Figure 1: Architecture of a router

An input port provides several functions. First, it carries out datalink layer encapsulation and
decapsulation. Second, it may also have the intelligence to look up an incoming packet’s destination
address in its forwarding table to determine its destination port (this is also called route lookup). The
algorithm for route lookup can be implemented using custom hardware, or each line card may be
equipped with a general-purpose processor. Third, in order to provide QoS guarantees, a port may need
to classify packets into predefined service classes. Fourth, a port may need to run datalink-level
protocols such as SLIP and PPP, or network-level protocols such as PPTP. Once the route lookup is done
the packet needs to be sent to the output port using the switching fabric. If the router is input queued,
several input ports must share the fabric: the final function of an input port is to participate in
arbitration protocols to share this common resource.

The switching fabric can be implemented using many different techniques (see [OSMKM 90]
for a detailed survey). The most common switch fabric technologies in use today are busses, crossbars,
and shared memories. The simplest switch fabric is a bus that links all the input and output ports.
However, this is limited in capacity by the capacitance of the bus and the arbitration overhead for
sharing this single critical resource. Unlike a bus, a crossbar provides multiple simultaneous data paths
through the fabric. A crossbar can be thought of as 2N busses linked by N*N crosspoints: if a crosspoint
is on, data on an input bus is made available to an output bus, else it is not. However, a scheduler must
turn on and off crosspoints for each set of packets transferred in parallel across the crossbar. Thus, the
scheduler limits the speed of a crossbar fabric. In a shared-memory router, incoming packets are stored
in a shared memory and only pointers to packets are switched. This increases switching capacity.
However, the speed of the switch is limited to the speed at which we can access memory. Unfortunately,
unlike memory size, which doubles every 18 months, memory access times decline only around 5%
every year. This is an intrinsic limitation with shared-memory switch fabrics.

Output ports store packets before they are transmitted on the output link. They can
implement sophisticated scheduling algorithms to support priorities and guarantees. Like input ports,
output ports also need to support datalink layer encapsulation and decapsulation, and a variety of
higher-level protocols. More details on packet scheduling can be found in Reference [Keshav 97].

The routing processor computes the forwarding table, implements routing protocols, and runs
the software to configure and manage the router. It also handles any packet whose destination address
cannot be found in the forwarding table in the line card.



3. Design issues
With this description of a generic router in hand, in this section we turn our attention to design

issues for backbone, enterprise, and access routers.

3.1 Backbone Routers

The Internet currently has a few tens of backbones that each serve up to a few thousand
smaller networks. Backbone routers interconnect enterprise networks, so their cost is shared among a
large customer base. Moreover, the cost of wide area transmission links is currently so high that cost is a
secondary issue in the design of backbone routers. The primary issues are reliability and speed.

Hardware reliability in backbone routers can be achieved using much the same techniques
as in telephone switches: hot spares, dual power supplies, and duplicate data paths through the routers.
These are standard in all high-end backbone routers and we will not consider these issues in any detail.
Instead, we focus on techniques to achieve high speed routing.

The major performance bottleneck in backbone IP routers is the time taken to look up a route in
the forwarding table. On receiving a packet, an input port looks up the packet’s destination address in
its forwarding table to determine the packet’s destination port. The forwarding table stores routing
entries of the form <network address/mask, port>. On receiving a packet with address A, the port
conceptually cycles through all its forwarding entries. For each entry, the router masks A with the mask
stored with that entry, and if this matches the corresponding network address, adds port to the set of
candidate destination ports. The selected destination is the candidate port corresponding to the longest
mask (we call this the entry with the longest prefix match). For example, consider a router that has the
following entries in its routing table: {<128.32.1.5/16, 1>, <128.32.225.0/18, 3>, <128.0.0.0/8, 5>}. A
packet with a destination address 128.32.195.1 matches all three entries and so the set of candidate
destination ports for this packet is {1,3,5}. However, port 3 corresponds to routing entry with the longest
mask (i.e., 18). Therefore, the destination port of the packet is port 3.

This example outlines the two reasons why looking up a route is hard. First, the routing table
may contain many thousands of entries. Thus, it is highly inefficient to match an incoming packet
serially with every entry. Indeed, to achieve high routing speeds, we should tightly bound the worst
case time required to look up a destination port. Second, an incoming packet may match multiple
routing entries. We must find, among matching entries, the one with the longest match.

