

Abstract: We present a hybrid peer-to-peer system architecture
for keyword-based free-text search in environments with
heterogeneous document popularities and user lifetimes, such as
file-sharing applications. Our system incorporates several novel
design elements that increase its effectiveness. These include the use
of central servers to collect global statistics, a search algorithm that
uses these statistics to decide whether to flood or use a DHT,
adaptive flooding, and delayed publishing. The gain due to these
techniques is quantified by simulation: compared to a simple hybrid
approach where queries are sent to the DHT if a flood doesn’t
return enough results, our system can achieve 2.8 times smaller first
response time, 6.8 times smaller last response time, and 2.6 times
smaller bandwidth use, while receiving at least as many results as
are desired for most queries and maintaining a similar success rate.

I. INTRODUCTION

Consider searching a large distributed peer-to-peer

system for a document described by keywords {A,B,C}. If
you wanted to search for this document by specifying all
three keywords, Distributed Hash Tables (DHTs) provide a
scaleable, efficient, and elegant solution. But they are poor
at searches where only one or two of the keywords form
the query. This is because such partial keyword searches
require the DHT to maintain inverted indices per keyword
and join the search results. For searches involving two or
more common keywords, with correspondingly large
inverted indices, this join is expensive. Surprisingly, well-
known flooding techniques pioneered by Gnutella and
Kazaa are far more efficient at such searches, provided the
documents being searched for are highly replicated (i.e. are
‘popular’).

Based on this insight, and similar to the work described
in Reference [15], we propose a hybrid architecture that
combines DHTs and flooding to efficiently support partial
keyword searches. Unlike previous work, we use
centralized servers to determine and disseminate global
statistics on keyword and document popularity. Using
these statistics, an efficient search algorithm can be
selected for each query: If the query’s keywords match the
keywords for a popular document, it is flooded among
local index nodes (high-capacity nodes each storing the list
of documents available at 50-100 end nodes). Otherwise, a
global index DHT that maps from keywords to local index
nodes is used to determine the set of local index nodes
matching each keyword in the query; the query is
forwarded to the nodes in intersection of these sets.

Motivated by existing measurement studies, we make the
following assumptions:
1. Documents are identified by a title consisting of a

small number of keywords.

2. Queries are of the form “find all documents having a
given set of keywords in their titles” (AND queries).

3. Document availability and keyword popularities follow
a Zipfian distribution [17]. We call a highly replicated
document popular, and a keyword that appears in
many titles common.

4. Document popularities are global: i.e. we do not
exploit regional variations in the popularity of a
specific document, such as those considered in the
work on interest-based locality [27].

5. User capabilities are heterogeneous: some users have
“server-like” characteristics (high bandwidths and long
uptimes) [20].

6. The numbers of documents and keywords are small
enough that statistics about document and keyword
popularity can be collected and distributed to users.

7. Users are satisfied with a limited number of results for
each query [8].

Our system optimizes two metrics: (a) the number of
results, up to number of results desired [8] and (b) response
time. Analysis of the system shows that costs of operations
grow at most logarithmically in the number of users,
making it highly scalable, and simulations show that our
optimizations have a significant effect.

II. RELATED WORK

There are several peer-to-peer systems designed

specifically for efficient partial-keyword search, based on
DHTs [5, 6, 8, 9, 10, 12, 13, 14]. Our system incorporates
several ideas presented in past work, such as partitioning of
global indices by keyword instead of by document [8],
incremental set intersection [8], node promotion [13],
compressed Bloom filters to represent set membership [9,
24, 25] and compression of partial results [9]. However,
these systems do not take into account the dichotomy
between popular and unpopular documents. To our
knowledge, this dichotomy was first explored in the work
that most closely matches ours [15] where a hybrid search
engine using both a DHT and flooding is proposed. This
system first floods each query, then sends it to a DHT-
based search engine (PIER [14]) if too few results are
found.

Our system makes several improvements over this
design. We propose the use of global statistics collected by
centralized elements to determine whether or not to flood a
query based on a flooding threshold, low priority flooding
for unpopular documents with popular keywords, adapting
the flooding threshold, and adaptive flooding. We also
propose three other optimizations: delayed publishing to

Improving Hybrid Keyword-Based Search

Matei A. Zaharia and Srinivasan Keshav

decrease the impact of short-lived peers, maximally
different neighbor set selection to increase flood
effectiveness, and efficient batch updates to the Chord
DHT.

