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Abstract—In shared bike-and-ride transit systems, commuters
use shared bicycles for last-mile transport between transit sta-
tions and home, and between transit stations and work locations.
This requires pools of bicycles to be located near each transit
stop where commuters can drop off and pick up shared bikes.
We study the optimal sizing of such bicycle pools. While various
problems related to vehicle pool sizing have been studied before,
to the best of our knowledge this is the first work that considers
a multimodal transportation system with a regularly-scheduled
public transportation backbone and shared bicycles for the first
and last mile. We present two solutions that guarantee bicycle
availability with high probability, and we empirically verify their
effectiveness using Monte Carlo simulations. Compared to a
baseline solution, our techniques reduce the size of the bikeshare
pool at the public transit station by 39 to 75 percent in the tested
scenarios.

Index Terms—Bikeshare pool sizing; multimodal transit.

I. INTRODUCTION

Due to increasing traffic congestion [1] and motivated by
cost savings and environmental protection, many commuters
have come to rely on public transit. If transit stations are
outside the walkable range or have limited vehicle parking,
then cycling is a convenient option for the first and last
mile [2], [3], [4], [5]. We refer to this arrangement as bike-
and-ride multimodal transit.

One problem with bike-and-ride is that buses and trains have
limited on-board space for bicycles, preventing commuters
from taking their bicycles to the final destination [6]. Bicycle
sharing (bikeshare) programs, with bicycle stands located
near public transit stations, can provide a solution to this
problem [7], [8]. As of 2016, approximately 1000 cities around
the world have bikeshare programs [9], some of which also
include commuter-friendly electric bicycles [10].

A critical aspect of any successful bikeshare system, es-
pecially for commuters who cannot afford to be late for
work, is bicycle availability. However, over-provisioning is not
ideal at best and infeasible at worst, due to high cost and
limited bicycle docking space in dense neighbourhoods. This
motivates the need for bikeshare pool sizing techniques, which
we study in this work.
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Consider the following situation: a bikeshare customer
routinely travels from home to a destination such as their
workplace, and back home. That is, each customer cycles from
home to their origin station using a shared bicycle, returns
the bicycle to the pool located there, takes public transport
to their destination station, rents another bicycle from a pool
at this location, and cycles from the destination station to
their final destination, e.g., workplace. The customer keeps
ownership of the bicycle during the working day, then uses
the same bicycle to return to the destination station, drops
it off there, takes public transport to their home station, and
picks up a different bicycle there to travel home, retaining
ownership of the bike overnight. A naive solution is to allocate
two bicycles per customer: one at their origin station, which
will be taken home at the end of the workday (or returned to
a bikeshare stand at the customer’s home if one exists), and
one at their destination station, which will be parked at the
workplace throughout the workday (or returned to a bikeshare
stand at the customer’s workplace if one exists). While this
solution is easy to implement, it is expensive. We present
two probabilistic techniques that guarantee bicycle availability,
with high probability, but using a smaller bicycle pool: i)
a transient-state analysis based on the difference of random
variables and ii) a steady-state analysis based on the Engset
model.

There is prior work on optimal facility location and pool
sizing for bikeshare systems [11], [12], [13], [14]. However,
to the best of our knowledge, this paper is the first to study the
bikeshare pool sizing problem in the context of bike-and-ride
multimodal transit. What makes our problem challenging is
the coupling of the non-stationary process of bicycle rentals
and returns with the public transportation schedule. We focus
on bike-and-ride multimodal transit systems with a public
transportation backbone. The purpose of such systems is to
serve commuters who need bikes both from their homes to
local public stations and from remote public stations to their
work places, and thus help them solve the so-called “first-mile”
and “last-mile” problems. Our contributions are as follows:

• We formally define the bikeshare pool sizing problem for
bike-and-ride multimodal transit systems with a public
transportation backbone and shared bicycle stands located
at public transit stations.

• We propose two bikeshare pool sizing techniques which
guarantee bicycle availability with high probability. Given
a user-supplied threshold ε, our techniques guarantee a
request blocking probability of at most ε.
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• We validate our methods using Monte Carlo simulations
under various realistic scenarios. Compared to the afore-
mentioned baseline solution which requires two bicycles
per customer, our solutions require 1.25 ∼ 1.62 bicycles
per customer in the tested scenarios. The reduction of
bicycles per customer results in 39% ∼ 75% smaller
bicycle pools at public transit stations.

The remainder of this paper is organized as follows. We
discuss related work in Section II, and formally state our
problem and the assumptions in Section III. We model our
customer arrival process in Section III, followed by our two
bikeshare pool sizing techniques in Section V. We discuss
simulation results in Section VI and conclude the paper in
Section VIII.

II. RELATED WORK

Bike-and-ride multimodal transit has been studied in several
works. Rietveld [5] reported that in the Netherlands, 23% of
train passengers arrived to and from train stations on bicycle.
Krizek & Stonebraker [6] pointed out the limited space for
bicycles aboard transit vehicles, and explored alternative so-
lutions for integrating cycling and transit such as bikeshares
and bicycle parking at transit stops. Similarly, Pucher and
Buehler [4] argued for more bicycle-carrying capacity on trains
and more secure and sheltered bicycle parking at railway
stations.

Bikeshare pool sizing has been studied but usually not in
the context of multimodal transit [11], [12], [13], [14]. One
exception is the work by Chen et al. [15], which considered
bicycle docking stations in residential neighbourhoods, near
workplaces, and at a single metro station which can move
public bicycles parked there to other docking stations. Given
a set of origins and destinations, they focused on bikeshare
pool sizing at residential docking stations and bicycle parking
sizing at other stations, without taking the metro schedule into
account. In contrast, we focus on bikeshare pool sizing at
public transport stations.

