Routing

An Engineering Approach to Computer Networking

What is it?

- Process of finding a path from a source to every destination in the network
- Suppose you want to connect to Antarctica from your desktop
 - what route should you take?
 - does a shorter route exist?
 - what if a link along the route goes down?
 - what if you're on a mobile wireless link?
- Routing deals with these types of issues

Basics

A routing protocol sets up a routing table in routers and switch controllers

ROUTING TABLE AT 1

Destination	Next hop		Destination	Next hop
1	_	Ш	7	2
2	20	Ш	8□	2:1
3	3□	Ш	9□	2:0
4	3□	Ш	10□	2□
5	2□	Ш	11□	3□
6	2		12	3

A node makes a *local* choice depending on *global* topology: this is the fundamental problem

Key problem

- How to make correct local decisions?
 - each router must know something about global state
- Global state
 - inherently large
 - dynamic
 - hard to collect
- A routing protocol must intelligently summarize relevant information

Requirements

- Minimize routing table space
 - fast to look up
 - less to exchange
- Minimize number and frequency of control messages
- Robustness: avoid
 - black holes
 - loops
 - oscillations
- Use optimal path

Choices

- Centralized vs. distributed routing
 - centralized is simpler, but prone to failure and congestion
- Source-based vs. hop-by-hop
 - how much is in packet header?
 - Intermediate: loose source route
- Stochastic vs. deterministic
 - stochastic spreads load, avoiding oscillations, but misorders
- Single vs. multiple path
 - primary and alternative paths (compare with stochastic)
- State-dependent vs. state-independent
 - do routes depend on current network state (e.g. delay)

Outline

- Routing in telephone networks
- Distance-vector routing
- Link-state routing
- Choosing link costs
- Hierarchical routing
- Internet routing protocols
- Routing within a broadcast LAN
- Multicast routing
- Routing with policy constraints
- Routing for mobile hosts

Telephone network topology

- 3-level hierarchy, with a fully-connected core
- AT&T: 135 core switches with nearly 5 million circuits
- LECs may connect to multiple cores

Routing algorithm

- If endpoints are within same CO, directly connect
- If call is between COs in same LEC, use one-hop path between COs
- Otherwise send call to one of the cores
- Only major decision is at toll switch
 - one-hop or two-hop path to the destination toll switch
 - (why don't we need longer paths?)
- Essence of problem
 - which two-hop path to use if one-hop path is full

Features of telephone network routing

- Stable load
 - can predict pairwise load throughout the day
 - can choose optimal routes in advance
- Extremely reliable switches
 - downtime is less than a few minutes per year
 - can assume that a chosen route is available
 - can't do this in the Internet
- Single organization controls entire core
 - can collect global statistics and implement global changes
- Very highly connected network
- Connections require resources (but all need the same)

The cost of simplicity

- Simplicity of routing a historical necessity
- But requires
 - reliability in every component
 - logically fully-connected core
- Can we build an alternative that has same features as the telephone network, but is cheaper because it uses more sophisticated routing?
 - Yes: that is one of the motivations for ATM
 - But 80% of the cost is in the local loop
 - not affected by changes in core routing
 - Moreover, many of the software systems assume topology
 - too expensive to change them

Dynamic nonhierarchical routing (DNHR)

- Simplest core routing protocol
 - accept call if one-hop path is available, else drop
- DNHR
 - divides day into around 10-periods
 - in each period, each toll switch is assigned a primary onehop path and a list of alternatives
 - can overflow to alternative if needed
 - drop only if all alternate paths are busy
 - ◆ crankback
- Problems
 - does not work well if actual traffic differs from prediction

Metastability

- Burst of activity can cause network to enter metastable state
 - high blocking probability even with a low load
- Removed by trunk reservation
 - prevents spilled traffic from taking over direct path

Trunk status map routing (TSMR)

- DNHR measures traffic once a week
- TSMR updates measurements once an hour or so
 - only if it changes "significantly"
- List of alternative paths is more up to date

Real-time network routing (RTNR)

- No centralized control
- Each toll switch maintains a list of lightly loaded links
- Intersection of source and destination lists gives set of lightly loaded paths
- Example
 - At A, list is C, D, E => links AC, AD, AE lightly loaded
 - At B, list is D, F, G => links BD, BF, BG lightly loaded
 - A asks B for its list
 - Intersection = D => AD and BD lightly loaded => ADB lightly loaded => it is a good alternative path
- Very effective in practice: only about a couple of calls blocked in core out of about 250 million calls attempted every day