The cost of route lookups increases if packets are small, or if packets are routed to a large
number of destinations, so that a cache of frequently visited destinations becomes ineffective. We now
present some representative measurements to evaluate the situation in current backbones. Figure 2(a)
shows the packet size distribution from a 5 minute trace collected on a backbone router in the MCI
backbone [NLANR 97]. We see that approximately 40% packets are 40 bytes long (these correspond to
TCP acknowledgment packets). This distribution implies that current backbone routers must perform a
large number of route lookups every second. One metric of route diversity is the size of the forwarding
cache if routes are kept in the cache for a given time period. In a trace obtained in 1995, Figure 2(b)
[NLANR 95], we find that if routes are kept in a cache for only 64 seconds since their last use, we still
need a cache of size 64K entries.



(a) Packet size distribution in a backbone router (b) Number of active flows in a backbone router
Figure 2: The distribution of packet sizes were collected at a router in the MCI backbone. The active flow

data was computed from traces collected at FIX-West.

Input-queued and output-queued routers share the route lookup bottleneck, but they each have
an additional performance bottleneck that the other does not have. Recall that output-queued switches
must run the switch fabric at a speed greater than the sum of the speeds of the incoming links. While
this can be solved by building third-generation interconnection networks, that still leaves the problem of
storing packets rapidly in output buffers. The rate at which the output buffer can be accessed is limited
by DRAM or SRAM access times. These ultimately limit the speed at which an output-queued router
can be run. One way to get around this problem is to place all queueing at the input. However, with this
approach, an arbiter must resolve contention for the switching fabric and for the output queue. It is hard
to design arbiters that run at high speeds, and can also fairly schedule the switch fabric and the output
line [McKeown 95, MAW 96]. We discuss strategies for speeding up output queued routers in Section
4.3.

In addition to overcoming bottlenecks in performance at individual routers, there is an
additional design issue that is often ignored. We believe that the stability and reliability of the routing
protocol implementations also affect the scalability of the Internet. Little is known about the stability of
networks where routers run different versions of the same protocol, or worse, run different protocols
altogether. Thus, even slight changes in network configuration can lead to serious and nearly
undetectable problems. For example, the descriptions of filters to export (import) routes from an
interior gateway protocol to BGP is the cause of many a routing problems on the Internet. Recent studies
have shown that the routing oscillations that characterize the current Internet are often the result of
small bugs in protocol implementation or router misconfiguration [LMJ 97].

3.2 Enterprise routers

Enterprise or campus networks interconnect end-systems. Unlike backbone networks, where
speed comes first and cost is a secondary issue, their primary goal is to provide connectivity to a large
number of endpoints as cheaply as possible. Moreover, support for different service qualities is
desirable because this would allow QoS guarantees at least for traffic confined to the local area.



Most enterprise networks are currently built from Ethernet segments connected by hubs or
bridges. These devices are cheap, easy to install, and require no configuration. However, not only does
the performance of a network built with hubs and bridges degrade with the network’s size, there is
usually little support for service differentiation. In contrast, a network built with routers partitions the
machines into multiple collision domains and therefore scales better with the size of the network.
Besides most routers support some form of service differentiation, at least allowing multiple priority
levels. Routers, however, tend to be more expensive per port and require extensive configuration before
they can be used. The challenge therefore is to build enterprise routers that have a low cost per port, a
large number of ports, are easy to configure, and support QoS.

Enterprise routers have several additional design requirements. Unlike backbone networks,
enterprise networks may carry a significant amount of multicast and broadcast traffic. Thus, they must
carry multicast traffic efficiently. Backbone routers tend to support only the IP protocol. In contrast,
enterprise networks, which must deal with legacy LAN technologies, must support multiple protocols
including IP, IPX, and Vines. They must also support features such as firewalls, traffic filters, extensive
administrative and security policies and virtual LANs. Finally, unlike backbones, which link a handful
of trunks, enterprise routers must provide a large number of ports. Thus enterprise router designers
must solve the conflicting design goals of providing a rich feature set at each port, and reducing the cost
per port. This is not an easy task!