III. ARCHITECTURE

Our hybrid design (Figure 1) incorporates a DHT on

keywords as well as an unstructured flooding network
between local index nodes. The flooding network structure
and global index implementation are left unspecified: a
Gnutella-like flooding system and the Chord DHT (with
the join algorithms described in [8]) are assumed for some
of our optimizations, but most of them will work with a
random-walk flooding network such as Gia [16] or one that
organizes neighbors based on interests [27], or with a more
complex global index like PIER [14].

Figure 1. System Architecture.
A set of replicated central servers compute global

statistics as described in Section IV.A. Bootstrap nodes
that participate in a group communication protocol keep
track of global and local index nodes, choose which end
nodes to promote to higher levels in the system, and assign
new end nodes to local index nodes.

A small fraction of nodes (say 0.1% to 0.2%) with high
bandwidths and long uptimes are promoted to global index
nodes by the bootstrap nodes, forming a Distributed Hash
Table that maps each keyword to a list of local index nodes
having documents with that keyword. They use search
algorithms such as the ones in [8] can to execute queries.

Another fraction of nodes (say 1% to 2%) are promoted
to local index nodes that store the lists of documents owned
by a certain number (50-100) of other end nodes. Each
local index node participates in a flooding network of
neighboring local index nodes (with unspecified structure),
and can flood queries to them. Local index nodes execute
queries on behalf of the end nodes connected to them,

choosing a search algorithm as explained in section III.A.
They process queries directed to them by other local index
nodes. They also regularly ping their end nodes to check
whether they’re alive, and report this information to
bootstrap nodes for use in node promotion. Finally, they
regularly report document and keyword frequencies among
their end nodes to the central servers, and receive back the
resultant global statistics.

Finally, each end node has a set of documents that it
shares with other end nodes. It publishes its title list to
several local index nodes when it joins the system (for
duplication in case one disconnects), and, if sufficiently
powerful and long-lived, it may be promoted by a bootstrap
node to higher levels in the hierarchy.

IV. OPTIMIZATIONS

A. Search Algorithm Selection Using Global Statistics

A query can be performed in two ways in our system:

1. Flooding: An end node sends the query to a local index
node, with a “time-to-live” (TTL) hop count. The local
index node checks for matches among its list of
documents and sends these to the originator. If the TTL
is larger than zero, it floods the query to all its
neighbors with a decremented TTL.

2. DHT Search: A local index node uses the DHT to find
the intersection of the lists of local index nodes
matching each keyword in the query. It then forwards
the query to all nodes in the intersection.

How should a local index node decide which algorithm
to use? In [15] the node always floods first, invoking the
DHT only if no results are found. This can be inefficient.
Instead, we propose that a set of central servers
periodically compute the most common keywords and the
relative popularities (average number of copies of the
document per end node), of the most popular (well-
replicated) documents in the system and disseminate this
information to all local index nodes. Given a set of
keywords in a query and these statistics, local index nodes
then go through the following decision process:

1. If the sum of the relative popularities (i.e. expected
responses per node) of all the popular documents
that match the query’s keywords is higher than
some threshold t, flood with high priority.

2. If any keyword is not in the list of common
keywords, use the DHT (since a join is cheap if it
is initiated at this keyword).

3. Otherwise, flood with low priority.
Step 3 handles the case of an unpopular document with

common keywords. In reality, this case might not occur
very often, because most users realize that certain
keywords are very common and avoid them. Nevertheless,
if it does occur, neither search algorithm is efficient:
flooding might not locate the document without using a
large TTL, and DHT search will yield a large list of local
index nodes that have each of the keywords in the query

Global Index Nodes
(e.g. Chord DHT)

Local Index Nodes

End Nodes

Central Servers

Bootstrap
Nodes

but not the document itself. We propose flooding with a
low priority and high TTL: using the DHT would provide
no advantage, because it would require the query to be sent
to many local index nodes anyway. We believe the
introduction of priorities when flooding to be novel.

