
 

Abstract: We present a hybrid peer-to-peer system architecture 
for keyword-based free-text search in environments with 
heterogeneous document popularities and user lifetimes, such as 
file-sharing applications. Our system incorporates several novel 
design elements that increase its effectiveness. These include the use 
of central servers to collect global statistics, a search algorithm that 
uses these statistics to decide whether to flood or use a DHT, 
adaptive flooding, and delayed publishing. The gain due to these 
techniques is quantified by simulation: compared to a simple hybrid 
approach where queries are sent to the DHT if a flood doesn’t 
return enough results, our system can achieve 2.8 times smaller first 
response time, 6.8 times smaller last response time, and 2.6 times 
smaller bandwidth use, while receiving at least as many results as 
are desired for most queries and maintaining a similar success rate. 

 
I. INTRODUCTION 

 
Consider searching a large distributed peer-to-peer 

system for a document described by keywords {A,B,C}. If 
you wanted to search for this document by specifying all 
three keywords, Distributed Hash Tables (DHTs) provide a 
scaleable, efficient, and elegant solution. But they are poor 
at searches where only one or two of the keywords form 
the query. This is because such partial keyword searches 
require the DHT to maintain inverted indices per keyword 
and join the search results. For searches involving two or 
more common keywords, with correspondingly large 
inverted indices, this join is expensive. Surprisingly, well-
known flooding techniques pioneered by Gnutella and 
Kazaa are far more efficient at such searches, provided the 
documents being searched for are highly replicated (i.e. are 
‘popular’). 

Based on this insight, and similar to the work described 
in Reference [15], we propose a hybrid architecture that 
combines DHTs and flooding to efficiently support partial 
keyword searches. Unlike previous work, we use 
centralized servers to determine and disseminate global 
statistics on keyword and document popularity. Using 
these statistics, an efficient search algorithm can be 
selected for each query: If the query’s keywords match the 
keywords for a popular document, it is flooded among 
local index nodes (high-capacity nodes each storing the list 
of documents available at 50-100 end nodes). Otherwise, a 
global index DHT that maps from keywords to local index 
nodes is used to determine the set of local index nodes 
matching each keyword in the query; the query is 
forwarded to the nodes in intersection of these sets. 

Motivated by existing measurement studies, we make the 
following assumptions: 
1. Documents are identified by a title consisting of a 

small number of keywords.  

2. Queries are of the form “find all documents having a 
given set of keywords in their titles” (AND queries).  

3. Document availability and keyword popularities follow 
a Zipfian distribution [17]. We call a highly replicated 
document popular, and a keyword that appears in 
many titles common. 

4. Document popularities are global: i.e. we do not 
exploit regional variations in the popularity of a 
specific document, such as those considered in the 
work on interest-based locality [27]. 

5. User capabilities are heterogeneous: some users have 
“server-like” characteristics (high bandwidths and long 
uptimes) [20]. 

6. The numbers of documents and keywords are small 
enough that statistics about document and keyword 
popularity can be collected and distributed to users. 

7. Users are satisfied with a limited number of results for 
each query [8]. 

Our system optimizes two metrics: (a) the number of 
results, up to number of results desired [8] and (b) response 
time. Analysis of the system shows that costs of operations 
grow at most logarithmically in the number of users, 
making it highly scalable, and simulations show that our 
optimizations have a significant effect.  
 

II. RELATED WORK 
 
There are several peer-to-peer systems designed 

specifically for efficient partial-keyword search, based on 
DHTs [5, 6, 8, 9, 10, 12, 13, 14]. Our system incorporates 
several ideas presented in past work, such as partitioning of 
global indices by keyword instead of by document [8], 
incremental set intersection [8], node promotion [13], 
compressed Bloom filters to represent set membership [9, 
24, 25] and compression of partial results [9]. However, 
these systems do not take into account the dichotomy 
between popular and unpopular documents. To our 
knowledge, this dichotomy was first explored in the work 
that most closely matches ours [15] where a hybrid search 
engine using both a DHT and flooding is proposed. This 
system first floods each query, then sends it to a DHT-
based search engine (PIER [14]) if too few results are 
found.  