3.3 Access Routers

Access networks link customers at home or in a small business with an Internet Service Provider
(ISP). Access networks have traditionally been little more than modem pools attached to terminal
concentrators, serving a large number of slow-speed dialup connections. However, this simple model of
the access network is changing. First, access networks are beginning to use a variety of access
technologies such as high-speed modems, ADSL, and cable modems. Second, the use of telephone lines
for accessing the Internet from home has increased the load on the phone network. The long connection
holding time for Internet dialup connections creates problems for the phone switches. Thus, there is
considerable pressure on access networks to be aware of the underlying telephone network, and to try
to bypass the voice switch for data calls. Third, access routers are beginning to provide not just a SLIP or
PPP connection, but also Virtual Private Network protocols such as PPTP and IPSec. These protocols
need to be run at every router port. Finally, technologies like ADSL will soon increase the bandwidth
available from each home. This will further increase the load on access routers. Because of these four
trends, access routers will soon need to support a large number of heterogeneous, potentially high-
speed ports, a variety of protocols operating at each port, and try to bypass the voice switch, if this is at
all possible. We feel that access router technology is in a state of flux, due to recent advances in
technologies , such as ADSL, and it is too early to discuss their architecture in this paper.

4. Recent advances and current trends
The rapid growth of the Internet has led to a flurry of new research in router designs. In this

section, we present a selection of these approaches, along with our observations about current trends in
router design. A note of warning: this is not meant to be an exhaustive list--it is only a sampling of work
in a rapidly changing field!



IP vs ATM

ATM was designed from the ground
up to enable cheap switches. Small VCIs are
rapidly looked up, and fixed-size cells are
not only easy to switch using a fast parallel
fabric, but also easy to schedule. In contrast,
IP, with its variable-length packets and need
for a longest prefix match has been much
harder to route. This relative difficulty is
reflected in the relative prices of ATM
switches and IP routers: IP routers are about
an order of magnitude more expensive per
switched Mbps of bandwidth. Advances in
route lookup technology however, have
given IP a critical edge over ATM. Using the
fast route lookup algorithms described here,
routers can look up a longest prefix match
almost as fast, and almost as cheaply, as
VCIs. Moreover, by fragmenting IP packets
into fixed-size units at input ports and
reassembling them at output ports, ATM-
like switching fabrics can be used even in IP
routers. Finally, advances in scheduling have
reduced the cost of complex scheduling
algorithms sufficiently that the overhead for
scheduling variable size packets has
decreased. Thus, in the near future, the cost
per switch Mbps of IP bandwidth is likely to
be only marginally higher than that of ATM.
With this decrease, and the already
dominant role of IP at the endpoints and
enterprise networks, the role of ATM is
rapidly diminishing. It is almost certain that
ATM will play only a limited role in future
networks, primarily as a datalink technology
for telephony, and perhaps a bearer
technology for ADSL.

4.1 High speed route lookup
We saw in Section 3.1 that one of the major

bottlenecks in backbone routers is the need to
compute the longest prefix match for each incoming
packet. The speed of a route lookup algorithm is
determined by the number of memory accesses it
requires to find the matching route entry, and the
speed of the memory. For example, if an algorithm
performs 8 memory lookups and the input port has a
memory with an access time of 60ns, then the time
taken to lookup a route is 480ns, allowing it to do
about two million route lookups a second. The same
algorithm, using a costlier memory with a 10ns
access time, would allow the port to perform 12.5
million lookups every second. A second
consideration in designing forwarding table data
structures is the time taken to update the table.
Recent studies have shown that routing table
changes relatively slowly, requiring updates only
around once every two minutes [LMJ 97]. This allows
us to use complicated data structures that optimize
route lookup at the expense of the time taken to
update the routing table.

The standard data structure to store routes is
a tree, where each path in the tree from root to leaf
corresponds to an entry in the forwarding table.
Thus, the longest prefix match is the longest path in
the tree that matches the destination address of an
incoming packet [Stevens 95]. Conceptually, a tree-
based algorithm starts at the root of the tree and
recursively matches the children of the current node
with the next few bits of the destination address,
stopping if no match is found [Sklower]. Thus, in the
worst case, it takes time proportional to the length of
the destination address to find the longest prefix
match. The key idea in a tree-based algorithm is that
most nodes require storage only for a few children,
instead of all possible ones. Such algorithms,
therefore, make frugal use of memory at the expense
of doing more memory lookups. As memory prices
drop, this is precisely the wrong design decision.

Worse, the commonly used Patricia-tree algorithm may need to backtrack to find the longest match,
leading to very poor worst-case performance.