Outline

- Routing in telephone networks
- Distance-vector routing
- Link-state routing
- Choosing link costs
- Hierarchical routing
- Internet routing protocols
- Routing within a broadcast LAN
- Multicast routing
- Routing with policy constraints
- Routing for mobile hosts

Distance vector routing

- Environment
 - links and routers unreliable
 - alternative paths scarce
 - traffic patterns can change rapidly
- Two key algorithms
 - distance vector
 - link-state
- Both assume router knows
 - address of each neighbor
 - cost of reaching each neighbor
- Both allow a router to determine global routing information by talking to its neighbors

Basic idea

- Node tells its neighbors its best idea of distance to every other node in the network
- Node receives these distance vectors from its neighbors
- Updates its notion of best path to each destination, and the next hop for this destination
- Features
 - distributed
 - adapts to traffic changes and link failures
 - suitable for networks with multiple administrative entities

Example

Why does it work

- Each node knows its true cost to its neighbors
- This information is spread to its neighbors the first time it sends out its distance vector
- Each subsequent dissemination spreads the truth one hop
- Eventually, it is incorporated into routing table everywhere in the network
- Proof: Bellman and Ford, 1957

Problems with distance vector

Count to infinity

Dealing with the problem

- Path vector
 - DV carries path to reach each destination
- Split horizon
 - never tell neighbor cost to X if neighbor is next hop to X
 - doesn't work for 3-way count to infinity (see exercise)
- Triggered updates
 - exchange routes on change, instead of on timer
 - faster count up to infinity
- More complicated
 - source tracing
 - DUAL

Outline

- Routing in telephone networks
- Distance-vector routing
- Link-state routing
- Choosing link costs
- Hierarchical routing
- Internet routing protocols
- Routing within a broadcast LAN
- Multicast routing
- Routing with policy constraints
- Routing for mobile hosts

Link state routing

- In distance vector, router knows only cost to each destination
 - hides information, causing problems
- In link state, router knows entire network topology, and computes shortest path by itself
 - independent computation of routes
 - potentially less robust
- Key elements
 - topology dissemination
 - computing shortest routes

Link state: topology dissemination

A router describes its neighbors with a link state packet (LSP)

- Use controlled flooding to distribute this everywhere
 - store an LSP in an LSP database
 - if new, forward to every interface other than incoming one
 - a network with E edges will copy at most 2E times

Sequence numbers

- How do we know an LSP is new?
- Use a sequence number in LSP header
- Greater sequence number is newer
- What if sequence number wraps around?
 - smaller sequence number is now newer!
 - (hint: use a large sequence space)
- On boot up, what should be the initial sequence number?
 - have to somehow purge old LSPs
 - two solutions
 - aging
 - lollipop sequence space

Aging

- Creator of LSP puts timeout value in the header
- Router removes LSP when it times out
 - also floods this information to the rest of the network (why?)
- So, on booting, router just has to wait for its old LSPs to be purged
- But what age to choose?
 - if too small
 - purged before fully flooded (why?)
 - needs frequent updates
 - if too large
 - router waits idle for a long time on rebooting

A better solution

- Need a unique start sequence number
- a is older than b if:
 - ♦ a < 0 and a < b</p>
 - a > 0, a < b, and b-a < N/4
 - a > 0, b > 0, a > b, and a-b > N/4

More on Iollipops

- If a router gets an older LSP, it tells the sender about the newer LSP
- So, newly booted router quickly finds out its most recent sequence number
- It jumps to one more than that
- -N/2 is a trigger to evoke a response from community memory

Recovering from a partition

On partition, LSP databases can get out of synch

- Databases described by database descriptor records
- Routers on each side of a newly restored link talk to each other to update databases (determine missing and out-of-date LSPs)

Router failure

- How to detect?
 - HELLO protocol
- HELLO packet may be corrupted
 - so age anyway
 - on a timeout, flood the information

Securing LSP databases

- LSP databases *must* be consistent to avoid routing loops
- Malicious agent may inject spurious LSPs
- Routers must actively protect their databases
 - checksum LSPs
 - ack LSP exchanges
 - passwords

Computing shortest paths

- Basic idea
 - maintain a set of nodes P to whom we know shortest path
 - consider every node one hop away from nodes in P = T
 - find every way in which to reach a given node in T, and choose shortest one
 - then add this node to P