We note in passing that our use of centralization in what
is, in all other respects, a decentralized system, is
justifiable because of its simplicity and effectiveness.
Replication of statistics across multiple central servers and
participation in a group communication protocol adds
reliability, so that the overall system fails only if all the
central servers fail, an unlikely event. In any case, failure
of these servers only affects performance, not correctness.
We believe that central servers do not reduce scalability
because they only collect aggregate results from local
index nodes at large time intervals; the time interval can be
tuned to reduce the load on the central servers, if necessary.
We envisage the central servers to be managed by an
administrative entity, because they provide a convenient
point of management and control for such an entity.

B. Adaptive Flooding

Due to the Zipfian distribution of document popularities,
flooded queries are likely to return very large result sets.
For instance, Reference [15] shows that 29% of queries in
Gnutella receive more than 100 results, and some queries
receive as many as 1500 results. However, most users
require only a few results, especially in file-sharing
systems where they usually have a small set of files (e.g all
files by some author) in mind. Thus, bandwidth is wasted
when flooding queries for very popular documents. In our
system, local index nodes only flood queries for popular
documents, so we could address this by using a fixed, small
TTL. However, this introduces a ‘magic number’ that we
would prefer to avoid.

Gnutella addresses this issue using dynamic querying
[26], where a query is re-flooded with a larger TTL if too
few results are found. Instead, we propose an adaptive
flooding algorithm. Essentially, a node guesses how many
results are being found in parallel by its peers based on its
depth in flooding tree and the known average number of
results per end node so far. If this exceeds the needed
number of results, flooding stops. Our method only
performs one flood, so it generates less traffic and has
shorter response times than dynamic querying.

Specifically, for a node at depth N in the flood, let
d1,…,dN, be the degrees of its ancestors (itself included),
r1,…,rN be the numbers of results found by each ancestor,
e1,…,eN be the numbers of end nodes at each ancestor, and
let M be the number of results desired. Then,
1. Calculate the average number of results per end node,

!! ==
=

N

i i

N

i i
err
11

/ .

2. Estimate the number of results found in total,
! "=

#

=
$=

N

i

i

j jdrR
1

1

1

 (assuming isotropicity).

3. If kR>M, do not flood further. (k is a tuning parameter
to correct for overestimation, which we set to ~0.8).

Note that this algorithm is also applicable in a random-
walk flooding network, like [16]: R will then be known
precisely, and can be passed down along the search path.
C. Adaptive Flood Threshold

An important parameter in our system is the flooding

threshold, t. Let the utility of a search be a function directly
proportional to min(r, R) where r is the number of results
found and R is the number of results desired, and inversely
proportional to both the response time and the amount of
bandwidth used for the query. For popular documents,
where the expected number of results per node is large,
flooding provides more utility than DHT search, and for
unpopular ones, DHT search provides more utility. Clearly,
it is optimal for t to be chosen as the point of indifference,
where flooding and DHT search provide equal utility.

Note that this point can change over time depending,
among other things, on the number of end nodes, the
number of documents they store, and the number of nodes
promoted to global index status. Therefore, the system
should adjust t over time, instead of using a fixed value.
Also, adaptive thresholding makes the system more robust.
For example, in case of failure of the DHT, all queries
would be flooded because t would decrease rapidly.

As a simplification, assume that the utility from flooding
or DHT search can be modeled as a linear function of r,
where r is the expected number of responses per node for
that query. r can be estimated by the sum of popularity
values for all the popular documents matched by a query.
We propose the following algorithm at each local index
node for adjusting t over time:
1. For each query, assign a probability p that it will be

chosen as a data point for adaptation. For simplicity,
we choose p to be a linear function of |r – t|.

2. With probability p, use both flooding and DHT for the
query and carry out steps 3 and 4.

3. Compute the utilities of each type of search.
4. Each query will result in the computation of two data

points (r, uf) and (r, ud), where uf is the utility from
flooding, and ud is the utility from a DHT search. If r <
t, we expect uf > ud, otherwise, uf < ud

5. After determining Q data point queries, for every two
pairs of points {(r1, uf

1), (r1, ud
1)} and {(r2, uf

2), (r2,
ud

2)} let x be the X coordinate of the intersection of the

line passing through (r1, uf
1) and (r2, uf

2) and (r1, ud
1)

and (r2, ud
2). Set the new value of t to be the median x

value from all C(Q,2) pairs. Essentially, each
intersection point is an estimate of the point of equal
utility, or point of indifference. The median value
therefore is a good estimate of the new value for t.