The performance of route lookup algorithms can be improved in several ways1. We classify these
improvement techniques into (a) hardware-oriented techniques, (b) table compaction techniques, and (c)

1 These improvements are commercially very valuable, so they are not well-described in the literature. Our descriptions are
meant only as an outline: non-disclosure agreements preclude greater detail.



hashing techniques. Well-known hardware-oriented solutions are based on Content Addressable
Memories (CAMs) and caches. Both techniques scale poorly with routing table size, and cannot be used
for backbone routers that support large routing tables. Some recent hardware-oriented approaches
essentially combine logic and memory together in a single device, drastically reducing the memory
access time. This ‘intelligent-memory’ approach is quite general, and can be used in conjunction with
the software techniques described later. A second hardware-oriented solution is to increase the amount
of memory used to store the routing table. Reference [GLM 98] argues that it is feasible to use a single
1GB table to look up a 32-bit address. Even at current prices, this would cost only about $6500, which is
well within the range of affordability for backbone routers. Over time, as memory costs drop, this
approach might well be the best one even for enterprise routers. A subtle problem with this approach,
however, is that the table becomes very hard to update: changing a single forwarding entry might cause
several thousand memory locations to be updated. Reference [GLM 98] describes cheap special purpose
hardware that can perform rapid updates on the forwarding table.

Table-compaction techniques, such as the algorithm described in Reference [BCDP 97], exploit
the sparse distribution of forwarding entries in the space of all possible network addresses to build a
complicated but compact data structure for the forwarding table. The table is then stored in the primary
cache of a processor, allowing route lookup at gigabit speeds.

Finally, hash-based solutions have also been proposed for route lookup. The need for
determining the longest prefix match limits the use of hashing. In particular, given a destination
address, we do not know the prefix to use for finding the longest match. The solution to this problem is
to try different masks, choosing the one has that has the longest mask length. The choice of masks can
be iterative [IPATM 96], hierarchical, or the first few bits of the address could be used to find a list of
prefix lengths. Unfortunately, none of these solutions scale well with the size of the destination address.

In recent work, Waldvogel et al [WVTP 97] have presented a scalable hash based algorithm
that can look up the longest prefix match for an N bit address in O(log N) steps. Their algorithm
computes a separate hash table for each possible prefix length. Instead of naively searching for a
successful hash starting from the longest possible prefix, their algorithm does a binary search on the
prefix lengths. This requires hash tables to contain markers that, on a hash failure, point to the correct
smaller-length hash table to search in. The search path for a particular forwarding entry is compactly
stored in the form of a ‘rope’, which reduces the storage requirements for markers. In addition, by pre-
computing hash tables that hold all forwarding entries associated with each 16-bit prefix, they can
‘mutate’ the hash-table on the fly, further reducing the number of memory accesses to an average of two
per lookup.

To sum up, we believe that fast route lookup is a solved problem. This has major implications for
ATM switches, a topic we discuss in the sidebar.

4.2 Advances in switching fabrics
As mentioned in Section 1, switching fabrics are usually implemented as a crossbar, a shared

memory, or a bus. The speed of a crossbar fabric is limited by the scheduler, that of a shared memory
fabric by memory access speeds, and that of a bus by bus capacitance and arbitration overhead. The
mid-eighties saw a lot of research in the area of switch fabric design, but few of these designs were
actually built, because advances in bus speeds made them unnecessary. These designs include the well-
known Banyan family of fabrics, along with others such as the Delta and the Omega fabric (for a survey,
please see Reference [OSMKM 90]). These designs were revived in the early nineties, mostly for building
large ATM switches. With the recent decline in demand for ATM, IP routers are being built by wrapping
segmentation and reassembly modules around ATM switch fabric cores. In these routers, permanent
virtual circuits are established from each port to all the other ports. After a longest-prefix match



determines the destination port for an IP packet, it is fragmented into ATM cells and switched. The
ATM cells are reassembled at the output port before transmission.

Using an ATM core allows the router to support different quality of service streams in the
switching fabric and overcome the problems associated with switching variable-size packets. However
these designs inherit some of drawbacks of ATM. First, ATM switches, for the most part, do not have
good support for multicast2. Multicasting data through the switch core requires a VCI to be mapped to
multiple VCIs, and copies of a cell to be generated either at the input port or within the switch fabric.
These overheads decrease the efficiency of the switching fabric. Second, a subtler problem arises because
traffic control algorithms are usually specified in terms of packets rather than in terms of cells. So, with
cell-based fabrics, implementing semantics like those required by shared filters in RSVP can be a
challenging task. Despite these drawbacks, the use of a fixed-size internal switching core seems to be a
widespread design technique, and we will assume the existence of such a core in the rest of this paper.