Our system makes several improvements over this 
design. We propose the use of global statistics collected by 
centralized elements to determine whether or not to flood a 
query based on a flooding threshold, low priority flooding 
for unpopular documents with popular keywords, adapting 
the flooding threshold, and adaptive flooding. We also 
propose three other optimizations: delayed publishing to 
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decrease the impact of short-lived peers, maximally 
different neighbor set selection to increase flood 
effectiveness, and efficient batch updates to the Chord 
DHT.  

 
III. ARCHITECTURE 

 
Our hybrid design (Figure 1) incorporates a DHT on 

keywords as well as an unstructured flooding network 
between local index nodes. The flooding network structure 
and global index implementation are left unspecified: a 
Gnutella-like flooding system and the Chord DHT (with 
the join algorithms described in [8]) are assumed for some 
of our optimizations, but most of them will work with a 
random-walk flooding network such as Gia [16] or one that 
organizes neighbors based on interests [27], or with a more 
complex global index like PIER [14]. 

 
 

Figure 1. System Architecture. 
A set of replicated central servers compute global 

statistics as described in Section IV.A. Bootstrap nodes 
that participate in a group communication protocol keep 
track of global and local index nodes, choose which end 
nodes to promote to higher levels in the system, and assign 
new end nodes to local index nodes.  

A small fraction of nodes (say 0.1% to 0.2%) with high 
bandwidths and long uptimes are promoted to global index 
nodes by the bootstrap nodes, forming a Distributed Hash 
Table that maps each keyword to a list of local index nodes 
having documents with that keyword. They use search 
algorithms such as the ones in [8] can to execute queries. 

Another fraction of nodes (say 1% to 2%) are promoted 
to local index nodes that store the lists of documents owned 
by a certain number (50-100) of other end nodes. Each 
local index node participates in a flooding network of 
neighboring local index nodes (with unspecified structure), 
and can flood queries to them. Local index nodes execute 
queries on behalf of the end nodes connected to them, 

choosing a search algorithm as explained in section III.A. 
They process queries directed to them by other local index 
nodes. They also regularly ping their end nodes to check 
whether they’re alive, and report this information to 
bootstrap nodes for use in node promotion. Finally, they 
regularly report document and keyword frequencies among 
their end nodes to the central servers, and receive back the 
resultant global statistics.  

Finally, each end node has a set of documents that it 
shares with other end nodes. It publishes its title list to 
several local index nodes when it joins the system (for 
duplication in case one disconnects), and, if sufficiently 
powerful and long-lived, it may be promoted by a bootstrap 
node to higher levels in the hierarchy.  

 
IV. OPTIMIZATIONS 

 
A. Search Algorithm Selection Using Global Statistics 

 
A query can be performed in two ways in our system: 

1. Flooding: An end node sends the query to a local index 
node, with a “time-to-live” (TTL) hop count. The local 
index node checks for matches among its list of 
documents and sends these to the originator. If the TTL 
is larger than zero, it floods the query to all its 
neighbors with a decremented TTL.  

2. DHT Search: A local index node uses the DHT to find 
the intersection of the lists of local index nodes 
matching each keyword in the query. It then forwards 
the query to all nodes in the intersection. 

How should a local index node decide which algorithm 
to use? In [15] the node always floods first, invoking the 
DHT only if no results are found. This can be inefficient. 
Instead, we propose that a set of central servers 
periodically compute the most common keywords and the 
relative popularities (average number of copies of the 
document per end node), of the most popular (well-
replicated) documents in the system and disseminate this 
information to all local index nodes. Given a set of 
keywords in a query and these statistics, local index nodes 
then go through the following decision process: 

1. If the sum of the relative popularities (i.e. expected 
responses per node) of all the popular documents 
that match the query’s keywords is higher than 
some threshold t, flood with high priority.  

2. If any keyword is not in the list of common 
keywords, use the DHT (since a join is cheap if it 
is initiated at this keyword). 

3. Otherwise, flood with low priority. 
Step 3 handles the case of an unpopular document with 

common keywords. In reality, this case might not occur 
very often, because most users realize that certain 
keywords are very common and avoid them. Nevertheless, 
if it does occur, neither search algorithm is efficient: 
flooding might not locate the document without using a 
large TTL, and DHT search will yield a large list of local 
index nodes that have each of the keywords in the query 
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but not the document itself. We propose flooding with a 
low priority and high TTL: using the DHT would provide 
no advantage, because it would require the query to be sent 
to many local index nodes anyway. We believe the 
introduction of priorities when flooding to be novel. 