Example

→ B(A,1) means B was reached by A, cost 1

PERMANENT	TEMPORARY	COMMENTS
A	B(A,1), D(A,2)	ROOT AND ITS NEIGHBORS
A, B(A 1)	D(A,2), C(B,2)	ADD C(B,2)
A, B(A,1) D(A,2)	E(D,4), C(B,2)	C(D,3) DIDN'T MAKE IT
A, B(A,1) D(A,2), C(B,2)	E(C,3)	E(D,4) TOO LONG
A, B(A,1) A D(A,2), C(B,2) E(C,3)	F(E,6)	
A, B(A,1) C(B,2), D(A,2) E(C,3), F(E,6)	NULL	STOP

Link state vs. distance vector

- Criteria
 - stability
 - multiple routing metrics
 - convergence time after a change
 - communication overhead
 - memory overhead
- Both are evenly matched
- Both widely used

Outline

- Routing in telephone networks
- Distance-vector routing
- Link-state routing
- Choosing link costs
- Hierarchical routing
- Internet routing protocols
- Routing within a broadcast LAN
- Multicast routing
- Routing with policy constraints
- Routing for mobile hosts

Choosing link costs

- Shortest path uses link costs
- Can use either static of dynamic costs
- In both cases: cost determine amount of traffic on the link
 - lower the cost, more the expected traffic
 - if dynamic cost depends on load, can have oscillations (why?)

Static metrics

- Simplest: set all link costs to 1 => min hop routing
 - but 28.8 modem link is not the same as a T3!
- Give links weight proportional to capacity

Dynamic metrics

- A first cut (ARPAnet original)
- Cost proportional to length of router queue
 - independent of link capacity
- Many problems when network is loaded
 - queue length averaged over a small time => transient spikes caused major rerouting
 - wide dynamic range => network completely ignored paths with high costs
 - queue length assumed to predict future loads => opposite is true (why?)
 - no restriction on successively reported costs => oscillations
 - all tables computed simultaneously => low cost link flooded

Modified metrics

- queue length averaged over a small time
- wide dynamic range queue
- queue length assumed to predict future loads
- no restriction on successively reported costs
- all tables computed simultaneously

- queue length averaged over a longer time
- dynamic range restricted
- cost also depends on intrinsic link capacity
- restriction on successively reported costs
- attempt to stagger table computation

Routing dynamics

Outline

- Routing in telephone networks
- Distance-vector routing
- Link-state routing
- Choosing link costs
- Hierarchical routing
- Internet routing protocols
- Routing within a broadcast LAN
- Multicast routing
- Routing with policy constraints
- Routing for mobile hosts

Hierarchical routing

- Large networks need large routing tables
 - more computation to find shortest paths
 - more bandwidth wasted on exchanging DVs and LSPs
- Solution:
 - hierarchical routing
- Key idea
 - divide network into a set of domains
 - gateways connect domains
 - computers within domain unaware of outside computers
 - gateways know only about other gateways

Example

Features

- only a few routers in each level
- not a strict hierarchy
- gateways participate in multiple routing protocols
- non-aggregable routers increase core table space

Hierarchy in the Internet

- Three-level hierarchy in addresses
 - network number
 - subnet number
 - host number
- Core advertises routes only to networks, not to subnets
 - e.g. 135.104.*, 192.20.225.*
- Even so, about 80,000 networks in core routers (1996)
- Gateways talk to backbone to find best next-hop to every other network in the Internet

External and summary records

- If a domain has multiple gateways
 - external records tell hosts in a domain which one to pick to reach a host in an external domain
 - e.g allows 6.4.0.0 to discover shortest path to 5.* is through 6.0.0.0
 - summary records tell backbone which gateway to use to reach an internal node
 - e.g. allows 5.0.0.0 to discover shortest path to 6.4.0.0 is through 6.0.0.0
- External and summary records contain distance from gateway to external or internal node
 - unifies distance vector and link state algorithms

Interior and exterior protocols

- Internet has three levels of routing
 - highest is at backbone level, connecting autonomous systems (AS)
 - next level is within AS
 - lowest is within a LAN
- Protocol between AS gateways: exterior gateway protocol
- Protocol within AS: interior gateway protocol

Exterior gateway protocol

- Between untrusted routers
 - mutually suspicious
- Must tell a border gateway who can be trusted and what paths are allowed

Transit over backdoors is a problem

Interior protocols

- Much easier to implement
- Typically partition an AS into areas
- Exterior and summary records used between areas

Issues in interconnection

- May use different schemes (DV vs. LS)
- Cost metrics may differ
- Need to:
 - convert from one scheme to another (how?)
 - use the lowest common denominator for costs
 - manually intervene if necessary