As an extension, local index nodes can report their t to a
bootstrap node, which can notify all local index nodes
when the average t reported changes considerably from the
previous one. This allows the system as a whole to adapt
very quickly to changes in population.

D. Delayed Publishing

A significant number of users participating in P2P

systems are butterflies, who log on for a very short time to
download a file then disconnect without providing any files
to other users. Publishing a butterfly’s list of titles to a
local index node and (more importantly) to the DHT is a
waste of resources if the user will disconnect several
minutes later, since it is unlikely that any other user will
manage to download any file from the butterfly in this
time. Therefore, we suggest only publishing a user’s title
list to the local and global indices after a certain delay
(longer for the DHT than for the local index).

Note that some P2P systems, such as Kazaa [3] and
BitTorrent [23], split each file into fixed-size “chunks”.
This would reduce the publishing delays necessary, since
even a butterfly might be able to share some chunks during
its lifetime to make publishing its titles worthwhile.

E. Efficient Batch Updates to the Chord DHT

If the Chord DHT [4] is used for the global index, then a

simple optimization can be applied to reduce the network
traffic required for the batch updates performed whenever a
new end node connects to the system, or an end node
disconnects. Suppose that a local index node wishes to
perform an update involving M keywords on a DHT with N
nodes. The naïve algorithm for doing the search is to
independently find the DHT node for each keyword and
perform the update, which requires O(M log N) hops. Our
batch update algorithm is as follows:
1. Sort the keywords in increasing order of their images

under the hash function.
2. Starting from any DHT node, find the node responsible

for the first keyword and perform the update required.
3. Find the node responsible for each subsequent keyword

starting at the node responsible for the previous
keyword, and perform the update.

Because there are M keywords, the average number of
nodes between the nodes responsible for successive
keywords is N/M, so the node responsible for the next
keyword can be found in O(log(N/M)) hops. Therefore, the
total number of messages is O(M log(N/M)).

If the Chord nodes are relatively long-lived, we can go
further and cache the DHT nodes we found responsible for

each keyword, then perform each update starting from the
closest known node behind it in the ring (either the node
for the previous keyword or a cached node). Effectively,
each local index node keeps its own finger table pointing to
nodes all around the Chord ring.

F. Maximally Different Neighbor Set Selection

While most flooded queries will be for popular

documents, some of these documents will be less popular
than others, and some floods will be for rare documents
with popular keywords. We propose a simple optimization
to improve the effectiveness of flooding in finding rarer
items: have each local index node select its neighbor set so
as to maximize the number of distinct documents they
have. After enough end nodes connect to it, a new local
index node should obtain addresses of more candidates for
neighbors than it requires, and query them for their lists of
document titles that it doesn’t already have, using Bloom
filters [24] for compression. Then, it should check each
combination of possible neighbors and select the one that
will provide the largest set of distinct documents that the
node doesn’t already index. This way, there will be more
queries for which the node will to find a result nearby.

In interest-based flooding networks where neighbors are
selected to be maximally similar [27], we propose instead
that some fraction of neighbors be maximally different, to
exploit the well-known small-world phenomenon.

V. ANALYSIS AND SIMULATION

A detailed analysis of the costs of searches and node

joins in our system can be found in [28]. Here, we will
merely summarize our results by stating that with adaptive
flooding and incremental DHT search, the costs of
DHT/flood searches and node join/leave operations are
either not proportional to the number, N, of nodes in the
system, or at worst O(log(N)). Therefore, the system scales
well to large numbers of users.