From a technical standpoint, our work is closest to that of
Carpenter et al. [16], who focused on sizing vehicle rental
fleets with a finite population of subscribers. Two main differ-
ences are: 1) Carpenter et al. allowed only one pool whereas
we consider multiple pools, one at each public transit stop,
and 2) Carpenter et al. did not consider multimodal transit,
whereas we incorporate public transit schedules into our pool
sizing solutions.

Finally, we mention recent work on predicting the number
of available bicycles in a bikeshare based on the time of day
and day of the week [17]. Again, multimodal transit was not
considered.

III. PROBLEM STATEMENT AND ASSUMPTIONS

In this section, we define our problem and explain our as-
sumptions. Table I explains the symbols used in the remainder
of this paper. To simplify the presentation, we refer to the
public transport line as train line or railway, but our solution
also applies to other regularly-scheduled modes such as buses
or subways.

TABLE I
SUMMARY OF SYMBOLS

Symbol Meaning
N Number of bikeshare stations
ε Desired blocking probability threshold

Bn(t) Number of available bikes at station n at time t
t0/te Start/end time of a daily cycle
tr Arrival time of train r
Xr Inter-arrival time between train r − 1 and r
∆i,j Travel time by train from station i to j
S Population vector
H Population partition matrix
V/Θ Customer departure/return (time) matrix
µn(t) Bike return rate at station n at time t
λn(t) Bike demand rate at station n at time t
Ŝn(t) Max. #bikes returned to station n after time t
Šn(t) Max. #bikes demanded at station n after time t

Cn(t)
Cumulative difference between bike returns and
demands at station n at time t

Un Number of bike returns at station n
Dn Number of bikes rented at station n
fn Difference between Un and Dn at station n
Yn(t) Number of bikes rented at station n at time t
ζn(t) Satisfaction degree at station n at time t
bpc Performance metric of bikes per customer
bsr Performance metric of bike saving ratio
aba Performance metric of actual bike availability
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Fig. 1. Illustration of bikeshare stations located at three train stations.

A. Overview

Figure 1 illustrates a bike-and-ride transport system with
N = 3 train stations, providing bike-to-train and train-to-
bike service to a finite set of customers. We assume that each
customer follows a daily routine: at some point, the customer
cycles from home to their local station, returns a bike there,
takes the train to a remote station, and borrows a bike from the
remote station to cycle to their final destination. Later in the
day, we assume that each customer returns home by following
these steps in reverse. The bikeshare thus provides a feeder
system to public transport within the cycling reachable region
of each station (see, e.g., [5] for estimating cycling reachable
regions).

As shown in Figure 1, we assume that there is a bikeshare
pool at every train station, and there may be local bikeshare
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t0 t1 t2
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End time

te
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Fig. 2. Example of a train schedule at one station.

pools near customers’ homes and workplaces (or customers
may park bikes at home or at work). Previous work on
bikeshare pool sizing has focused on pools near homes or
workplaces [11], [13], [14], [15]. In contrast, we focus on the
new problem of bike pool sizing at railway stations, which is
a harder problem because train schedules must be taken into
account. From now on, unless otherwise specified, we use the
terms bike pool and bike station to refer to those at railway
stations.

Let Bn(t) be the number of available bikes at station n
at time t. This number may fluctuate throughout the day as
customers borrow and return bikes. Our goal is to ensure that
there are always enough bikes for customers getting off the
train. To do so, for each station n, we will calculate a minimum
value for Bn(0), the number of available bikes at the beginning
of a day (before the arrival of the first train), that guarantees
bike availability to customers throughout the day with a small
blocking probability.

After calculating the initial Bn(0) values, we need to make
sure that this number of bikes is available at each station at the
beginning of each day. A simple solution, static dispatching,
is to move bikes among stations at the beginning or end of
each day [18], [19]. With this solution, to make sure there are
enough parking spaces for all returned bikes at all stations at
any time, we set the number of bike parking spaces (or bike
docks) at station n to maxtBn(t). Dynamic dispatching can
reduce the required number of docks by repositioning bikes
throughout the day [20], [21]. In this paper, we focus on bike
pool sizing rather than dispatching, but we will revisit the issue
of dynamic dispatching in Section V-D.

B. Train Schedules

For any train station, the daily train schedule is a determinis-
tic arrival (and departure) process ψ = {tr : r = 1, 2, · · · , R},
in which tr represents the arrival time of train r and R
is the total number of trains. We denote the inter-arrival
times of adjacent trains as {Xr : r = 1, 2, · · · , R}, where
Xr = tr−tr−1. Figure 2 gives an example of a train schedule,
with t0 and te being the start and end times of a daily cycle,
respectively.

We make two simplifying assumptions about train arrivals
and departures. First, we ignore the relatively short train
stopping times to load and unload passengers. Second, we
assume that the train schedule is “symmetric”. This means
that whenever a train from station i − 1 arrives at station
i, another train from station i + 1 arrives at the same time
from the opposite direction. In practice, such arrivals may
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Fig. 3. An example of the distributions of the random variables corresponding
to departure and return times at a particular station. This illustrates our
approach to obtaining the departure and return time distributions from the
collected data.

be several minutes apart, but, again, this time difference is
relatively small.

Finally, let ∆ be a travel time matrix, where ∆i,j =
∆j,i, 1 ≤ i, j ≤ N , is the travel time of a train between
stations i and j.

C. Customer Traffic Matrices
Let S be a population vector whose nth coordinate, Sn,

denotes the number of customers whose local station is n.