4.3 Speeding up output queues
We noted earlier that a major problem in output-queued switches is the speed at which the

output queue can be accessed. Two design techniques allow this bottleneck to be overcome. The first is
to build very wide memories that can load an entire cell in a single memory cycle. We can do this by
deploying memory elements in parallel and feeding them with a cell-wide data bus. Though this
extravagant use of memory is costly, as memory prices continue to drop at 60% a year, the approach is
rapidly becoming attractive.

A second approach to building fast output queues is to integrate a port controller and the
associated queues on a single chip. This approach allows the read/write control logic to access queues
in memory an entire row at a time, and therefore at speeds far greater than with external logic. An
example of this approach can be seen in the Datapath chipset from IDT Inc. The key idea here is to
integrate eight serial input and output port controllers and a shared memory on a single VLSI chip. The
serial inputs are parallelized in a shift register, and the entire shift register, usually containing an ATM
cell, is read into the memory in parallel. When the output port scheduler decides to serve a packet, it
reads the cell in parallel into a shift register, converts it to serial, and transmits it. Switching is
accomplished by deciding which output port controller should receive an incoming cell. Since the
memory can be accessed rapidly, an output port controller can store eight cells in a single cell time (at a
line rate of 155 Mbps). The VLSI packaging makes the chip economical: a 1.2 Gbps 8-port switch-on-a-
chip costs only around $50. While this approach does not scale to very large switches, Datapath chips
can be interconnected in to form larger, buffered, switch fabrics. For instance, a three-stage buffered
Banyan switch can be easily constructed with Datapath elements. Again, at each stage, cell loss due to
simultaneous cell arrivals on multiple inputs is avoided because of the integration of the memory
element with the port logic. We believe that intelligent port controllers, such as IDT’s Datapath, Lucent’s
Atlanta, and MMC’s ATMS2000 chipsets are the wave of the future.

4.4 Input queued switches
Despite improvements in the speed of output queues, they are still a significant bottleneck,

since, to avoid packet loss, they must run much faster than the input links. We can avoid this problem
altogether by building input-queued switches. Input-queueing is often deprecated because of the head-
of-line blocking problem: packets blocked at the head of an input queue prevent schedulable packets
deeper within the queue from accessing the switch fabric. However, by maintaining per-output queues

2 Currently multicast is not widely supported in the backbone. Efforts like the IP Multicast Initiative (IPMI) may change this
in the near future, making multicast support an important feature for backbone routers.



at each input, head-of-line blocking can be completely avoided. This still leaves the problem of
arbitrating access to the switch fabric at high speeds. Recent research suggests that this may solvable
with current technology [McKeown 95]. Consequently, it appears that router bandwidth can be
increased by yet another order of magnitude by moving to input-queueing.

Input-queueing, however, suffers from some serious problems that still need resolution.
First, packet scheduling algorithms for providing quality of service are usually specified in terms of
output queues. It is not clear how to modify these algorithms to simultaneously schedule the output
queues and the switch fabric. This is a complex an non-trivial issue: in effect, we are asking each input
port controller to mimic the actions of the entire set of output port controllers, each of which could
conceivably be transmitting packets on a different link technology. For example, consider a router that
has an FDDI, a Fast Ethernet, and a T3 port. If this router uses input queueing, each input port controller
should schedule packets not only according to the varying transmission speeds of the output links, but
also in accordance with the transmission policies associated with the disparate links. In particular, an
input queue cannot send a packet to the Fast Ethernet port if that port is backing off from a collision. It
cannot send a packet to the FDDI port if that port does not have the token. Clearly, with the diversity of
link technologies, building a general-purpose input port controller is a challenging, if not impossible
task. Second, enhanced router services such as Random Early Discard [FJ 93] depend on the length of
the output queue. With an input-queued switch, the output queue length is not known. Due to these
practical problems, non-trivial input-queued enterprise routers that deal with heterogeneous links and
policies may never become practical and hybrid approaches with both input and output queuing and a
moderate degree of speedup in the switching fabric may be necessary.