We have also used discrete event simulation to compare
our peer-to-peer design with others and observe the effect
of each optimization. We simulate Zipfian document and
keyword frequencies, as well as flooding fully. But for
simplicity, we do not simulate incremental DHT search
algorithms such as [8] in detail; instead, we set the delay
for DHT searches to b log(g), where b is a constant base
delay and g is the number of DHT nodes; we then simulate
querying each local index node in the intersection returned
by the DHT. Also, we simulate only exact queries for
specific documents (using the fetch-at-most-once model in
[17]), because it is difficult to generate realistic inexact
queries given sets of documents and keywords.

We used the following base values for simulation
parameters for all the tests reported here:

TABLE I
BASE VALUES FOR SIMULATION PARAMETERS

Argument Base Value
Total simulation time 80000 s (about 2.2 hours)

Number of documents 1500
Zipf parameter for document popularity 1.0
New end node creation interval 4.0 s
End node lifetime distribution The distribution observed in

[20] for Gnutella hosts
Average end node query interval 120 s
Average initial number of documents per
end node

20

Fraction of nodes promoted to local index 5%
Local index node degree 3
Maximum flood TTL 3
Maximum results desired 25
Number of local index nodes per user
(replication factor)

2

We use several query performance metrics to present our

results. They are defined in Table II:

TABLE II
QUERY PERFORMANCE METRICS

Name Meaning
Recall Percentage of queries that found a matching document, given

that at least one available document matched the query
Results Average number of results returned per query, for queries that

found more than zero results.
BWC Bandwidth cost in kilobytes per query; the cost of publishing

is also included in the total cost
FRT Average first response time for queries that found results.
LRT Average last response time for queries that found results.

A. System Stability

With the parameters in Table I, Figure II shows that a

stable population of about 2200 users is achieved after
about 10 hours. Therefore, results are presented only the
queries made between times 40,000 and 80,000.

B. Effect of Optimizations

We compared six systems against each other:

TABLE II
SYSTEMS COMPARED

Name Description
Pure Flooding Flooding among local index nodes, with fixed TTL of 3.
Pure DHT All queries looked up in a DHT.
Simple Hybrid Similar system to [15]: queries are first flooded with TTL

of 2, then looked up in a DHT if fewer than Rmax/2 results
are received from the flood.

GS Hybrid Hybrid with algorithm selection based on global statistics
and adaptive thresholding.

GSH-AF GS Hybrid with adaptive flooding.
GSH-AF-DP GS Hybrid with adaptive flooding and delayed

publishing; the local index publishing delay is 60.0 s, and
the global index publishing delay is 600.0s.

TABLE III

PERFORMANCE RESULTS
Search Method Recall Results BWC FRT LRT
Pure Flooding 95.4% 63.1 1.60 1.50 3.47
Pure DHT 99.9% 262.6 11.57 3.12 3.32
Simple Hybrid 99.8% 43.1 1.93 4.34 14.37
Hybrid with global stats 98.6% 66.6 1.65 1.53 2.81
Hybrid with global stats and
adaptive flooding

98.6% 26.6 0.73 1.48 2.17

Hybrid with global statistics
and adaptive flooding and
delayed publishing

98.6% 26.5 0.73 1.38 2.15

We now study effect of each of the optimizations

presented in Section IV. Consider each column in turn:
In terms of recall, DHT-based systems perform better,

since the DHT provides perfect recall for rare queries that
might find no matches when flooded. Our results actually
overestimate the recall of flooding because the number of
total documents is small and the flood depth is large for the
number of users present: with the full flood depth of 3,
1+3+27=31 local index nodes are “hit” in a flood, and they
store the title lists of about 31/0.05 = 620 users, or 28% of
the total number of users in the system. In a real system
with 1,000,000 peers online, this would be inefficient, and
much a smaller percent of the peers would be “hit” by each
flood. The number of documents would also be larger by
about 100 times, and although there might be 2-5 times
more users per local index node, flooding would be far less
effective at finding rare items.

In the second column, flooding returns well above the
required number of results (25). This is because it is
difficult, if not impossible, to choose a flooding threshold
that returns just the right number of results. Even with
dynamic querying (which we did not simulate), it is quite
likely that increasing TTL by 1 would return more results
than required, and that too, at the expense of an increase in
the response time. The simple hybrid scheme reduces the
number of results since it floods to a TTL of only two,
instead of the depth of four chosen with pure flooding.
However, it too returns more results than desired. In
contrast, with adaptive flooding (the last two rows), the
number of results closely matches the number required.
Note that the number of results returned with a pure DHT
is also large, because we do not implement the incremental
intersection algorithms in Reference [8] where the DHT
search is abandoned after the requisite number of results
have been obtained.

