# **Common Protocols**

An Engineering Approach to Computer Networking

# The grand finale

- Previous chapters presented principles, but not protocol details
  - these change with time
  - real protocols draw many things together
- Overview of real protocols
  - standards documents are the final resort
- Three sets of protocols
  - telephone
  - Internet
  - ATM

# Telephone network protocols

|           | Data Plane | Control Plane (SS7) |
|-----------|------------|---------------------|
| Арр       | Voice/Fax  | ASE/ISDN-UP<br>TCAP |
| Session   |            |                     |
| Transport |            |                     |
| Network   |            | SCCP/MTP-3          |
| Datalink  | Sonet/PDH  | MTP-2               |
| Physical  | Many       | MTP-1               |

# Traditional digital transmission

- Long distance trunks carry multiplexed calls
- Standard multiplexing levels
- Digital transmission hierarchy

|                          | US and Japan |         |              |
|--------------------------|--------------|---------|--------------|
| M ultiple xin g<br>level | N a m e      | # calls | Rate (M bps) |
| 1                        | D S 1        | 2 4     | 1.544        |
| 2                        | D S 2        | 9 6     | 6.312        |
| 3                        | D S 3        | 672     | 44.736       |
| 4                        | D S 4        | 4 0 3 2 | 274.176      |

# Plesiochronous hierarchy

- Plesiochronous = nearly synchronous
- Tight control on deviation from synchrony
- What if stream runs a little faster or slower?
- Need justification



#### **Justification**

- Output runs a bit faster always
- Overhead identifies bits from a particular stream
- If a stream runs faster, use overhead to identify it
- Overhead used everywhere except at first level (DS1)



# Problems with plesiochrony

- Incompatible hierarchies around the world
- Data is spread out! Hard to extract a single call
- Cannot switch bundles of calls

# Synchronous Digital Hierarchy

- All levels are synchronous
- Justification uses pointers

| Data Rate (Mbps) |         | US Name |
|------------------|---------|---------|
| 1                | 51.84   | OC-1    |
| 2                | 155.52  | OC-3    |
| 3                | 466.56  | OC-9    |
| 4                | 622.08  | OC-12   |
| 5                | 933.12  | OC-18   |
| 6                | 1244.16 | OC-24   |
| 8                | 1866.24 | OC-36   |
| 9                | 2488.32 | OC-48   |
|                  | 9953.28 | OC-192  |

# SDH (SONET) frame



<sup>\*</sup> ID = IDENTIFIES THE OC-1 NUMBER (1...N) IN AN OC-N FRAME

<sup>&</sup>quot; MULTI – INDICATES THAT PAYLOAD SPANS MULTIPLE PAYLOAD ENVELOPES

#### SDH

- 9 rows, 90 columns
- Each payload container (SPE) served in 125 microseconds
- One byte = 1 call
- All overhead is in the headers
- Pointers for justification
  - if sending too fast, use a byte in the overhead, increasing sending rate
  - if sending too slow, skip a byte and move the pointer
  - can always locate a payload envelope, and thus a call within it => cheaper add drop mux

# SDH justification



# Signaling System 7 (SS7)

| OSI layer name | SS7 layer name                            | Functionality                                                                        | Internet example |
|----------------|-------------------------------------------|--------------------------------------------------------------------------------------|------------------|
| Application    | Application Service<br>Element            | Application                                                                          | FTP              |
|                | Transaction Capabilities Application part | RPC                                                                                  | RPC              |
| Transport      | Signaling Connection Control Part         | Connections,<br>sequence numbers,<br>segmentation and<br>reassembly, flow<br>control | TCP              |
| Network        | Message Transfer<br>Part 3 (MTP-3)        | Routing                                                                              | IP               |
| Datalink       | MTP-2                                     | Framing , link-level error detection and retransmission                              | Ethernet         |
| Physical       | MTP-1                                     | Physical bit transfer                                                                | Ethernet         |

# SS7 example

- Call forwarding
- To register
  - call special number
  - connects to ASE
  - authenticates user, stores forwarding number in database
- On call arrival
  - call setup protocol checks database for forwarding number
  - if number present, reroutes call
- SS7 provides all the services necessary for communication and coordination between registry ASE, database, and call setup entity

## **MTP** Header



# Internet stack

|           | Data Plane      | Control Plane |
|-----------|-----------------|---------------|
| Арр       | HTTP            | RSVP/OSPF     |
| Session   | Sockets/Streams |               |
| Transport | TCP/UDP         |               |
| Network   | IP              | IP/ICMP       |
| Datalink  | Many            | Many          |
| Physical  | Many            | Many          |

#### IP

- Unreliable
- Best effort
- End-to-end
- IP on everything- interconnect the world



# Fragmentation

- IP can fragment, reassemble at receiver
- Fragment offset field
- More fragments flag and Don't fragment flag
- Reassembly lockup
  - decrement timer and drop when it reaches 0
- Fragmentation is harmful
  - extra work
  - lockup
  - error multiplication
- Path MTU discovery
  - send large pkt with Don't fragment set
  - if error, try smaller

#### IP fields

#### TTL

- decremented on each hop
- decremented every 500 ms at endpt
- terminates routing loops

#### Traceroute

- if router decrements to 0, send ICMP error packet
- source sends packets with increasing TTL and waits for errors