4.5 Scheduling
Suppose that packets arriving at all the input ports of a router wish to leave from the same

output port. If the output trunk speed is the same as the input trunk speed, only one of these packets can
be transmitted in the time it takes for all of them to arrive at the output port. In order to prevent packet
loss, the output port provides buffers to store excess arriving packets and serves packets from the buffer
as and when the output trunk is free. The obvious way to serve packets from the buffer is in the order
they arrived at the buffer, that is, in first-come-first-served (FCFS) order. FCFS service is trivial to
implement, requiring the router or switch to store only a single head and tail pointer per output trunk.
However, this solution has its problems, because it does not allow the router to give some sources a
lower delay than others, or prevent a malicious source, that sends an unending stream of packets as fast
as it can, from causing other, well-behaved streams from losing packets. An alternative service method
called Fair Queuing solves these problems, albeit at a greater implementation cost [DKS 89]. In the Fair
Queuing approach, each source sharing a bottleneck link is allocated an ideal rate of service at that link.
Specifically, focussing only on the sources that are backlogged at the link at a given instant in time, the
available service rate of the trunk is partitioned in accordance with a set of weights. If we represent the
weights of backlogged sources 1, 2, …, n, by w1, w2, …, wn, then the ideal service received by source k is
rwk/ Σ (wi) where r is the rate of the outgoing trunk. Fair Queuing and its variants are mechanisms that
serve packets from the output queue to approximately partition the trunk service rate in this manner.
All versions of Fair Queuing require packets to be served in an order different from the one in which
they arrived. Consequently, Fair Queuing is more expensive to implement than FCFS, since it must
decide the order in which to serve incoming packets, and then manage the queues in order to carry this
out. In general, the higher the number of conversations going through a router, the costlier it is to
implement Fair Queuing since Fair Queuing requires some form of per conversation state to be stored
on the routers. An exhaustive survey of variants of the Fair Queueing algorithm can be found in [Goyal
97].



Fair Queuing has three important and useful properties. First, it provides protection, so that a
well-behaved source does not see packet losses due to misbehavior by other sources. Second, by design,
it provides fair bandwidth allocation. If the sum of weights of the sources is bounded, each source is
guaranteed a minimum share of link capacity. Finally, it can be shown that if a source is leaky-bucket
regulated, independent of the behavior of the other sources, it receives a bound on its worst-case end-to-
end delay. For these reasons, almost all current routers support some variant of Fair Queueing.

A related scheduling problem has to do with the partitioning of link capacity among different
classes of users. Consider a wide-area trunk shared by two companies. All other things being equal, in
time of congestion, the trunk should be equally shared by packets from both companies. This sort of
link-sharing requirements deal with classes of connections, rather than with individual connections, and
require per-class bookkeeping. In recent work, it has been shown that extensions of Fair Queueing are
compatible with hierarchical link-sharing requirements [BZ 96, GVC 96]. Fast implementations of
algorithms that provide both hierarchical link sharing and per-connection QoS guarantees are an area of
active research [BSZ 97, RBGW 97]. We expect that all future routers will provide some form of Fair
Queueing at output queues.

4.6 Reducing port cost
Both enterprise and access routers support a large number of ports. Thus, they need to reduce

the cost of a port to the bare minimum. The cost of a port depends on (a) the amount and kind of
memory it uses, (b) its processing power, and (c) the complexity of the protocol used for communication
between the port and the routing processor. Ports built with general-purpose processors, large buffers,
and complex communication protocols tend to be more expensive than those built using ASICs, with
smaller buffers, and simple communication protocols.

Choosing between ASICs and general-purpose processors for a port is not straightforward.
General-purpose processors are costlier, but allow extensible port functionality, are available off-the-
shelf, and their price performance ratio improves rapidly with time. Their cost currently makes them
suitable only for backbone routers, but their flexibility will eventually make them attractive for
enterprise and access routers. On the other hand, ASICs are not only cheaper, but can also provide
operations that are specific to routing, such as traversing a Patricia tree. Moreover, the lack of flexibility
in with ASICs can be overcome by implementing functionality in the routing processor. Thus, at the
moment, it seems to make sense to use processor-based designs for backbone routers and use ASIC
based designs for the local area. Over time, the situations may well reverse.

The cost of a port is proportional to the type and size of memory on the port. SRAMs offer faster
access times, but are costlier than DRAMs. In general, backbone routers use SRAMs and enterprise and
access routers use DRAMs. Buffer memory is another parameter that is difficult to size. In general, the
rule of thumb is that a port should have enough buffers to support at least one bandwidth-delay
product worth of packets, where the delay is the mean end-to-end delay and the bandwidth is the
largest bandwidth available to TCP connections traversing that router. This sizing allows TCP
connections to open up their transmission windows without excessive congestive losses. The largest
bandwidth available to connections in the Internet today is around 100 Mbps. In the backbone,
assuming conservatively that the mean connection delay is 100 ms, this comes to about 1.125 MB of
buffering per port. Far less buffering is necessary in enterprise networks, where the mean connection
delay is usually less than 10 ms, corresponding to a per-port buffering of about 100 KB.