The bandwidth cost of a pure DHT solution exceeds that
of flooding because joining inverted indices for common
keywords is expensive. We see that the simple hybrid has
an intermediate bandwidth cost because it floods with a
small TTL but uses a DHT to search only for rare
documents. Our system improves this performance in two
ways. First, adaptive flooding makes the cost of flooding
much lower for popular documents. Second, with delayed
publishing, we do not incur publishing costs for transient

nodes. Thus, the full system (last row) has the least
bandwidth cost.

The first response time is low for flooding and high for
DHTs. We see that the hybrid system’s mean FRT is
actually higher than that of a flood, because for a rare
document, it pays both the flooding cost as well as the
DHT cost. In contrast, our system uses global statistics to
avoid flooding for popular documents. This makes our
system’s performance as good as flooding.

The last response time is the time taken for the last
response or the Rmax’th response (25th response). We see
that both pure flooding and the DHT have poor LRTs.
Flooding incurs a high LRT for rare documents, and a
DHT incurs a high LRT for all documents, because of
having to navigate potentially very long hops in the
underlying topology. In contrast, the LRT for our schemes
are pulled in because of efficient decision making: we only
use the DHT for rare documents, avoiding the large LRT
from flooding, and the DHT cost for popular documents.

C. System Scalability

We also tested system scalability by varying the number

of end nodes. We ran tests with three different end node
creation intervals: 2.0s, 1.0s, and 0.5s. The approximate
stable populations of these tests were, respectively, 3600
end nodes, 7200 end nodes, and 14,400 end nodes. Table V
shows the results:

TABLE VI

QUERY METRICS FOR DIFFERENT SIZE SYSTEMS
Population Recall #Results FRT LRT

3600 users 97.8% 63.5 4.5 6.1
7200 users 97.7% 74.9 4.8 6.6
14000 users 98.4 98.9 5.2 7.8

The average number of results and average first and last

response times for flood queries were similar in all three
cases, because flood search efficiency does not depend on
the total number of users. However, the average numbers
of results for DHT searches grew linearly with the number
of users: from 28.7 for 3600 users, to 58.1 for 7200 users,
to 120.6 for 14,400 users. In the largest test, DHT searches
returned more results on average than flood searches.
These results show the need for incremental DHT search
[8], which was not simulated, in large systems.

VI. CONCLUSIONS

We have presented a number of techniques for improving
the performance of peer to peer networks that support
hybrid search, including centralized elements to collect
global statistics to choose a search algorithms for each
query, adaptive techniques that avoid the use of ‘magic
numbers’, efficient batch updates for Chord, and delayed
publishing. We have evaluated these techniques through
simulation and shown their effectiveness: compared to the
simple hybrid approach, our system can achieve 2.8 times
smaller first response time, 6.8 times smaller last response

time, and 2.6 times smaller bandwidth use, while receiving
at least as many results as are desired for most queries and
maintaining a similar success rate. In future work, we plan
to implement our results in a real system. The system also
scales well with user population.

VII. REFERENCES

[1] Napster, http://www.napster.com
[2] Gnutella, http://www.gnutella.com
[3] Kazaa, http://www.kazaa.com/us/index.htm
[4] Stoica, I, Morris, R, Karger, D, Kaashoek, M.F, and Balakrishnan, H,

“Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications”,
ACM SIGCOMM 2001.

[5] Dwarkadas, S. and Tang, C, “Hybrid Global-Local Indexing for Efficient
Peer-to-Peer Information Retrieval,” NDSI 2004.

[6] Harren, M, Hellerstein, J. M, Huebsch, R, Loo, B. T, Shenker, S, and
Stoica, I, “Complex Queries in DHT-based Peer-to-Peer Networks,” IPTPS
2002.