We note in passing that our use of centralization in what 
is, in all other respects, a decentralized system, is 
justifiable because of its simplicity and effectiveness. 
Replication of statistics across multiple central servers and 
participation in a group communication protocol adds 
reliability, so that the overall system fails only if all the 
central servers fail, an unlikely event. In any case, failure 
of these servers only affects performance, not correctness. 
We believe that central servers do not reduce scalability 
because they only collect aggregate results from local 
index nodes at large time intervals; the time interval can be 
tuned to reduce the load on the central servers, if necessary. 
We envisage the central servers to be managed by an 
administrative entity, because they provide a convenient 
point of management and control for such an entity. 
 
B. Adaptive Flooding 

Due to the Zipfian distribution of document popularities, 
flooded queries are likely to return very large result sets. 
For instance, Reference [15] shows that 29% of queries in 
Gnutella receive more than 100 results, and some queries 
receive as many as 1500 results. However, most users 
require only a few results, especially in file-sharing 
systems where they usually have a small set of files (e.g all 
files by some author) in mind. Thus, bandwidth is wasted 
when flooding queries for very popular documents. In our 
system, local index nodes only flood queries for popular 
documents, so we could address this by using a fixed, small 
TTL. However, this introduces a ‘magic number’ that we 
would prefer to avoid. 

Gnutella addresses this issue using dynamic querying 
[26], where a query is re-flooded with a larger TTL if too 
few results are found. Instead, we propose an adaptive 
flooding algorithm. Essentially, a node guesses how many 
results are being found in parallel by its peers based on its 
depth in flooding tree and the known average number of 
results per end node so far. If this exceeds the needed 
number of results, flooding stops. Our method only 
performs one flood, so it generates less traffic and has 
shorter response times than dynamic querying. 

Specifically, for a node at depth N in the flood, let 
d1,…,dN, be the degrees of its ancestors (itself included), 
r1,…,rN be the numbers of results found by each ancestor, 
e1,…,eN be the numbers of end nodes at each ancestor, and 
let M be the number of results desired. Then, 
1. Calculate the average number of results per end node, 
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 (assuming isotropicity). 

3. If kR>M, do not flood further. (k is a tuning parameter 
to correct for overestimation, which we set to ~0.8). 

Note that this algorithm is also applicable in a random-
walk flooding network, like [16]: R will then be known 
precisely, and can be passed down along the search path. 
C. Adaptive Flood Threshold 

 
An important parameter in our system is the flooding 

threshold, t. Let the utility of a search be a function directly 
proportional to min(r, R) where r is the number of results 
found and R is the number of results desired, and inversely 
proportional to both the response time and the amount of 
bandwidth used for the query. For popular documents, 
where the expected number of results per node is large, 
flooding provides more utility than DHT search, and for 
unpopular ones, DHT search provides more utility. Clearly, 
it is optimal for t to be chosen as the point of indifference, 
where flooding and DHT search provide equal utility. 

Note that this point can change over time depending, 
among other things, on the number of end nodes, the 
number of documents they store, and the number of nodes 
promoted to global index status. Therefore, the system 
should adjust t over time, instead of using a fixed value. 
Also, adaptive thresholding makes the system more robust. 
For example, in case of failure of the DHT, all queries 
would be flooded because t would decrease rapidly. 

As a simplification, assume that the utility from flooding 
or DHT search can be modeled as a linear function of r, 
where r is the expected number of responses per node for 
that query. r can be estimated by the sum of popularity 
values for all the popular documents matched by a query. 
We propose the following algorithm at each local index 
node for adjusting t over time: 
1. For each query, assign a probability p that it will be 

chosen as a data point for adaptation. For simplicity, 
we choose p to be a linear function of |r – t|. 