S := [S1, S2, · · · , SN ]ᵀ. (1)

The population vector can be determined, e.g., by examining
customer addresses. For customers with multiple nearby sta-
tions, we choose the closest one.

Next, we define a population partition matrix H

H :=


H1,1 H1,2 · · · H1,N

H2,1 H2,2 · · · H2,N

...
...

. . .
...

HN,1 HN,2 · · · HN,N

 (2)

in which Hi,j is the fraction of population travelling from
local station i to remote station j, where 0 ≤ Hi,j ≤ 1

and
∑N
j=1Hi,j = 1. This information can be estimated from

customer surveys or train station data (such as the number of
passengers entering and exiting a station)1.

Using S and H , we can compute customer traffic flows: the
number of customers with local station i and remote station j
is SiHi,j .

In addition to knowing how many customers use different
stations, we need to know approximately when they travel.
Although most studies of transit behaviour are based on
trip-level information, this data is unavailable for bikeshare
commuters. Hence, we are forced to make an approximation,
based on expected arrival and departure times, rather than trip
statistics. Accordingly, let V be a departure distribution matrix

V :=


v1,1(t) v1,2(t) · · · v1,N (t)
v2,1(t) v2,2(t) · · · v2,N (t)

...
...

. . .
...

vN,1(t) vN,2(t) · · · vN,N (t)

 (3)

1Note that this modeling approach allows us to easily account for more
complex commute patterns, since their only impact is to modify the values
in this matrix. For simplicity, we work with a simple home/work commute
model in this paper.
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where vi,j(t), t0 ≤ t ≤ te, represents the probability density
function (PDF) of the departure time distribution at local
station i for customers traveling to remote station j. Similarly,
let Θ be a return distribution matrix

Θ :=


θ1,1(t) θ1,2(t) · · · θ1,N (t)
θ2,1(t) θ2,2(t) · · · θ2,N (t)

...
...

. . .
...

θN,1(t) θN,2(t) · · · θN,N (t)

 (4)

where θi,j(t), t0 ≤ t ≤ te, denotes the PDF of the return time
distribution at remote station i for customers returning to their
local station j. Again, these matrices can be estimated from
customer surveys or train station data.

Example 1: Figure 3 shows an example of a departure and
return distribution between two stations, where most customers
depart the local station in the morning (and take the train to
work) and return to the remote station in the afternoon (and
take the train home). Note that the distributions we can learn
from surveys or historical data are discrete, and need to be
converted to continuous PDFs for our analysis, as shown in
the figure.

The matrices defined in this section allow us to compute
two important pieces of information. Consider the time period
between the departure of train r−1 at time tr−1 and the arrival
of train r at time tr. For any train station n:

• The expected number of customers arriving by bike and
dropping it off (i.e., whose local station is n) is

N∑
k=1

SnHn,k

∫ tr

tr−1

vn,k(t)dt = Sn

N∑
k=1

∫ tr

tr−1

vn,k(t)dt.

(5)
• The expected number of customers arriving by train who

will need a bike (i.e., whose remote station is n) is

N∑
k=1

SkHk,n

∫ tr

tr−1

θn,k(t)dt. (6)

D. Problem Statement

The number of available bikes at each station changes
throughout the day as customers arrive and depart by train. A
customer is said to be blocked if he or she finds the bike pool
empty upon arrival; if so, we assume that the customer will
leave without waiting. Given a train schedule and the traffic
matrices defined earlier in this section, we want to minimize
the initial bike pool size at each station, Bn(0), 1 ≤ n ≤ N ,
such that the blocking probability at each station is less than
a user-specified threshold ε.

Remark 1: Equations (5) and (6) cannot be used directly
to size the bike pool at the given station. These are expected
values which may be different from actual values. For exam-
ple, given that the expected number of arrivals during some
short period of time is 9.5, it is not correct to conclude that
a pool of ten bikes at this time is sufficient. Instead, we will
apply probabilistic analysis to calculate blocking probabilities.

n

f-1

f-2

Returning customers 

with local station n

Departing customers 

with local station n

Returning customers 

from other stations

Departing customers 

from other stations

f-3

Arrivals by Bike

Return bikes and wait 

for the train

Arrivals by Train

Get off the train and 

borrow bikes

f-4

Fig. 4. Customer arrival flows at an arbitrary station.

IV. ARRIVAL ANALYSIS

To analyze how bikes are borrowed and returned at a partic-
ular station n, we consider four customer flows, as illustrated
in Figure 4. Flows f-1 and f-2 correspond to customers arriving
at station n by bike and returning their bikes, while flows f-3
and f-4 correspond to customers arriving at station n by train
and borrowing bikes. More precisely:
• f-1: customers arriving at station n from home (i.e., n is

their local station) and taking a train to their final destina-
tion, with departure time distributions vn,j , 1 ≤ j ≤ N ,
given by equation (3).

• f-2: customers arriving at station n from their final
destination (i.e, n is their remote station) and taking
a train to return home, with return time distributions
θn,i, 1 ≤ i ≤ N , given by equation (4).

• f-3: customers arriving at station n from another station
and borrowing a bike to get to their final destination
(i.e., n is their remote station), with departing time
distributions vi,n, 1 ≤ i ≤ N , given by equation (3),

• f-4: customers arriving at station n from another station
and borrowing a bike to get home (i.e., n is their local
station), with returning time distributions θj,n, 1 ≤ j ≤
N , given by equation (4).

A. Expected Short-Term Bike Rentals and Returns

To capture the number of bikes returned at station n during
any short time interval [t−δ, t], we model the flows f-1 and f-2
as Poisson point processes, which are widely used in customer-
server queue systems. In our context, the processes may not be
stationary as the arrival rate changes over time (recall Figure 3
with morning/evening arrival peaks). Nevertheless, for a short
time period, the arrival rate can be regarded as constant and
thus a Poisson process is applicable [16].

