The Telephone Network

An Engineering Approach to Computer Networking

Is it a computer network?

- Specialized to carry voice
- Also carries
 - telemetry
 - video
 - fax
 - modem calls
- Internally, uses digital samples
- Switches and switch controllers are special purpose computers
- Principles in its design apply to more general computer networks

Concepts

- Single basic service: two-way voice
 - low end-to-end delay
 - guarantee that an accepted call will run to completion
- Endpoints connected by a circuit
 - like an electrical circuit
 - signals flow both ways (full duplex)
 - associated with bandwidth and buffer resources

The big picture

Fully connected core

- simple routing
- telephone number is a hint about how to route a call
 - but not for 800/888/700/900 numbers
- hierarchically allocated telephone number space

The pieces

- 1. End systems
- 2. Transmission
- 3. Switching
- 4. Signaling

1. End-systems

- Transducers
 - key to carrying voice on wires
- Dialer
- Ringer
- Switchhook

Sidetone

- Transmission circuit needs two wires
- And so does reception circuit
- => 4 wires from every central office to home
- Can we do better?
- Use same pair of wires for both transmission and reception
- Cancel out what is being said
- Ergonomics: leave in a little
 - sidetone
 - unavoidable

Echo

- Shared wires => received signal is also transmitted
- And not completely cancelled out!
- Leads to echo (why?)
- OK for short-distance calls
- For long distance calls, need to put in echo chancellors (why?)
- Expensive
- Lesson
 - keep end-to-end delays as short as possible

Dialing

- Pulse
 - sends a pulse per digit
 - collected by central office
- Tone
 - key press (feep) sends a pair of tones = digit
 - also called Dual Tone Mutifrequency (DTMF)

2. Transmission

- Link characteristics
 - information carrying capacity (bandwidth)
 - information sent as symbols
 - ♦ 1 symbol >= 1 bit
 - propagation delay
 - time for electromagnetic signal to reach other end
 - ♦ light travels at 0.7c in fiber ~8 microseconds/mile
 - ♦ NY to SF => 20 ms; NY to London => 27 ms
 - attenuation
 - degradation in signal quality with distance
 - long lines need regenerators
 - optical amplifiers are here

Transmission: Multiplexing

- Trunks between central offices carry hundreds of conversations
- Can't run thick bundles!
- Instead, send many calls on the same wire
 - multiplexing
- Analog multiplexing
 - bandlimit call to 3.4 KHz and frequency shift onto higher bandwidth trunk
 - obsolete
- Digital multiplexing
 - first convert voice to samples
 - 1 sample = 8 bits of voice
 - 8000 samples/sec => call = 64 Kbps

Transmission: Digital multiplexing

- How to choose a sample?
 - 256 quantization levels
 - logarithmically spaced (why?0
 - sample value = amplitude of nearest quantization level
 - two choices of levels (mu law and A law)
- Time division multiplexing
 - trunk carries bits at a faster bit rate than inputs
 - n input streams, each with a 1-byte buffer
 - output interleaves samples
 - need to serve all inputs in the time it takes one sample to arrive
 - => output runs n times faster than input
 - overhead bits mark end of frame (why?)

Transmission: Multiplexing

- Multiplexed trunks can be multiplexed further
- Need a standard! (why?)
- US/Japan standard is called *Digital Signaling* hierarchy (DS)

Digital Signal	Number of	Number of voice	Bandwidth
Number	previous level	circuits	
	circuits		
DS0		1	64 Kbps
DS1	24	24	1.544Mbps
DS2	4	96	6.312 Mbps
DS3	7	672	44.736 Mbps

Transmission: Link technologies

- Many in use today
 - twisted pair
 - coax cable
 - terrestrial microwave
 - satellite microwave
 - optical fiber
- Increasing amount of bandwidth and cost per foot
- Popular
 - fiber
 - satellite

The cost of a link

- Should you use the cheapest possible link?
- No!
- Cost is in installation, not in link itself
- Builders routinely install twisted pair (CAT 5), fiber, and coax to every room
- Even if only one of them used, still saves money
- Long distance
 - overprovision by up to ten times

Transmission: fiber optic links

- Wonderful stuff!
 - lots of capacity
 - nearly error free
 - very little attenuation
 - hard to tap
- A long thin strand of very pure glass

More on fibers

- Three types
 - step index (multimode)
 - graded index (multimode)
 - single mode
- Multimode
 - cheap
 - use LEDs
 - short distances (up to a few kilometers)
- Single mode
 - expensive
 - use lasers
 - long distances (up to hundreds of kilometers)

Transmission: satellites

- Long distances at high bandwidth
- Geosynchronous
 - 36,000 km in the sky
 - up-down propagation delay of 250 ms
 - bad for interactive communication
 - slots in space limited
- Nongeosynchronous (Low Earth Orbit)
 - appear to move in the sky
 - need more of them
 - handoff is complicated
 - e.g. Iridium

3. Switching

- Problem:
 - each user can potentially call any other user
 - can't have direct lines!
- Switches establish temporary circuits
- Switching systems come in two parts: switch and switch controller

Switching: what does a switch do?

- Transfers data from an input to an output
 - many ports (up to200,000 simultaneous calls)`
 - need high speeds
- Some ways to switch:
 - space division
 - if inputs are multiplexed, need a schedule (why?)

Switching

- Another way to switch
 - time division (time slot interchange or TSI)
 - also needs a schedule (why?)

To build larger switches we combine space and time division switching elements

4. Signaling

- Recall that a switching system has a switch and a switch controller
- Switch controller is in the control plane
 - does not touch voice samples
- Manages the network
 - call routing (collect dialstring and forward call)
 - alarms (ring bell at receiver)
 - billing
 - directory lookup (for 800/888 calls)

Signaling network

- Switch controllers are special purpose computers
- Linked by their own internal computer network
 - Common Channel Interoffice Signaling (CCIS) network
- Earlier design used in-band tones, but was severely hacked
- Also was very rigid (why?)
- Messages on CCIS conform to Signaling System 7 (SS7) spec.

Signaling

- One of the main jobs of switch controller: keep track of state of every endpoint
- Key is state transition diagram

Cellular communication

- Mobile phone talks to a base station on a particular radio frequency
- Aren't enough frequencies to give each mobile a permanent frequency (like a wire)
- Reuse
 - temporal
 - if mobile is off, no frequency assigned to it
 - spatial
 - mobiles in non-adjacent cells can use the same frequency

Problems with cellular communication

- How to complete a call to a mobile?
 - need to track a mobile
 - on power on, mobile tells base of its ID and home
 - calls to home are forwarded to mobile over CCIS
- How to deal with a moving cell phone?
 - nearest base station changes
 - need to hand off existing call to new base station
 - a choice of several complicated protocols

Challenges for the telephone network

- Multimedia
 - simultaneously transmit voice/data/video over the network
 - people seem to want it
 - existing network can't handle it
 - bandwidth requirements
 - burstiness in traffic (TSI can't skip input)
 - change in statistical behavior
- Backward compatibility of new services
 - huge existing infrastructure
 - idiosyncrasies
- Regulation
 - stifles innovation

Challenges

- Competition
 - future telephone networks will no longer be monopolies
 - how to manage the transition?
- Inefficiencies in the system
 - an accumulation of cruft
 - special-purpose systems of the past
 - 'legacy' systems
 - need to change them without breaking the network