Finally, the cost of the port is also determined by the complexity of the connections between the
control path and the data path in the line card. In some cases, a routing processor sends commands to
each port through the switching fabric and port’s internal buffers. If command packets can get lost they
need re-transmission. Careful engineering of the control protocol is necessary to reduce the cost of port
control.



4.7 Enterprise level management and centralization
An enterprise or campus may contain many routers under the control of a single administrator.

In this situation, it is often a good idea to centralize some functions usually associated with individual
routers. For example, a central route server can compute loop-free routes for the entire enterprise and
load them into each router’s forwarding tables. A similar approach can be taken for loading multicast
forwarding entries, thus freeing the routers from the burden of participating in complex multicast
routing protocols. We call this ‘enterprise level management’.

The enterprise level approach also makes it easier to implement global policies. For example, an
organization may want to limit the total amount of resources dedicated to multicast traffic. Although the
mechanisms to restrict traffic (like policers) may be implemented at each router, the computation of
parameters for the individual policers can be centralized.

4.8 Avoiding route lookups
Instead of reducing the cost of route lookups, backbone routers can use two techniques to avoid

route lookups altogether. First, backbone networks can provide a virtual circuit interface (for example,
carrying IP over ATM over SONET), and require edge networks to translate from the destination
address to a virtual circuit identifier. Since virtual circuit identifiers are integers drawn from a small
space, they can be looked up with a single memory access. Moreover, the complexity of a longest prefix
match is avoided. However, the edge network must somehow distribute the mapping between a virtual
circuit identifier (or tag) and the destination port to each router in the backbone. This can be achieved
through protocols such as IP switching3 and tag switching. The deployment of such a technique requires
a major change to the network.

A second technique essentially introduces another level in the routing hierarchy to reduce the
size of routing tables, making route lookups cheaper. With this approach, backbone routers only keep
routes to destinations served by that backbone. All unknown destinations are routed to a ‘gateway’ at a
Network Access Point (NAP). Competing backbone providers exchange routing information and
packets at NAPs. While this means that global (large) routing tables are needed only at NAPs, the
growth in the number of providers in the NAP has stressed the scalability of the Border Gateway
Protocol (BGP), which is used to exchange routing information among peer routers at the NAP.

4.9 Router operating systems
In the past, routers have been viewed as hardware devices that are optimized for routing packets

at high speeds. Thus, the software environment on a typical control processor is bare bones, providing
little beyond a basic monitor. There is a growing realization, however, that router hardware is getting to
be a commodity that is easy to build and the greatest asset of a router vendor is its software. A parallel
trend, which reinforces this idea, is the notion that by opening up of the router architecture to third
parties router vendors can leverage them to create enhanced services within the network. Thus, there is
an intense focus on the development of router operating systems: operating systems that are specialized to
run on routers and provide a carefully controlled API to the underlying hardware. If this trend
continues, end-users may be able to install custom software modules within routers to provide services
such as firewalls, traffic management policies, application-specific signalling, and fine-grained control
on routing policy. There is a fairly large and vocal ‘Open Signalling’ community that is lobbying router
vendors for precisely this kind of access to router internals [Opensig]. It is interesting to note that
telephone companies already provide an extremely rich programming interface to PBX hardware
through the JTAPI interface [JTAPI].

3 In IP switching, the backbone tells the edge about the mapping, instead of the other way around, but the idea is conceptually
similar to what we describe here.



An extreme variant of this trend, which is dubbed ‘active networking’ would allow individual
packets to install software on-the-fly in routers. It is not clear what performance penalty such an
approach would exact, but recent work shows that both the security concerns and the performance hit
of active networks may be tolerable, at least in some environments [ASNS 97].

5. Open Problems
In this section, we identify some challenging open problems in router design. We believe that the

solutions to these problems will lead to interesting new tradeoffs in the next generation of IP routers.

5.1 Flow identification
It is often useful to think of the set of packets travelling through the Internet between a given

source and a given destination close together in time as constituting a flow. A flow can result from the
set of packets within a long-lasting TCP connection or from the set of UDP packets in an audio or video
session. By definition, flows last for a while, and so it is a useful optimization to pin resources, such as
cache entries, associated with the set of current flows. Therefore, it is useful to identify flows on-the-fly,
by noticing, for instance, that more than X packets with the same source and destination IP addresses
and TCP port numbers have been seen in the last Y seconds [LM 97]. Flows may also be associated with
real-time performance guarantees. We can identify these flows by matching incoming packet headers
with a set of pre-specified filters. Since classification needs to be done for each incoming packet, we need
fast classification algorithms. Unfortunately, while the algorithms described in Section 4.2 can look up
routes for 32-bit addresses at line speed, they cannot be easily modified for fast flow classification.
Moreover, we lack generic yet efficient flow descriptors. For instance, the most generic classifier is one
that masks the source and destination IP addresses and ports and the protocol number, thus requiring a
lookup on 104 bits of the packet. This sort of classifier seems difficult to implement at high speed. We
believe that coming up with a concise description of a classifier and a way to match the ‘best’ classifier
among the several thousand that may be present at a router, is an open problem.