2. With probability p, use both flooding and DHT for the 
query and carry out steps 3 and 4. 

3. Compute the utilities of each type of search. 
4. Each query will result in the computation of two data 

points (r, uf) and (r, ud), where uf is the utility from 
flooding, and ud is the utility from a DHT search. If r < 
t, we expect uf > ud, otherwise, uf < ud 

5. After determining Q data point queries, for every two 
pairs of points {(r1, uf

1), (r1, ud
1)} and {(r2, uf

2), (r2, 
ud

2)} let x be the X coordinate of the intersection of the 



line passing through (r1, uf
1) and (r2, uf

2) and (r1, ud
1) 

and (r2, ud
2). Set the new value of t to be the median x 

value from all C(Q,2) pairs. Essentially, each 
intersection point is an estimate of the point of equal 
utility, or point of indifference. The median value 
therefore is a good estimate of the new value for t. 

As an extension, local index nodes can report their t to a 
bootstrap node, which can notify all local index nodes 
when the average t reported changes considerably from the 
previous one. This allows the system as a whole to adapt 
very quickly to changes in population. 

 
D. Delayed Publishing 

 
A significant number of users participating in P2P 

systems are butterflies, who log on for a very short time to 
download a file then disconnect without providing any files 
to other users. Publishing a butterfly’s list of titles to a 
local index node and (more importantly) to the DHT is a 
waste of resources if the user will disconnect several 
minutes later, since it is unlikely that any other user will 
manage to download any file from the butterfly in this 
time. Therefore, we suggest only publishing a user’s title 
list to the local and global indices after a certain delay 
(longer for the DHT than for the local index).  

Note that some P2P systems, such as Kazaa [3] and 
BitTorrent [23], split each file into fixed-size “chunks”. 
This would reduce the publishing delays necessary, since 
even a butterfly might be able to share some chunks during 
its lifetime to make publishing its titles worthwhile.  

 
E. Efficient Batch Updates to the Chord DHT 

 
If the Chord DHT [4] is used for the global index, then a 

simple optimization can be applied to reduce the network 
traffic required for the batch updates performed whenever a 
new end node connects to the system, or an end node 
disconnects. Suppose that a local index node wishes to 
perform an update involving M keywords on a DHT with N 
nodes. The naïve algorithm for doing the search is to 
independently find the DHT node for each keyword and 
perform the update, which requires O(M log N) hops. Our 
batch update algorithm is as follows: 
1. Sort the keywords in increasing order of their images 

under the hash function. 
2. Starting from any DHT node, find the node responsible 

for the first keyword and perform the update required. 
3. Find the node responsible for each subsequent keyword 

starting at the node responsible for the previous 
keyword, and perform the update. 

Because there are M keywords, the average number of 
nodes between the nodes responsible for successive 
keywords is N/M, so the node responsible for the next 
keyword can be found in O(log(N/M)) hops. Therefore, the 
total number of messages is O(M log(N/M)). 

If the Chord nodes are relatively long-lived, we can go 
further and cache the DHT nodes we found responsible for 

each keyword, then perform each update starting from the 
closest known node behind it in the ring (either the node 
for the previous keyword or a cached node). Effectively, 
each local index node keeps its own finger table pointing to 
nodes all around the Chord ring.  
 
F. Maximally Different Neighbor Set Selection 

 
While most flooded queries will be for popular 

documents, some of these documents will be less popular 
than others, and some floods will be for rare documents 
with popular keywords. We propose a simple optimization 
to improve the effectiveness of flooding in finding rarer 
items: have each local index node select its neighbor set so 
as to maximize the number of distinct documents they 
have. After enough end nodes connect to it, a new local 
index node should obtain addresses of more candidates for 
neighbors than it requires, and query them for their lists of 
document titles that it doesn’t already have, using Bloom 
filters [24] for compression. Then, it should check each 
combination of possible neighbors and select the one that 
will provide the largest set of distinct documents that the 
node doesn’t already index. This way, there will be more 
queries for which the node will to find a result nearby.  

In interest-based flooding networks where neighbors are 
selected to be maximally similar [27], we propose instead 
that some fraction of neighbors be maximally different, to 
exploit the well-known small-world phenomenon. 
 

V. ANALYSIS AND SIMULATION 
 
A detailed analysis of the costs of searches and node 

joins in our system can be found in [28]. Here, we will 
merely summarize our results by stating that with adaptive 
flooding and incremental DHT search, the costs of 
DHT/flood searches and node join/leave operations are 
either not proportional to the number, N, of nodes in the 
system, or at worst O(log(N)). Therefore, the system scales 
well to large numbers of users.  

