Efficient and decentralized discovery of approximate global state S. Keshav

June 2005

Need for global state

- Sensor field: compute mín, max, ave
- P2P network: find popular ítems
- Stream database: find top-K items
- Internet routing: find best interface for destination
- Today's talks
 - BGP policies
 - Channel and power assignment
 - DOMINO data sharing

System assumptions

- Large number of nodes
 - nodes join and leave
 - línks may fail
- Computation may be massively distributed
- Values at each node change over time

Model

N nodes
State at node i is s(i,t)

- $S = \{s(1,t), s(2,t) \dots s(N,t)\}$
- Compute f (S,t)
 - [Bawa et al 2004]

f may be incomputable

f is well defined
but may be uncomputable
Consider a node that sends data, then dies
And the data is lost!

However...

 In practice, f computed over large enough subset of N should be sufficient

Thus, <u>approximate</u> computation of global state

Some more structure...

Taxonomy

Metrícs

Solution approaches

Taxonomy: function

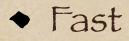
- Function being computed
 - Extremal
 - Histogram
 - Measure of central tendency
 - Routing table
 - Policy
 - Optimal channel allocation

Taxonomy: topology

- Network topology
 - Clíque
 - Random (k)
 - Tree (k)
 - Hypercube
 - PLRG/Hierarchical PLRG
 - Real internet Rocketfuel

Taxonomy: change model

State change model
Change in node state
Nodes join or leave
Links go up and down


Metrícs

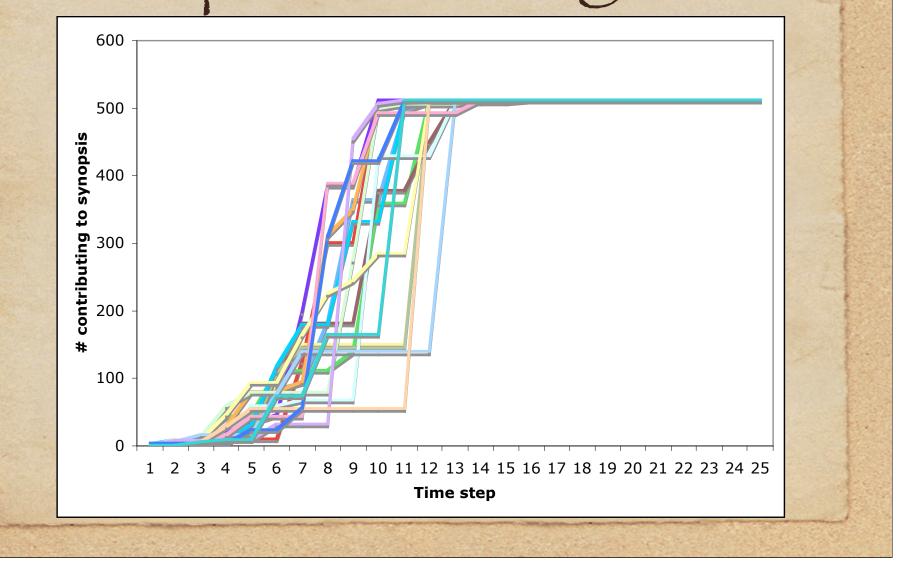
Accuracy
Cost
Speed
Robustness
Scalability

Solution approaches

Centralization
Tree-based
Random walk
Randomized gossip

Centralization and treebased approaches

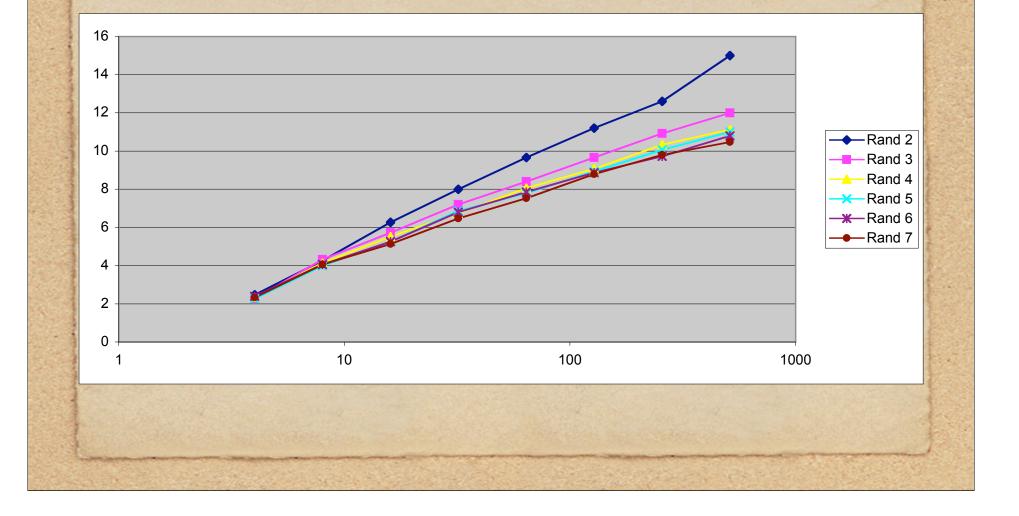
- Accurate
- Low cost
- But not scalable or robust...


Randomízed approaches

- Fast: O(log N + 1/error_bound) time
- Low cost
- Robust no need for error recovery
- Accuracy depends on the scheme, but usually probabilistic
- Scalable
- But -- need to avoid duplication

Avoiding duplication

- Duplicate insensitive statistics (ODI)
 - Convert count to extremal value [Nath]
- Mass conservation
 - 'Push-synopsis' [KDG 03]
- Tag statistics with ID of node adding information
 - Need solve scaling problem


Sample of convergence

Convergence with other topologies

Effect of # neighbours

Open problems

- Which approach is `best'?
- How to model real problems (routing?)
- Practical considerations
 - detecting termination
 - fault tolerance
 - sensitivity to topology
 - removing staleness
 - security

Challenge

- If we can solve these problems, then it opens up a new approach to distributed self-organization
- At the intersection of distributed systems, networking, and databases!