#### Options

- record route
- timestamp
- loose source routing

#### **ICMP**

- Destination unreachable
- Source quench
- Redirect
- Router advertisement
- Time exceeded (TTL)
- Fragmentation needed, but Dont frag flag set



## **TCP**

- Multiplexed
- Duplex
- Connection-oriented
- Reliable
- Flow-controlled
- Byte-stream

# **TCP**



#### **Fields**

- Port numbers
- Sequence and ack number
- Header length
- Window size
  - 16 bits => 64 Kbytes (more with scaling)
  - receiver controls the window size
  - if zero, need sender persistence
  - silly window syndrome
- Checksum
- Urgent pointer
- Options
  - max segment size

#### **HTTP**

- Request response
- Protocol is simple, browser is complex
- Address space encapsulation
- Request types
  - GET
  - HEAD
  - POST
- Response
  - status
  - headers
  - body

# ATM stack

|             | Data Plane | Control Plane |
|-------------|------------|---------------|
| Application |            | UNI/PNNI      |
| Application |            | Q.2931        |
| Session     |            |               |
| Transport   |            | SSCOP         |
| Network     | AAL1-5     | S-AAL (AAL5)  |
| Data Link   | ATM        | ATM           |
| Physical    | Many       | Many          |

## **ATM**

- Connection-oriented
- In-sequence
- Unreliable
- Quality of service assured



\*GFC IN UNI & VPI IN NNI

# Virtual paths

- High order bits of VCI
- All VCIs in a VP share path and resource reservation
- Saves table space in switches
  - faster lookup
- Avoids signaling
- May waste resources
- Dynamic renegotiation of VP capacity may help
- Set of virtual paths defines a virtual private network

#### AAL

- Was supposed to provide "rest of stack"
- Scaled back
- 4 versions: 1, 2, 3/4, 5
- Only 1, 3/4 and 5 important in practice

#### AAL 1

- For synchronous apps
  - provides timestamps and clocking
  - sequencing
  - always CBR
  - FEC in data bytes



#### **AAL 3/4**

- For data traffic (from a telco perspective!)
- First create an encapsulated protocol data unit EPDU
  - (common part convergence sublayer-protocol data unit CPCS-PDU)
- Then fragment it and add ATM headers



#### **AAL 3/4**

- Error detection, segmentation, reassembly
- Header and trailer per EPDU and per-cell header!



#### AAL 5

- Violates layering, but efficient
- Bit in header marks end of frame



## **AAL5** frame format



#### **SSCOP**

- Reliable transport for signaling messages
- Functionality similar to TCP
  - error control (described below)
  - flow control (static window)
- Four packet types
  - sequenced data / poll / stat / ustat
- No acks!
- Sender polls, receiver sends status
  - includes cumulative ack and window size
- If out of order, sends unsolicited status (ustat)
- Key variable is poll interval

#### **IP-over-ATM**

- Key idea: treat ATM as a link-level technology
  - ignore routing and QoS aspects
- Key problems
  - ATM is connection-oriented and IP is not
  - different addressing schemes
  - ATM LAN is point-to-point while IP assumes broadcast
- Basic technologies
  - IP encapsulation in ATM
  - Resolving IP addresses to ATM addresses
  - Creating an ATM-based IP subnet
  - Mapping multicast groups to ATM

# IP encapsulation in ATM

- Put data portion of IP packets in AAL5 frame
  - works only if endpoints understand AAL5
- Instead, place entire IP packet with AAL5 frame
- General solution allows multiprotocol encapsulation



# Resolving IP addresses to ATM addresses

- Need something like ARP, but can't use broadcast
- Designate one of the ATM hosts as an ARP server



Inverse ARP automatically creates database

# Creating an ATM-based IP subnet

- IP assumes free availability of bandwidth within a subnet
- If all hosts on ATM are on same IP subnet, broadcast reaches all => congestion
- Partition into logical IP subnets
  - at the cost of longer paths between ATM-attached hosts



# **Next-hop routing**

- Avoids long paths
- Next-hop server stores IP-to-ATM translations independent of subnet boundaries
  - like DNS



# Resolving multicast addresses

- ARP server cannot resolve multicast addresses (why?)
- Actively maintain set of endpoints that correspond to a particular Class D address
- Multicast Address Resolution Server provides and updates this translation



#### LAN emulation

- If destination is on same LAN, can use ATM underneath datalink layer
- Need to translate from MAC address to ATM address
- Also need to emulate broadcast for Ethernet/FDDI



# Cells in Frame (CIF)

- Solutions so far require expensive ATM host-adapter card
- Can we reuse Ethernet card?
- Encapsulate AAL5 frame in Ethernet header on point-to-point Ethernet link
- CIF-Attachment Device at other end decapsulates and injects the frame into an ATM network
- Software on end-system thinks that it has a local host adapter
- Shim between ATM stack and Ethernet driver inserts CIF header with VCI and ATM cell header
  - may need to fragment AAL5 frame
  - can also forward partial frames
- Cheaper
  - also gives endpoints QoS guarantees, unlike LANE

# Holding time problem

- After resolution, open an ATM connection, and send IP packet
- When to close it?
- Locality
  - more packets likely
  - hold the connection for a while to avoid next call setup
  - but pay per-second holding time cost
- Optimal solution depends on pricing policy and packet arrival characteristics
- Measurement-based heuristic works nearly optimally
  - create the inter-arrival time histogram
  - expect future arrivals to conform to measured distribution
  - close connection if expected cost exceeds expected benefit