Let µ(f-1)
n (t) and µ

(f-2)
n (t) be the rates of the arrival flows

f-1 and f-2, respectively:

µ(f-1)
n (t) = Sn

N∑
k=1

∫ t

t−δ
vn,k(t)dt, (7)

µ(f-2)
n (t) =

N∑
k=1

SkHk,n

∫ t

t−δ
θn,k(t)dt. (8)
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Corollary 1: Given Equations (7) and (8), the aggregated
arrivals by bike (i.e., bike returns) during time interval [t−δ, t]
at station n can be modelled by another Poisson process (as
the sum of independent Poisson processes is Poisson as well)
with the following rate:

µn(t) = µ(f-1)
n (t) + µ(f-2)

n (t).

To capture the demand for bikes at station n during [t −
δ, t], we model the flows f-3 and f-4 as aggregated results of
independent Poisson processes originating at other stations.
Moreover, the processes are delayed by the time it takes the
train to travel to station n, defined in the travel time matrix
∆ (recall Section III-B).

Let µ(f-3)
n (t) and µ

(f-4)
n (t) be the rates of the arrival flows

f-3 and f-4, respectively:

λ(f-3)
n (t) =

N∑
k=1

SkHk,n

∫ t−∆k,n

t−δ−∆k,n

vk,n(t)dt, (9)

λ(f-4)
n (t) = Sn

N∑
k=1

∫ t−∆k,n

t−δ−∆k,n

θk,n(t)dt. (10)

Corollary 2: Given Equations (9) and (10), the aggregated
arrivals by train (or demand for bikes) during time interval
[t − δ, t] at station n can be modelled by a Poisson process
with the following rate:

λn(t) = λ(f-3)
n (t) + λ(f-4)

n (t).

B. Expected Bike Rentals and Returns in the Future

Next, at any station n, we compute the expected number of
bikes returned between some time tx and the end of the daily
cycle (te). For flows f-1 and f-2, respectively, we get:

Ŝ(f-1)
n (tx) = Sn

N∑
k=1

∫ te

tx

vn,k(t)dt, (11)

Ŝ(f-2)
n (tx) =

N∑
k=1

SkHk,n

∫ te

tx

θn,k(t)dt. (12)

Corollary 3: Given Equations (11) and (12), during the
time interval [tx, te], the expected maximum number of bikes
returned to station n is:

Ŝn(tx) = Ŝ(f-1)
n (tx) + Ŝ(f-2)

n (tx).

Similarly, for the expected number of bikes borrowed from
station n during the time interval [tx, te], we get the following
sums, corresponding to flows f-3 and f-4, respectively:

Ŝ(f-3)
n (tx) =

N∑
k=1

SkHk,n

∫ te

tx

vk,n(t)dt, (13)

Ŝ(f-4)
n (tx) = Sn

N∑
k=1

∫ te

tx

θn,k(t)dt. (14)

Corollary 4: Given Equations (13) and (14), during the
time interval [tx, te], the expected maximum number of bikes
borrowed at station n is:

Šn(tx) = Ŝ(f-3)
n (tx) + Ŝ(f-4)

n (tx).

C. Expected Bike Rentals and Returns in the Past

Finally, for any time tx, we compute the expected number of
bikes remaining at any station n. To do this, we need to know
how many local customers have departed their home station
n and not yet returned, and how many remote customers have
arrived at station n but not yet returned home.

First, the expected number of local customers who have not
returned to station n by time tx is:

C(out)
n = Sn

N∑
k=1

∫ tx

t0

(vn,k(t)− θk,n(t)) dt (15)

Then, the expected number of remote customers who have
not yet arrived at station n to return home by time tx is:

C(in)
n =

N∑
k=1

SkHk,n

∫ tx

t0

(vk,n(t)− θn,k(t)) dt. (16)

Corollary 5: At any time tx, given Equations (15) and (16),
the (expected) cumulative difference between bikes returned
and borrowed at station n is:

Cn(tx) = C(out)
n − C(in)

n (1− ε̄(tx))

where ε̄(tx) is the expected blocking probability of bike
requests till time tx. The value of Cn(tx) is negative when
there is a shortage of available bikes (more bikes expected to
be borrowed than returned, cumulatively, by time tx).

V. BIKE POOL SIZING

In this section, we develop two methods for bike pool sizing
at individual stations: i) a transient-state approach of analyzing
differences of random variables (RVs) in Section V-A, and
ii) a steady-state approach based on the Engset model in
Section V-B. We then discuss how to implement these methods
efficiently (Section V-C) and provide a brief comparison
(Section V-D).

A. Transient-State Analysis with Difference of RVs

In the transient-state approach, we divide the daily cycle
(e.g., 6:00am - 12:00am) into short epochs according to the
train schedule {tr : i = 1, 2, · · · , R}, as illustrated in Figure 2.

1) RVs for Bike Return/Demand: Consider the time interval
(tr−1, tr] between the arrivals of two consecutive trains, r−1
and r, for 1 ≤ r ≤ R. For any station n, we define the
following random variable (RV):

Un(tr) = number of bikes returned to station n during (tr−1, tr].

According to Corollary 1, Un(tr) is a Poisson process with
rate µn(tr). Therefore, its PDF is:

PUn(tr)(x) =
(µn(tr))

xe−µn(tr)

x!
, (17)

where 0 ≤ x ≤ Ŝn(tr) with Ŝn(tr) computed according
to Corollary 3. Thus, Ŝn(tr) gives the (expected) maximum
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number of customers who may return bikes to station n during
the time interval (tr−1, tr].

