ATM Networks

An Engineering Approach to Computer Networking

Why ATM networks?

- Different information types require different qualities of service from the network
 - stock quotes vs. USENET
- Telephone networks support a single quality of service
 - and is expensive to boot
- Internet supports no quality of service
 - but is flexible and cheap
- ATM networks are meant to support a range of service qualities at a reasonable cost
 - potentially can subsume both the telephone network and the Internet

Design goals

- Providing end-to-end quality of service
- High bandwidth
- Scalability
- Manageability
- Cost-effective

How far along are we?

- Basic architecture has been defined
- But delays have resulting in ceding desktop to IP
- Also, little experience in traffic specification, multicast, and fault tolerance
- We may never see end-to-end ATM
 - but its ideas continue to powerfully influence design of nextgeneration Internet
 - Internet technology + ATM philosophy
- Note--two standardization bodies
 - ATM Forum
 - International Telecommunications Union-Telecommunications Standardization Sector (ITU-T)

Concepts

- 1. Virtual circuits
- 2. Fixed-size packets (*cells*)
- 3. Small packet size
- 4. Statistical multiplexing
- 5. Integrated services

Together

can carry *multiple* types of traffic with end-to-end quality of service

1. Virtual circuits

- Some background first
- Telephone network operates in synchronous transmission mode
 - the destination of a sample depends on where it comes from, and when it came
 - example--shared leased link
- Problems with STM
 - idle users consume bandwidth
 - links are shared with a fixed cyclical schedule => quantization of link capacity
 - can't 'dial' bandwidth

Virtual circuits (contd.)

- STM is easy to overcome
 - use packets
 - metadata indicates destination =>arbitrary schedule and no wasted bandwidth
- Two ways to use packets
 - carry entire destination address in header
 - carry only an identifier

		Data	Sample
	VCI	Data	ATM cell
Addr.		Data	Datagram

Virtual circuits (contd.)

- Ids save on header space
- But need to be pre-established
- We also need to switch Ids at intermediate points (why?)
- Need translation table and connection setup

Features of virtual circuits

- All packets must follow the same path (why?)
- Switches store per-VCI state
 - can store QoS information
- Signaling => separation of data and control
- Virtual circuits do not automatically guarantee reliability
- Small Ids can be looked up quickly in hardware
 - harder to do this with IP addresses
- Setup must precede data transfer
 - delays short messages
- Switched vs. Permanent virtual circuits

More features

- Ways to reduce setup latency
 - preallocate a range of VCIs along a path
 - Virtual Path
 - send data cell along with setup packet
 - dedicate a VCI to carry datagrams, reassembled at each hop

2. Fixed-size packets

Pros

- Simpler buffer hardware
 - packet arrival and departure requires us to manage fixed buffer sizes
- Simpler line scheduling
 - each cell takes a constant chunk of bandwidth to transmit
- Easier to build large parallel packet switches

Cons

- overhead for sending small amounts of data
- segmentation and reassembly cost
- last unfilled cell after segmentation wastes bandwidth

3. Small packet size

- At 8KHz, each byte is 125 microseconds
- The smaller the cell, the less an endpoint has to wait to fill it
 - packetization delay
- The smaller the packet, the larger the header overhead
- Standards body balanced the two to prescribe 48 bytes + 5 byte header = 53 bytes
 - => maximal efficiency of 90.57%

4. Statistical multiplexing

- Suppose cells arrive in bursts
 - each burst has 10 cells evenly spaced 1 second apart
 - gap between bursts = 100 seconds
- What should be service rate of output line?

Statistical multiplexing

- We can trade off worst-case delay against speed of output trunk
- SMG = sum of peak input/output rate
- Whenever long term average rate differs from peak, we can trade off service rate for delay
 - key to building packet-switched networks with QoS

5. Integrated service

- Traditionally, voice, video, and data traffic on separate networks
- Integration
 - easier to manage
 - innovative new services
- How do ATM networks allow for integrated service?
 - lots of bandwidth: hardware-oriented switching
 - support for different traffic types
 - signaling
 - admission control
 - easier scheduling
 - resource reservation

Challenges

- Quality of service
 - defined, but not used!
 - still needs research
- Scaling
 - little experience
- Competition from other LAN technologies
 - Fast Ethernet
 - FDDI
- Standardization
 - political
 - slow

Challenges

- IP
 - a vast, fast-growing, non-ATM infrastructure
 - interoperation is a pain in the neck, because of fundamentally different design philosophies
 - * connectionless vs. connection-oriented
 - * resource reservation vs. best-effort
 - different ways of expressing QoS requirements
 - routing protocols differ