5.2 Resource reservation
The Internet has poor support for resource reservations: Ethernet-based LANs, WAN access

links, and backbone routers are geared towards best-effort traffic, with no support even for the simplest
of priority schemes. As Ethernets become switched and the demand for some form of service quality
increases, we expect to see support for resource reservation in all three classes of routers. Resource
reservation goes hand-in-hand with flow classification, because resources are reserved on behalf of
prespecified flows. Unfortunately, this coupling makes resource reservation at least as hard to solve as
this open problem!

Even if we had efficient flow classifiers, resource reservation additionally requires either
policing, so that the demand of an individual flow is limited, or some form of segregation in packet
scheduling, so that over-limit flows are automatically discouraged. Given the complexity of
implementing Fair-Queueing type scheduling algorithms at high speed, there has been much recent
work in coming up with efficient policers. For example, in the RIO scheme, over-limit packets are
marked as low priority and preferentially discarded [CW 97]. The choice of good policing algorithms
and associated pricing schemes is an open problem.



5.3 Ease of configuration
Configuring routers is hard work. Misconfigured routers can be hard to detect and can cause

nearly untraceable performance problems. For example, bugs in the configuration of proxy ARP on
routers manifest themselves only as a mysterious increase in network delay [Ballew 97]. We believe that
simple and intuitive abstractions of the underlying network functionality would go a long way in
solving these problems. These abstractions remain elusive.

Configuration becomes harder if the functionality, such as limiting the amount of multicast
traffic in a network, requires the simultaneous configuration of more than one router in the network.
Interaction between inconsistent configurations can cause network-wide problems and failures. It is not
always possible to visually examine configuration files to discover mistakes and inconsistencies. We
believe that the next generation of configuration tools will need rule-based and simulation-based sub-
systems to test a configured router before installing it in the field. This is a hard and interesting open
problem.

5.4 Stability of large systems

Recall that router hardware can be made more reliable by adding hot spares, dual power
supplies, and duplicate data paths. In contrast to hardware reliability, which is a well understood and
solved problem, software reliability remains a challenging open problem. We believe that stability of
router software is a necessary prerequisite for the reliability of a large network.

Software stability is hard to achieve because software state is affected by interaction among
different features. For example, the addition of a BGP (exterior routing) attribute may affect the
calculation of routes exported to interior routing protocols. Further, interaction between bugs from
different vendors [LMJ 97] can lead to persistent instabilities in the network. Simulation may not be very
helpful as it is difficult to reproduce bugs in implementations, and thus the exact behavior of nodes in
the network.

We believe the one solution to software reliability may lie in adding features to protocol
implementations, similar to the support for multicast traceroute in mrouted, which allow us to detect
and isolate problems. This would at least allow us to track the cause for instability once problems occur.

5.5 Accountability
The introduction of differential service in the Internet, must necessarily be accompanied by

pricing. Pricing requires router support for accounting. The cost and feasibility of accounting support
depends on the granularity at which accounting is done. Similar to flow identification, where coming
up with a concise definition of a classifier and a way to match the best classifier is hard, a concise
definition of an account and a way to identify and bill an account is an open problem.

6. Conclusions
IP routers are in the midst of great change, due to both customer pull and technology push.

Customers are demanding higher bandwidth, greater reliability, lower cost, greater flexibility, and ease
of configuration. Simultaneously, technology, in the form of ATM switching cores and fast route-
lookup algorithms, has allowed router vendors to build the next generation of routers. We believe that
the advances described in this paper, such as the use of ATM cores, better output queueing, advanced
scheduling algorithms, avoiding route lookups, and centralized adminstration, will be the
distinguishing features of this generation. While these advances have solved some difficult problems,
important issues still remain unresolved. We believe that understanding the stablility of a network of



routers is a critical open issue. Trading off cost, speed, flexibility, and ease of configuration, as always,
will be a challenge for router designers in years to come.
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