Similarly, for customers arriving by train and renting bikes
at station n, we define another RV:

Dn(tr) = number of bikes demanded at station n at time tr.

According to Corollary 2, Dn(tr) is a delayed Poisson process
with rate λn(tr). Thus, its PDF is:

PDn(tr)(x) =
(λn(tr))

xe−λn(tr)

x!
, (18)

where 0 ≤ x ≤ Šn(tr) with Šn(tr) computed according
to Corollary 4. Thus, Šn(tr) gives the (expected) maximum
number of customers that may borrow bikes from station n
upon arrival of train r. We assume that Un(tr) and Dn(tr)
are independent.

2) Transient-State Blocking Probability: We define the dif-
ference between Un(tr) and Dn(tr) as:

fn(tr) = Un(tr)−Dn(tr).

Consider the situation where fn(tr) ≤ 0. Then, according to
the difference distribution of two discrete RVs, its PDF is:

Pfn(tr)(x) =

Ŝn(tr)∑
k=0

PUn(tr)Dn(tr)(k, k − x) (19a)

=

Ŝn(tr)∑
k=0

PUn(tr)(k)PDn(tr)(k − x), (19b)

where PUn(tr)Dn(tr)(k, k−x) is the joint probability of Un(tr)
and Dn(tr), and −Šn(tr) ≤ x ≤ 0. Recall that x denotes the
value of random variable fn(tr) and thus it is negative when
there is a greater demand for bikes than those returned.

Hence, upon the arrival of train r at station n, given that
Bn(tr−1) bikes were available at the station beforehand, the
probability that a random customer from other stations finds
an empty bike pool (defined as event ∅) is given by:

P (∅|Bn(tr−1)) =

{
0, if Bn(tr−1) ≥ Šn(tr),∑−Bn(tr−1)

x=−Šn(tr)
Pfn(tr)(x), otherwise.

(20)
3) Pool Size Minimization: The relationship between

Bn(tr−1) and Bn(0) can be expressed as:

Bn(tr−1) =

{
0, if Bn(0) + Cn(tr−1) ≤ 0,

Bn(0) + Cn(tr−1), otherwise,
(21)

where Cn(tr−1) is the expected difference between bike
returns and demands at station n at time tr−1 and computed
according to Corollary 5.

Thus, Bn(tr−1) in Equation (20) can be replaced with the
above expression, and our target is to find the minimum initial
bike pool size such that:

P (∅|Bn(tr−1)) ≤ ε, (22)

where ε is the desired blocking probability. Hence, our op-
timization problem, for any station n, can be formalized as:

minimize Bn(0) (23a)

given (17) ∼ (22) : ∀r ∈ {1, 2, · · · , R}. (23b)

In the above optimization problem, the decision variable is
Bn(0), i.e., the initial bike pool size at station n, 1 ≤ n ≤ N .
By solving this problem, we find the minimum number of
bikes at any station that can satisfy the constraints given by
equations (17) ∼ (22).

B. Steady-State Analysis with the Engset Model

Our second approach is based on a steady-state analysis of
the busiest period (with the largest bike demand). This gives
an upper bound for the required number of bikes.

1) Busiest Period: To find the busiest period at any station
n, 1 ≤ n ≤ N , we also divide the timeline into short epochs
according to the train schedule {tr : i = 1, 2, · · · , R}. For
each time epoch (tr−1, tr], 1 ≤ r ≤ R, the bike returns and
demands at station n are given by Un(tr) in Equation (17) and
Dn(tr) in Equation (18), respectively, which have expected
values of µn(tr) and λn(tr) defined in Corollary 1 and 2,
respectively.

We define the expected satisfaction degree at station n at
time tr (denoted by ζn(tr)) as the difference between µn(tr)
and λn(tr):

ζn(tr) = µn(tr)− λn(tr).

The expected busiest period at station n is the one with the
smallest satisfaction degree:

Qm = {(tm−1, tm] : ζn(tm) = min{ζn(tr) : r = 1, 2, · · · , R}} .

Note that due to different arrival and return time distribu-
tions (recall the example in Figure 3), the busiest periods at
different stations might be different.

2) Steady-State Blocking Probability: To perform steady-
state analysis during the busiest period, similar to that in [16],
we apply the Engset model to estimate the blocking probabil-
ity. The Engset model is a variant of the Erlang (loss) model
which assumes a finite population of potential customers in a
customer-server queue system.

For any station n, we set up the Engset model as follows.
• There are c servers (i.e., bikes) and M potential cus-

tomers:

c = Bn(0) + Sn and M = Sn +
∑

1≤k≤N,k 6=n

SkHk,n.

(24)
• The mean arrival rate of service requests is α, and the

mean service rate of the servers is β, where according to
our estimations in Equation (1) and Equation (2):

α = λn(tm) and β = µn(tm), (25)

where m is the busiest period index defined in Sec-
tion V-B1.

• The service requests among the customers are indepen-
dent, and the service time is independent of the thinking
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time (the time between the end of service and next service
request of the customer).

For steady-state analysis, we define the following RV:

Yn(t) = number of bikes rented from station n side at time t.

The stochastic process {Yn(t), t ≥ 0} is a continuous-time
Markov chain with finite state space E = {0, 1, · · · , c}.
According to the equilibrium distribution of the Engset loss
model [22], the long-term fraction of lost service requests, i.e.,
the blocking probability in our context, is:

P (c) =

(
M−1
c

)
ρc(1− ρ)M−1−c∑c

i=0

(
M−1
i

)
ρi(1− ρ)M−1−i

, (26)

where
ρ =

1/β

1/α+ 1/β
.