We have also used discrete event simulation to compare 
our peer-to-peer design with others and observe the effect 
of each optimization. We simulate Zipfian document and 
keyword frequencies, as well as flooding fully. But for 
simplicity, we do not simulate incremental DHT search 
algorithms such as [8] in detail; instead, we set the delay 
for DHT searches to b log(g), where b is a constant base 
delay and g is the number of DHT nodes; we then simulate 
querying each local index node in the intersection returned 
by the DHT. Also, we simulate only exact queries for 
specific documents (using the fetch-at-most-once model in 
[17]), because it is difficult to generate realistic inexact 
queries given sets of documents and keywords.  

We used the following base values for simulation 
parameters for all the tests reported here: 

TABLE I 
BASE VALUES FOR SIMULATION PARAMETERS 

Argument Base Value 
Total simulation time 80000 s (about 2.2 hours) 



Number of documents 1500 
Zipf parameter for document popularity 1.0 
New end node creation interval 4.0 s 
End node lifetime distribution The distribution observed in 

[20] for Gnutella hosts 
Average end node query interval 120 s 
Average initial number of documents per 
end node 

20 

Fraction of nodes promoted to local index 5% 
Local index node degree 3 
Maximum flood TTL 3 
Maximum results desired 25 
Number of local index nodes per user 
(replication factor) 

2 

 
We use several query performance metrics to present our 

results. They are defined in Table II:  
 

TABLE II 
QUERY PERFORMANCE METRICS 

Name Meaning 
Recall Percentage of queries that found a matching document, given 

that at least one available document matched the query 
Results Average number of results returned per query, for queries that 

found more than zero results. 
BWC Bandwidth cost in kilobytes per query; the cost of publishing 

is also included in the total cost 
FRT Average first response time for queries that found results. 
LRT Average last response time for queries that found results. 
 

A. System Stability 
 
With the parameters in Table I, Figure II shows that a 

stable population of about 2200 users is achieved after 
about 10 hours. Therefore, results are presented only the 
queries made between times 40,000 and 80,000.  

 
B. Effect of Optimizations 

 
We compared six systems against each other:  

TABLE II 
SYSTEMS COMPARED 

Name Description 
Pure Flooding Flooding among local index nodes, with fixed TTL of 3. 
Pure DHT All queries looked up in a DHT. 
Simple Hybrid Similar system to [15]: queries are first flooded with TTL 

of 2, then looked up in a DHT if fewer than Rmax/2 results 
are received from the flood. 

GS Hybrid Hybrid with algorithm selection based on global statistics 
and adaptive thresholding. 

GSH-AF GS Hybrid with adaptive flooding. 
GSH-AF-DP GS Hybrid with adaptive flooding and delayed 

publishing; the local index publishing delay is 60.0 s, and 
the global index publishing delay is 600.0s. 

 
TABLE III 

PERFORMANCE RESULTS 
Search Method Recall   Results BWC FRT  LRT 
Pure Flooding   95.4% 63.1 1.60 1.50 3.47 
Pure DHT 99.9% 262.6 11.57 3.12 3.32 
Simple Hybrid 99.8% 43.1 1.93 4.34 14.37 
Hybrid with global stats  98.6% 66.6 1.65 1.53 2.81 
Hybrid with global stats and 
adaptive flooding 

98.6% 26.6 0.73 1.48 2.17 

Hybrid  with global statistics 
and adaptive flooding and 
delayed publishing 

98.6% 26.5 0.73 1.38 2.15 

 
We now study effect of each of the optimizations 

presented in Section IV. Consider each column in turn: 
In terms of recall, DHT-based systems perform better, 

since the DHT provides perfect recall for rare queries that 
might find no matches when flooded. Our results actually 
overestimate the recall of flooding because the number of 
total documents is small and the flood depth is large for the 
number of users present: with the full flood depth of 3, 
1+3+27=31 local index nodes are “hit” in a flood, and they 
store the title lists of about 31/0.05 = 620 users, or 28% of 
the total number of users in the system. In a real system 
with 1,000,000 peers online, this would be inefficient, and 
much a smaller percent of the peers would be “hit” by each 
flood. The number of documents would also be larger by 
about 100 times, and although there might be 2-5 times 
more users per local index node, flooding would be far less 
effective at finding rare items.  