Outline

- Routing in telephone networks
- Distance-vector routing
- Link-state routing
- Choosing link costs
- Hierarchical routing
- Internet routing protocols
- Routing within a broadcast LAN
- Multicast routing
- Routing with policy constraints
- Routing for mobile hosts

Common routing protocols

- Interior
 - → RIP
 - OSPF
- Exterior
 - ◆ EGP
 - → BGP
- ATM
 - PNNI

RIP

- Distance vector
- Cost metric is hop count
- Infinity = 16
- Exchange distance vectors every 30 s
- Split horizon
- Useful for small subnets
 - easy to install

OSPF

- Link-state
- Uses areas to route packets hierarchically within AS
- Complex
 - LSP databases to be protected
- Uses designated routers to reduce number of endpoints

EGP

- Original exterior gateway protocol
- Distance-vector
- Costs are either 128 (reachable) or 255 (unreachable) => reachability protocol => backbone must be loop free (why?)
- Allows administrators to pick neighbors to peer with
- Allows backdoors (by setting backdoor cost < 128)</p>

BGP

- Path-vector
 - distance vector annotated with entire path
 - also with policy attributes
 - guaranteed loop-free
- Can use non-tree backbone topologies
- Uses TCP to disseminate DVs
 - reliable
 - but subject to TCP flow control
- Policies are complex to set up

PNNI

- Link-state
- Many levels of hierarchy
- Switch controllers at each level form a peer group
- Group has a group leader
- Leaders are members of the next higher level group
- Leaders summarize information about group to tell higher level peers
- All records received by leader are flooded to lower level
- LSPs can be annotated with per-link QoS metrics
- Switch controller uses this to compute source routes for callsetup packets

Outline

- Routing in telephone networks
- Distance-vector routing
- Link-state routing
- Choosing link costs
- Hierarchical routing
- Internet routing protocols
- Routing within a broadcast LAN
- Multicast routing
- Routing with policy constraints
- Routing for mobile hosts

Routing within a broadcast LAN

- What happens at an endpoint?
- On a point-to-point link, no problem
- On a broadcast LAN
 - is packet meant for destination within the LAN?
 - if so, what is the datalink address?
 - if not, which router on the LAN to pick?
 - what is the router's datalink address?

Internet solution

- All hosts on the LAN have the same subnet address
- So, easy to determine if destination is on the same LAN
- Destination's datalink address determined using ARP
 - broadcast a request
 - owner of IP address replies
- To discover routers
 - routers periodically sends router advertisements
 - with preference level and time to live
 - pick most preferred router
 - delete overage records
 - can also force routers to reply with solicitation message

Redirection

- How to pick the best router?
- Send message to arbitrary router
- If that router's next hop is another router on the same LAN, host gets a redirect message
- It uses this for subsequent messages

Outline

- Routing in telephone networks
- Distance-vector routing
- Link-state routing
- Choosing link costs
- Hierarchical routing
- Internet routing protocols
- Routing within a broadcast LAN
- Multicast routing
- Routing with policy constraints
- Routing for mobile hosts

Multicast routing

- Unicast: single source sends to a single destination
- Multicast: hosts are part of a multicast group
 - packet sent by any member of a group are received by all
- Useful for
 - multiparty videoconference
 - distance learning
 - resource location

Multicast group

- Associates a set of senders and receivers with each other
 - but independent of them
 - created either when a sender starts sending from a group
 - or a receiver expresses interest in receiving
 - even if no one else is there!
- Sender does not need to know receivers' identities
 - rendezvous point

Addressing

- Multicast group in the Internet has its own Class D address
 - looks like a host address, but isn't
- Senders send to the address
- Receivers anywhere in the world request packets from that address
- "Magic" is in associating the two: dynamic directory service
- Four problems
 - which groups are currently active
 - how to express interest in joining a group
 - discovering the set of receivers in a group
 - delivering data to members of a group

Expanding ring search

- A way to use multicast groups for resource discovery
- Routers decrement TTL when forwarding
- Sender sets TTL and multicasts
 - reaches all receivers <= TTL hops away
- Discovers local resources first
- Since heavily loaded servers can keep quiet, automatically distributes load

Multicast flavors

- Unicast: point to point
- Multicast:
 - point to multipoint
 - multipoint to multipoint
- Can simulate point to multipoint by a set of point to point unicasts
- Can simulate multipoint to multipoint by a set of point to multipoint multicasts
- The difference is efficiency