3) Pool Size Minimization: Our target is to find the min-
imum Bn(0) for each station n such that the following
condition can be satisfied:

P (c) ≤ ε. (27)

Thus, the optimization problem can be formalized as:

minimize Bn(0) (28a)

given (24) ∼ (27). (28b)

The decision variable in the above optimization problem is
Bn(0), i.e., the initial bike pool size at station n, 1 ≤ n ≤ N .
By solving this problem, we find the minimum number of
bikes at any station that can satisfy the constraints given by
equations (24) ∼ (27).

C. Solution Methodology, Complexity and Implementation

To solve the optimization problems formulated in Equa-
tions (23) and (28), and find an optimal pool size Bn(0) at each
station, we use the following two-phase algorithm, inspired by
that used by Carpenter et al. [16].
• Bracketing: Given an initial small value of Bn(0),

compute the corresponding blocking probability (Equa-
tions (22) or (27)); if the desired threshold is not satisfied,
then double the value of Bn(0). Repeat this process until
the desired blocking probability is reached, which results
in a pool size range of [BL, BH ] where BL = BH/2.

• Binary Searching: Use binary search within the range of
[BL, BH ] to find out the smallest value BM that can
satisfy the desired blocking probability threshold.

Equations (17) and (18) have factorial terms and therefore
can be expensive to compute, especially with a large number
of arrivals. Note that the Poisson probability decreases dra-
matically as the values of two RVs, Un and Dn, increase.
For example, for a Poisson process with mean value λ = 15,
the probability of exceeding 32 is extremely small, i.e.,
P (x > 32) ≈ 0. Thus, for efficiency, we can ignore values
larger than a pre-defined threshold. In addition, computing the
blocking probability in Equation (26) also becomes intractable
when

(
M−1
c

)
is large. Nevertheless, approximations can be

applied, such as the numerically stable approximation given
by Reference [23].

For bike pool sizing at station n, the problem defined in
Equation (23) has a complexity of O(RT1T2 logm∗0), where:
• R is the number of trains stopping at the station, which

is usually less than 100 in practice;
• T1 is the time it takes to compute i) the mean values of the

bike return/demand processes µn/λn in Equations (1)/(2)
and ii) the maximum bike return/demand counts Ŝn/Šn
in Equations (3)/(4) in each train’s interarrival time,
which amounts to simple summation operations in short
time intervals;

• T2 is the time it takes to compute the probability P (∅|m)
in Equation (20), which can be done efficiently by
exploiting the aforementioned optimizations;

• logm∗0 reflects the complexity of bracketing and binary
searching described above, where m∗0 is the obtained
optimal value, which depends on the number of customers
travelling to station n.

For bike pool sizing based on steady-state analysis, the prob-
lem defined in Equation (28) can be solved in O(T

′

1T
′

2 logm∗0)
time, where:
• T

′

1 is the time to find the busiest period Qm, which
requires computing µn and λn, 1 ≤ n ≤ N ;

• T
′

2 is the time to compute the probability P (c) in
Equation (26), which again can be done efficiently by
exploiting the aforementioned approximation.

After solving the bike pool sizing problem, we obtain initial
sizes for each bike station, i.e., the values of Bn(0), n =
1, 2, · · · , N . These values indicate the number of bikes that
should be deployed at each station at the beginning of a day.

D. Model Comparison and Discussion

The advantage of the steady state method is that it is
faster to compute and requires less information—only the bike
return and demand rates. Thus, the steady state method can
be directly used by current bikeshare systems with historical
bike return/demand data. On the other hand, as we will show
in Section VI, the steady state method, which is based on the
busiest period, is prone to over-provisioning compared to the
transient state method.

While the transient state method outputs smaller pool
sizes, it requires more information: train schedules and travel
times, separated customer departure/return distributions, etc.
However, another benefit of the transient state method is
that it computes multiple pool sizes, one for each arrival of
a train, and therefore can be used to guide dynamic bike
dispatching [20]. Thus, instead of ensuring that there are
Bn(0) bikes at station n at the beginning of the day, we can
examine the expected number of bikes required throughout the
day and reposition bikes as needed.

So far, we have only considered one railway line. Never-
theless, our solutions can be easily adapted to multiple lines.
The main complication is that some customers may transfer
from one train line to another enroute to their final destination.
Fortunately, these transfers do not require the use of bikes and
therefore the structure of our model is not affected. Only the
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travel time matrix ∆ may change due to the additional transfer
times.

Also, we assumed a linear bi-directional railway (with trains
from opposite directions assumed to arrive at the same time,
as per Section III-B). However, our techniques also apply to
circular railways. We can still assume that customers arrive
on trains from two directions, as long as we do not “double-
count” the arrivals (we assume that all customers travelling
from station i+ 1 to station i do so directly rather than going
all the way round through station i− 1).

VI. EVALUATION

In this section, we use Monte Carlo simulations to test our
bike pool sizing methods.

A. Experimental Setup

We use the following simulation parameters based on real-
world data (Montreal Metro train schedules [24] and customer
departure/return distributions from the Montreal BIXI open
dataset [25]):
• Number of stations (N ): Based on the average number of

stations per railway line in the Montreal Metro system,
we set N = 18 with station IDs 1 ∼ 18.

• Central stations: To examine the impact of customer traf-
fic among stations, we test two scenarios: 1) a symmetric
scenario in which all 18 stations can be home or remote
stations for any customer, and 2) an asymmetric scenario
in which stations with IDs 6 ∼ 11 are central stations
and only these can serve as remote stations (details in
Section VI-B).

• Number of customers at each station (Sn, 1 ≤ n ≤ N ):
We randomly generate a number between 100 and 200.