In the second column, flooding returns well above the 
required number of results (25). This is because it is 
difficult, if not impossible, to choose a flooding threshold 
that returns just the right number of results. Even with 
dynamic querying (which we did not simulate), it is quite 
likely that increasing TTL by 1 would return more results 
than required, and that too, at the expense of an increase in 
the response time. The simple hybrid scheme reduces the 
number of results since it floods to a TTL of only two, 
instead of the depth of four chosen with pure flooding. 
However, it too returns more results than desired. In 
contrast, with adaptive flooding (the last two rows), the 
number of results closely matches the number required. 
Note that the number of results returned with a pure DHT 
is also large, because we do not implement the incremental 
intersection algorithms in Reference [8] where the DHT 
search is abandoned after the requisite number of results 
have been obtained. 

The bandwidth cost of a pure DHT solution exceeds that 
of flooding because joining inverted indices for common 
keywords is expensive. We see that the simple hybrid has 
an intermediate bandwidth cost because it floods with a 
small TTL but uses a DHT to search only for rare 
documents. Our system improves this performance in two 
ways. First, adaptive flooding makes the cost of flooding 
much lower for popular documents. Second, with delayed 
publishing, we do not incur publishing costs for transient 



nodes. Thus, the full system (last row) has the least 
bandwidth cost. 

The first response time is low for flooding and high for 
DHTs. We see that the hybrid system’s mean FRT is 
actually higher than that of a flood, because for a rare 
document, it pays both the flooding cost as well as the 
DHT cost. In contrast, our system uses global statistics to 
avoid flooding for popular documents. This makes our 
system’s performance as good as flooding. 

The last response time is the time taken for the last 
response or the Rmax’th response (25th response). We see 
that both pure flooding and the DHT have poor LRTs. 
Flooding incurs a high LRT for rare documents, and a 
DHT incurs a high LRT for all documents, because of 
having to navigate potentially very long hops in the 
underlying topology. In contrast, the LRT for our schemes 
are pulled in because of efficient decision making: we only 
use the DHT for rare documents, avoiding the large LRT 
from flooding, and the DHT cost for popular documents. 
 
C. System Scalability 

 
We also tested system scalability by varying the number 

of end nodes. We ran tests with three different end node 
creation intervals: 2.0s, 1.0s, and 0.5s. The approximate 
stable populations of these tests were, respectively, 3600 
end nodes, 7200 end nodes, and 14,400 end nodes. Table V 
shows the results:  

 
TABLE VI 

QUERY METRICS FOR DIFFERENT SIZE SYSTEMS 
Population Recall  #Results FRT LRT 

3600 users 97.8% 63.5 4.5 6.1 
7200 users 97.7% 74.9 4.8 6.6 
14000 users 98.4 98.9 5.2 7.8 

 
The average number of results and average first and last 

response times for flood queries were similar in all three 
cases, because flood search efficiency does not depend on 
the total number of users. However, the average numbers 
of results for DHT searches grew linearly with the number 
of users: from 28.7 for 3600 users, to 58.1 for 7200 users, 
to 120.6 for 14,400 users. In the largest test, DHT searches 
returned more results on average than flood searches. 
These results show the need for incremental DHT search 
[8], which was not simulated, in large systems. 

 
VI. CONCLUSIONS 

We have presented a number of techniques for improving 
the performance of peer to peer networks that support 
hybrid search, including centralized elements to collect 
global statistics to choose a search algorithms for each 
query, adaptive techniques that avoid the use of ‘magic 
numbers’, efficient batch updates for Chord, and delayed 
publishing. We have evaluated these techniques through 
simulation and shown their effectiveness: compared to the 
simple hybrid approach, our system can achieve 2.8 times 
smaller first response time, 6.8 times smaller last response 

time, and 2.6 times smaller bandwidth use, while receiving 
at least as many results as are desired for most queries and 
maintaining a similar success rate. In future work, we plan 
to implement our results in a real system. The system also 
scales well with user population. 
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