[7] Suel, T, Mathur, C, Wu, J, Zhang, J, Delis, A, Kharrazi, M, Long, X, and
Shanmugasundaram, K, “ODISSEA: A Peer-to-Peer Architecture for
Scalable Web Search and Information Retrieval,” 6th International
Workshop on the Web and Databases (WebDB), June 2003.

[8] Reynolds, P, and Vahdat, A: “Efficient Peer-to-Peer Keyword
Searching,” unpublished.

[9] Li, J, Loo, B.T, Hellerstein, J.M, Kaashoek, M.F, Karger, D.R, and
Morris, R, “On the Feasibility of Peer-to-Peer Web Indexing and Search,”
IPTPS 2003.

[10] Lopes, N.A.F, “A Peer-to-Peer Inverted Index Implementation for
Word-Based Content Search,” Simposio Doutoral do Departamento de
Informatica da Universidade do Minho, October 2003.

[11] Schmidt, C, and Parashar, M, “Flexible Information Discovery in
Decentralized Distributed Systems,” Twelfth IEEE International Symposium
on High-Performance Distributed Computing, June 2003

[12] Dwarkadas, S, Tang, C, and Xu, Z, “Peer-to-Peer Information Retrieval
using Self-Organizing Semantic Overlay Networks,” ACM SIGCOMM
2003.

[13] Mahalingam, M, Tang, C, and Xu, Z: “pSearch: Information Retrieval
in Structured Overlays,” First Workshop on Hot Topics in Networks,
October 2002.

[14] Huebsch, R, Hellerstein, J.M, Lanham, N, Loo, B.T, Shenker, S, and
Stoica, I: “Querying the Internet with PIER,” VLDB 2003.

[15] Loo, B.T, Hyebsch, R, Stoica, I, and Hellerstein, J.M: “The Case for a
Hybrid P2P Search Infrastructure,” IPTS 2004.

[16] Chawathe, I, Ratnasamy, S, Breslau, L, Lanham, N, and Shenker, S:
“Making Gnutella-like P2P Systems Scalable,” ACM SIGCOMM 2003.

[17] Gummadi, K.P, Dunn, R.J, Saroiu, S, Gribble, S.D, Levy, M, and
Zahorjan, J, “Measuring, Modeling and Analysis of a Peer-to-Peer File-
Sharing Workload”, SOSP 2003.

[18] Gribble, S.D, Gummadi, K.P, Levy, H.M, and Saroiu, S, “An Analysis
of Internet Content Delivery Systems,” OSDI 2002.

[19] Dictionary Facts - Oxford English Dictionary,
http://www.oed.com/about/facts.html

[20] Gribble, S.D, Gummadi, K.P, and Saroiu, S, “Measuring and Analyzing
the Characteristics of Napster and Gnutella Hosts,” Multimedia Systems
Journal, vol. 8 issue 3, November 2002.

[21] Garcia-Molina H, Kamvar, S.D, and Schlosser, M.T, “The EigenTrust
Algorithm for Reputation Management in P2P Networks,” Proceedings of
the Twelfth International World Wide Web Conference, May, 2003

[22] Golle, P, Leyton-Brown, K, and Mironov, I, “Incentives for Sharing in
Peer-to-Peer Networks,” Proceedings of Electronic Commerce'01, 2001.

[23] BitTorrent, http:// bitconjurer.org/BitTorrent/
[24] B. Bloom, “Space/time tradeoffs in hash coding with allowable errors,”

Communications of the ACM, vol. 13, no. 7, pp. 422–426, July 1970.
[25] Mitzenmacher, M, “Compressed Bloom Filters,” Twentieth ACM

Symposium on Principles of Distributed Computing, August 2001.
[26] Gnutella Developer Forum: Gnutella Dynamic Query Protocol 0.1,

http://www.limewire.com/developer/dynamic_query.ht
ml

[27] Sripanidkulchai, K., Maggs, B., and Zhang, H., ``Efficient Content
Location Using Interest-Based Locality in Peer-to-Peer Systems'', IEEE
INFOCOM'03, April 2003.

[28] Zaharia, M.A. and Keshav, S., “Efficient Search Algorithms for Hybrid
Peer-to-Peer Systems,” University of Waterloo Technical Report UW-CS-
2004-55.