• Population partition matrix (H): We randomly partition
the customer population between each station and the
central stations using a uniform distribution.

• Daily cycle ([t0, te]): By referring to the opening/closing
times of the Montreal Metro system, we define the daily
cycle as [6:00am, 12:00am].

• Time resolution: We set the time resolution as one minute,
so that 18×60 samples are generated in total during one
simulation.

• Number of trains (R): For each direction, we set the
number of trains passing through each station to 90.

• Train inter-arrival time (Xr, 1 ≤ r ≤ R): Based on the
train inter-arrival time of the Montreal Metro system, we
randomly choose a number between 3 and 11 minutes.

• Train travel time matrix (∆): We randomly choose a
number between 5 and 10 minutes as the travel time
between two adjacent stations.

• Customer departure/return distributions (V/Θ): We first
extract a number of empirical departure/return distri-
butions from the Montreal BIXI open data, and then
randomly choose one of them for the population at each
station.

• Blocking probability threshold (ε): We set the threshold
to 5%, and thus the expected bike availability is 95%.

Here, we name the expected bike availability “Quality of
Service (QoS)”.

Our evaluation methodology is as follows. First, we generate
random parameter values, as described above, and use them
to build the traffic (S,H,X and ∆) and customer (V and
Θ) matrices. Next, we compute pool sizes for each station
using each of our two techniques. Finally, using these pool
sizes, we simulate customer and train arrivals and compute the
actual blocking probability ε′. Based on the actual blocking
probability, we define aba := 1 − ε′ as the actual bike
availability.

Additionally, we compare our techniques to a simple base-
line referred to as naı̈ve provisioning: we allocate two bikes for
each customer, one at the home side and one at the remote side.
This gives a blocking probability of zero given our assumption
about daily routines and local/remote stations. We report the
values of the following two metrics:
• Bikes per customer (abbreviated bpc) of the system:

bpc := 1 +

∑N
n=1Bn(0)∑N
n=1 Sn

, (29)

where Bn(0) is the minimized pool size with our method
at station n and Sn is the number of customers with local
station n. Note that the “1” in the equation represents that
each customer has at least one bike at the home side.

• Bike saving ratio (abbreviated bsr) at the remote side:

bsr := 1−
∑N
n=1Bn(0)∑N
n=1 Sn

, (30)

and the “1” in this equation represents that each customer
has one bike at the remote side (in naı̈ve provisioning).

Note that the bike saving ratio defined in Equation (30)
is a relative reduction in the number of bikes, with a value
region of [0, 1]. The absolute reduction of bikes of the system,
however, is computed by 1− bpc

2 with a value region of [0, 0.5],
as each customer at least has one bike (i.e., bpcmin = 1).

B. Performance Analysis

To numerically evaluate the performance of our pool-sizing
algorithms, we study two types of scenarios. We believe these
scenarios to represent extreme cases, and therefore our results
can be interpreted as lower and upper bounds on bike pool
sizes in real cities. We note that it is certainly possible to
study our algorithm in a variety of other scenarios. Our focus
here is to demonstrate the approach taken in our work, rather
than the specific numerical values so obtained. The two types
of scenarios are:
• Symmetric scenarios: Here, customers from any local

station randomly choose a remote station, resulting in
nearly symmetric customer traffic at each station; i.e., the
number of local customers at any one station is similar to
the number of incoming customers from other (remote)
stations.

• Asymmetric scenarios: customers from any local station
randomly choose one of a small number of central sta-
tions (stations with ID 6 ∼ 11 in our simulations) as their
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destinations, which results in asymmetric customer traffic
at each central station. At central stations, the number
of incoming customers is about 3 times higher than the
number of local customers.

1) Overall & Detailed Results: We generated 100 sym-
metric and asymmetric scenarios, respectively, using the pa-
rameters in Section VI-A. Table II shows the average val-
ues of aba, bpc and bsr for naive provisioning and our
techniques under symmetric and asymmetric scenarios. Our
Method 1 corresponds to transient-state analysis and Method
2 corresponds to steady-state analysis. We conclude that our
methods reduce the required number of bikes per customer,
and therefore improve bike utilization and reduce costs. In
particular, Method 1 reduces the number of bikes per customer
from 2 to 1.25 ∼ 1.62, for a savings of 39 to 75 percent at
the transit station. Method 2 requires slightly more bikes per
customer but still outperforms naive provisioning.

Symmetric Scenarios: Next, we show all the 100 symmet-
ric scenarios and examined the bpc, bsr and aba of each one.
Results are shown in Figure 5 (a), (b) and (c), respectively.
We conclude that our techniques consistently outperform the
baseline (naive provisioning) in all tested metrics and provide
a blocking probability near zero percent (recall that ε = 0.05).

Asymmetric Scenarios: Similarly, Figure 6 shows the bpc,
bsr and aba for the 100 asymmetric scenarios. Compared to
symmetric scenarios, the improvement in bpc and bsr with our
techniques is lower. This is because in asymmetric scenarios,
the number of incoming customers is much higher than that
of local customers at some stations, leading to a much higher
bike demand (as well as return) during peak hours. Thus,
some stations must have very large bike pools to meet the
specified blocking probability threshold. Note that for Method
1, although the aba values from some scenarios are below
the QoS requirement line (0.95), most of them can meet the
requirement and the overall average value of the actual bike
availability is 0.971.

