Protocol Implementation

An Engineering Approach to Computer Networking

Protocol implementation

- Depends on structure and environment
- Structure
 - partitioning of functionality between user and kernel
 - separation of layer processing (interface)
- Environment
 - data copy cost
 - interrupt overhead
 - context switch time
 - latency in accessing memory
 - cache effects

Partitioning strategies

- How much to put in user space, and how much in kernel space?
 - tradeoff between
 - software engineering
 - customizability
 - security
 - performance
- Monolithic in kernel space
- Monolithic in user space
- Per-process in user space

Interface strategies

- Single-context
- Tasks
- Upcalls

Monolithic in kernel

Monolithic in user space

Per-process in user space

Interfaces

- Single-context
- Tasks
- Upcalls

Single context

Tasks

T = TRANSPORT N = NETWORK DL = DATALINK

Upcalls

Protocol implementation

Some numbers

■ 10 Kbps 400 ms

■ 100 Kbps, 40 ms

■ 1 Mbps, 4 ms

100 Mbps, 40 μs

User-to-kernel context switch ~40 μs

■ Copying the packet ~25 µs

■ Checksum in software ~40 µs

Scheduling delays ~150 μs (depends on workload)

Interrupt handling ~10-50 μs (depends on the bus)

■ Protocol processing ~15 -100 µs (depends on protocol complexity)

Rules of thumb

- Optimize common case
- Watch out for bottlenecks
- Fine tune inner loops
- Choose good data structures
- Beware of data touching
- Minimize # packets sent
- Send largest packets possible
- Cache hints
- Use hardware
- Exploit application properties