Example

- Suppose A wants to talk to B, G, H, I, B to A, G, H, I
- With unicast, 4 messages sent from each source
 - links AC, BC carry a packet in triplicate
- With point to multipoint multicast, 1 message sent from each source
 - but requires establishment of two separate multicast groups
- With multipoint to multipoint multicast, 1 message sent from each source,
 - single multicast group

Shortest path tree

- Ideally, want to send exactly one multicast packet per link
 - forms a multicast tree rooted at sender
- Optimal multicast tree provides shortest path from sender to every receiver
 - shortest-path tree rooted at sender

Issues in wide-area multicast

- Difficult because
 - sources may join and leave dynamically
 - need to dynamically update shortest-path tree
 - leaves of tree are often members of broadcast LAN
 - would like to exploit LAN broadcast capability

- would like a receiver to join or leave without explicitly notifying sender
 - otherwise it will not scale

Multicast in a broadcast LAN

- Wide area multicast can exploit a LAN's broadcast capability
- E.g. Ethernet will multicast all packets with multicast bit set on destination address
- Two problems:
 - what multicast MAC address corresponds to a given Class D IP address?
 - does the LAN have contain any members for a given group (why do we need to know this?)

Class D to MAC translation

- Multiple Class D addresses map to the same MAC address
- Well-known translation algorithm => no need for a translation table

Internet Group Management Protocol

- Detects if a LAN has any members for a particular group
 - If no members, then we can prune the shortest path tree for that group by telling parent
- Router periodically broadcasts a query message
- Hosts reply with the list of groups they are interested in
- To suppress traffic
 - reply after random timeout
 - broadcast reply
 - if someone else has expressed interest in a group, drop out
- To receive multicast packets:
 - translate from class D to MAC and configure adapter

Wide area multicast

Assume

- each endpoint is a router
- a router can use IGMP to discover all the members in its LAN that want to subscribe to each multicast group

Goal

 distribute packets coming from any sender directed to a given group to all routers on the path to a group member

Simplest solution

- Flood packets from a source to entire network
- If a router has not seen a packet before, forward it to all interfaces except the incoming one
- Pros
 - simple
 - always works!
- Cons
 - routers receive duplicate packets
 - detecting that a packet is a duplicate requires storage, which can be expensive for long multicast sessions

A clever solution

- Reverse path forwarding
- Rule
 - forward packet from S to all interfaces if and only if packet arrives on the interface that corresponds to the shortest path to S
 - no need to remember past packets
 - C need not forward packet received from D

Cleverer

- Don't send a packet downstream if you are not on the shortest path from the downstream router to the source
- C need not forward packet from A to E

 Potential confusion if downstream router has a choice of shortest paths to source (see figure on previous slide)

Pruning

RPF does not completely eliminate unnecessary transmissions

- B and C get packets even though they do not need it
- Pruning => router tells parent in tree to stop forwarding
- Can be associated either with a multicast group or with a source and group
 - trades selectivity for router memory

Rejoining

- What if host on C's LAN wants to receive messages from A after a previous prune by C?
 - IGMP lets C know of host's interest
 - C can send a join(group, A) message to B, which propagates it to A
 - or, periodically flood a message; C refrains from pruning

A problem

- Reverse path forwarding requires a router to know shortest path to a source
 - known from routing table
- Doesn't work if some routers do not support multicast
 - virtual links between multicast-capable routers
 - shortest path to A from E is not C, but F

A problem (contd.)

- Two problems
 - how to build virtual links
 - how to construct routing table for a network with virtual links

Tunnels

Why do we need them?

- Consider packet sent from A to F via multicast-incapable D
- If packet's destination is Class D, D drops it
- If destination is F's address, F doesn't know multicast address!
- So, put packet destination as F, but carry multicast address internally
- Encapsulate IP in IP => set protocol type to IP-in-IP

Multicast routing protocol

Interface on "shortest path" to source depends on whether path is real or virtual

- Shortest path from \vdash to A is not through C, but F
 - so packets from F will be flooded, but not from C
- Need to discover shortest paths only taking multicast-capable routers into account
 - DVMRP

DVMRP

- Distance-vector Multicast routing protocol
- Very similar to RIP
 - distance vector
 - hop count metric
- Used in conjunction with
 - flood-and-prune (to determine memberships)
 - prunes store per-source and per-group information
 - reverse-path forwarding (to decide where to forward a packet)
 - explicit join messages to reduce join latency (but no source info, so still need flooding)