2) Robustness Testing: Since the estimated customer de-
parture/return distributions (i.e., V/Θ) in our models might
not precisely match the true bike rentals and returns, we now
study how our methods are affected by changes in V and
Θ. To do this, we modify our simulations as follows. If the
number of arrivals during some time interval is calculated
to be n, we instead set it to a random value in the interval
[n(1−σ), n(1+σ)], where σ is a deviation index randomly set
to a number between zero and one. Figure 7 plots the actual
blocking probability ε′ as a function of the deviation index σ
for both our methods and for both symmetric and asymmetric
scenarios. Each datapoint corresponds to the average value
of ε′ over 100 simulation runs. The horizontal dotted line
corresponds to the blocking probability threshold, ε = 0.05.
We conclude that:
• Method 2 is robust to perturbations in V and Θ and

maintained the blocking probability below 0.05 even
when σ was as high as 0.4. This is because Method 2
naturally calculates large pool sizes based on the busiest
period.

• Method 1 is robust for symmetric scenarios (nearly as
robust as Method 2), but less so for asymmetric scenarios,

where σ > 0.1 caused it to exceed the desired block-
ing probability. Intuitively, Method 1 naturally produces
tighter pool sizes and therefore is more sensitive to
deviations in arrival distributions.

VII. DISCUSSION

A. Why Commuters?

We now justify our choice to study commuters as the users
of the bikeshare system. Although it is true that many people
use a bikeshare system for irregular travel, its use for daily
commuting has become more frequent. For example, in New
York, “biking has become part of New York’s commuting
infrastructure...” and “about one in five bike trips is by a
commuter” [26]. Similarly, according to bicycle commuting
data for the US, “the number of bike commuters is on the rise”
and “from 2000 to 2013, bicycle commuting rates in large
BFCs2 increased 105%” [27]. Thus, with the population of
bicycle commuters getting larger, it is interesting to investigate
their bicycle usage patterns and build a better bike sharing
system for them. Moreover, a bike sharing system helping
commuters with their first/last mile travel would stimulate
more people to use public transportation, which aligns well
with the environmental goals of most governments.

A second reason to study commuters is because their be-
haviour (e.g., their departure/arrival distributions with respect
to the public transportation system) are more predictable and
amenable to mathematical modeling, making it possible to
provide a mathematically well-grounded sizing solution. In
contrast, it is challenging, if not impossible, to model the
transit behaviour of irregular users of a bikeshare system.

B. Why Static Dispatching Every Night?

In the paper, we assume that bikes are repositioned once
every 24 hours at night or early morning. Although reposi-
tioning bikes throughout the day is certainly feasible, given
that bikeshares operate in dense city centers, many cities
chose to reduce the time taken to reposition bikes, as well
as avoid adding to traffic congestion, by repositioning bikes
only late at night. For example, as reported by the Institute for
Transportation and Development Policy (ITDP) [28], “Many
systems, however, try to do most of the redistribution at
night, when there is less traffic and it is more efficient”.
Similarly, recent work assumes that “the number of bikes at
each station is known in advance and will not be changed
during the rebalancing operation (when system is closed or
during midnight)” [29].

Nevertheless, note that our first method (i.e., the transient-
state analysis using the differences of r.v.s) is compatible with
dynamic re-balancing strategies. This is because it computes
multiple pool sizes, one for each arrival of a train, and
therefore can be used to guide dynamic bike dispatching. Thus,
using this approach, instead of ensuring that there are Bn(0)
bikes at station n at the beginning of the day, we can examine
the expected number of bikes required throughout the day and
reposition bikes as needed.

2Bike Friendly Communities
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TABLE II
SIMULATION RESULTS AVERAGED OVER 100 RUNS; ε = 0.05

Symmetric Scenarios Asymmetric Scenarios
Naı̈ve provisioning Method 1 Method 2 Naı̈ve provisioning Method 1 Method 2

Bikes per customer (bpc) 2 1.25 1.44 2 1.62 1.75
Bike savings ratio (bsr) 0 0.753 0.562 0 0.385 0.252
Actual bike availability (aba) 1.0 1.0 1.0 1.0 0.971 0.997
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Fig. 5. Detailed results from five simulation runs using symmetric scenarios; QoS Requirement = 0.95.
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Fig. 7. Robustness testing: V/Θ deviation vs. actual blocking probability.

C. Optimal Dock Sizing

Our model computes the size of the dock at each station
to be at least as large as maxtBn(t) (recall Section IIIA).
However, it is possible to pose the dock sizing problem as the
decision on how large to make each bike station dock, given
the pool size and anticipated trends in bikeshare usage. Jointly
solving the dock sizing problem along with bike-pool sizing,
however, is much more challenging, especially in our scenario
of multimodal transit. Moreover, Free-Floating Bike Sharing
(FFBS) and dock-free bikes have become popular (such as
Mobike and Ofo in most cities in China) [18], [30]. This
alleviates the need for precise dock sizing in new generation
bike sharing systems. Therefore, we do not consider optimal
dock sizing in this paper.

VIII. CONCLUSIONS

We addressed the new problem of bikeshare pool sizing
in the context of bike-and-ride multimodal transit. To solve

this problem, we determined the smallest number of bikes
that should be available at each public transit station at
the beginning of every day to guarantee a desired blocking
probability threshold. We presented two solutions: one based
on transient-state analysis of bike arrivals and departures
throughout the day, and the other based on the Engset model
of steady-state analysis during the busiest period. Monte Carlo
simulation results showed that our techniques can reduce the
required pool size at the public transit station by 39 to 75
percent compared to a baseline solution. Since the pool sizes
suggested by the steady-state method are based on the busiest
period, they were larger and therefore less sensitive to errors
in estimating customer flows.

An interesting direction for future work is to compare
regular bikeshares and electric bikeshares in the context of
multimodal transit. Electric bicycles are more expensive but
can be used to travel longer distances, thereby increasing the
cycling reachable regions for each public transport station.
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