MOSPF

- Multicast extension to OSPF
- Routers flood group membership information with LSPs
- Each router independently computes shortest-path tree that only includes multicast-capable routers
 - no need to flood and prune
- Complex
 - interactions with external and summary records
 - need storage per group per link
 - need to compute shortest path tree per source and group

Core-based trees

- Problems with DVMRP-oriented approach
 - need to periodically flood and prune to determine group members
 - need to source per-source and per-group prune records at each router
- Key idea with core-based tree
 - coordinate multicast with a core router
 - host sends a join request to core router
 - routers along path mark incoming interface for forwarding

Example

Pros

- routers not part of a group are not involved in pruning
- explicit join/leave makes membership changes faster
- router needs to store only one record per group

Cons

- all multicast traffic traverses core, which is a bottleneck
- traffic travels on non-optimal paths

Protocol independent multicast (PIM)

- Tries to bring together best aspects of CBT and DVMRP
- Choose different strategies depending on whether multicast tree is dense or sparse
 - flood and prune good for dense groups
 - only need a few prunes
 - CBT needs explicit join per source/group
 - CBT good for sparse groups
- Dense mode PIM == DVMRP
- Sparse mode PIM is similar to CBT
 - but receivers can switch from CBT to a shortest-path tree

PIM (contd.)

- In CBT, E must send to core
- In PIM, B discovers shorter path to E (by looking at unicast routing table)
 - sends join message directly to E
 - sends prune message towards core
- Core no longer bottleneck
- Survives failure of core

More on core

- Renamed a rendezvous point
 - because it no longer carries all the traffic like a CBT core
- Rendezvous points periodically send "I am alive" messages downstream
- Leaf routers set timer on receipt
- If timer goes off, send a join request to alternative rendezvous point
- Problems
 - how to decide whether to use dense or sparse mode?
 - how to determine "best" rendezvous point?

Outline

- Routing in telephone networks
- Distance-vector routing
- Link-state routing
- Choosing link costs
- Hierarchical routing
- Internet routing protocols
- Routing within a broadcast LAN
- Multicast routing
- Routing with policy constraints
- Routing for mobile hosts

Routing vs. policy routing

- In standard routing, a packet is forwarded on the 'best' path to destination
 - choice depends on load and link status
- With policy routing, routes are chosen depending on policy directives regarding things like
 - source and destination address
 - transit domains
 - quality of service
 - time of day
 - charging and accounting
- The general problem is still open
 - fine balance between correctness and information hiding

Multiple metrics

- Simplest approach to policy routing
- Advertise multiple costs per link
- Routers construct multiple shortest path trees

Problems with multiple metrics

- All routers must use the same rule in computing paths
- Remote routers may misinterpret policy
 - source routing may solve this
 - but introduces other problems (what?)

Provider selection

- Another simple approach
- Assume that a single service provider provides almost all the path from source to destination
 - e.g. AT&T or MCI
- Then, choose policy simply by choosing provider
 - this could be dynamic (agents!)
- In Internet, can use a loose source route through service provider's access point
- Or, multiple addresses/names per host

Crankback

- Consider computing routes with QoS guarantees
- Router returns packet if no next hop with sufficient QoS can be found
- In ATM networks (PNNI) used for the call-setup packet
- In Internet, may need to be done for _every_ packet!
 - Will it work?

Outline

- Routing in telephone networks
- Distance-vector routing
- Link-state routing
- Choosing link costs
- Hierarchical routing
- Internet routing protocols
- Routing within a broadcast LAN
- Multicast routing
- Routing with policy constraints
- Routing for mobile hosts

Mobile routing

- How to find a mobile host?
- Two sub-problems
 - location (where is the host?)
 - routing (how to get packets to it?)
- We will study mobile routing in the Internet and in the telephone network

Mobile routing in the telephone network

- Each cell phone has a global ID that it tells remote MTSO when turned on (using slotted ALOHA up channel)
- Remote MTSO tells home MTSO
- To phone: call forwarded to remote MTSO to closest base
- From phone: call forwarded to home MTSO from closest base
- New MTSOs can be added as load increases

Mobile routing in the Internet

- Very similar to mobile telephony
 - but outgoing traffic does not go through home
 - and need to use tunnels to forward data
- Use registration packets instead of slotted ALOHA
 - passed on to home address agent
- Old care-of-agent forwards packets to new care-of-agent until home address agent learns of change

Problems

- Security
 - mobile and home address agent share a common secret
 - checked before forwarding packets to COA
- Loops

