
An Incremental Approach for Maintaining
Up-to-Date Global Aggregates

Nabeel Ahmed, David Hadaller and Srinivasan Keshav
University of Waterloo

200 University Avenue West
Waterloo, Ontario N2L 3G1

{n3ahmed, dthadaller, keshav}@cs.uwaterloo.ca

Abstract

In massively distributed systems, having local ac-
cess to global information is a key component for many
applications. Examples include applications that aggre-
gate sensor values, search in Peer-to-Peer systems, or
perform Top-K queries in stream-oriented databases. Ef-
ficient computation of such aggregates is difficult due to
massive scale and system dynamics and has led to the pro-
posal of several approximate techniques such as random-
ized gossip-based algorithms. The focus of our work –
maintenanceoffreshness of such aggregates – has
not been adequately addressed in the literature. We moti-
vate the need to adopt an incremental algorithm for main-
taining these aggregates. In doing so, we make three broad
contributions to this field. First, we identify the key com-
ponents required for an incremental update algorithm.
Second, we present solutions for each component by us-
ing: 1) Incremental routing techniques such as incremen-
tal random walk and incremental gossip, and 2) A variant
of the well-known FM aggregation scheme that signifi-
cantly reduces protocol overhead. Finally, we present a de-
tailed performance evaluation of our techniques, and find
that we can achieve a reduction of as much as 60% in com-
putation time compared to existing methods.

1. Introduction

Large decentralized and self-organizing networks are in-
creasingly becoming more prevalent. In such systems, there
is a need to have local access to global information, such as
a global aggregate [14]. For example:

• In a sensor network, one may want to compute the av-
erage sensor values; extremal sensor value, such as min
or max; or quantile values, such as the median.

• In Peer-to-Peer (P2P) systems, it is often necessary
to make local decisions based on global information.
Examples include: choosing how to search for a doc-
ument, choosing when to replicate a document in a
replicated file system, and performing ranking in a full-
text search system. PlanetP [4] is an example of the lat-
ter, which uses a gossip-based protocol to provide lo-
cal access to vital ranking aggregates such as term fre-
quencies.

• In a distributed database that records the number of hits
to an item in a content distribution network, the set of
K documents that have the most hits (top-k query) may
be of interest. Having local access to this global aggre-
gate allows for load balancing of popular documents.

The differing dynamics in each of these systems present
different challenges for maintaining global aggregates. To
bring some structure to the problem, we categorize systems
based on their rate of change (ornetwork churn).

1. Stable: No data or membership changes occur, there-
fore a global aggregate, once computed, does not need
updating.

2. Semi-stable: Data changes and nodes joining and
leaving occurs relatively infrequently. In this case, in-
cremental updates are more efficient than performing
a complete re-computation.

3. Chaotic: Data and node changes are frequent, thus in-
crementally updating a global aggregate may be less
efficient than re-computing the aggregate on demand.

The value of a global aggregate changes not at all in sta-
ble systems, and too often to be incrementally maintained
in chaotic systems. Thus, our focus is onincremental al-
gorithms to maintain global aggregates in semi-stable net-
works. This is a challenging problem due to the dynamic
nature of the system and the need for cost-efficiency.

A key contribution of our work stems from the follow-
ing intuition. Suppose some global aggregate has been com-

puted in a decentralized fashion and then a change occurs at
some node in the system.

1. If the change in the system is insignificant one can, per-
haps, get away with doing nothing.

2. If the change is significant but less than some thresh-
old β, then an incrementalupdate algorithmshould be
executed.

3. If the change is extreme (i.e. greater thanβ), a re-
computation over the entire network should be per-
formed.

This intuition allows us to decide if an incremental up-
date is needed at all. Once we identify the need for an in-
cremental update, it turns out that it is more efficient to sim-
ply modify the existing global aggregate, rather than recom-
pute the global aggregate. Moreover, it is also much more
efficient to use a modified routing protocol to disseminate
the incremental updates rather than use a standard message
routing protocol. The three main contributions of our work
are, therefore, (a) the use of a threshold to initiate incre-
mental updates (b) the design of an incremental version of
a global aggregate and (c) the design of incremental ap-
proaches to disseminating these incremental updates.

We elaborate these ideas as follows. We first identify the
elements required for an incremental update algorithm: up-
date threshold, aggregation mechanism, and routing pro-
tocol (Section 2). We then describe our incremental tech-
niques in Section 3. We show the correctness of our ap-
proach by means of a formal analysis in Section 3.4. Fi-
nally, we perform a detailed evaluation of the performance
gains achieved using our incremental update algorithm, and
explore a four-way tradeoff between accuracy, convergence
time, cost, and robustness in Section 4.

2. Background and Related Work

In this section, we briefly discuss the background related
to the techniques we present in this paper. In Section 2.1, we
present the formal model that we use later to describe our
approach. In Section 2.2, we present previous work that has
motivated the need for maintaining global aggregates. Sec-
tion 2.3 presents routing techniques that we explore for our
incremental protocols. Finally, section 2.4 describes the ag-
gregation mechanism that we enhance in our work and sec-
tion 2.5 formally describes it in light of the model described
in section 2.1.

2.1. Model

In this section, we briefly outline the theoretical frame-
work that we adopt in order to describe our aggregates. We
also present a proof of how it is theoretically impossible to
computeexactglobal aggregates in a dynamic system, thus

motivating the need to compute approximate global aggre-
gates in our algorithms.

Consider a distributed system withN nodes where, at
time t, theith node has local informationst

i and knows the
IDs of its neighbors (i.e.nbrt

i). In many problems of inter-
est,N is very large and nodes arrive and depart over time.
Moreover, communications between nodes may be lost.

Our goal is to have the nodes self-organize to compute
a functionf(St) whereSt is a global multi-setdefined as
St = {st

1, s
t
2, ..., s

t
i}; st

i is a local set at nodei that consti-
tutes a part of the global multi-setSt. f can be any aggrega-
tion query. Using this framework, in later sections, we de-
scribe the problem of computing and maintaining global ag-
gregates for this multi-set.

Theorem 1. Due to unreliable nodes and links, although
f(St) is well-defined, it may not be computable.

Proof. Consider a two-node system where node 1 and node
2 collaborate to compute some global aggregate. Without
loss of generality, suppose node 1 is chosen to act as a coor-
dinator and wishes to compute the global aggregate at time
t. If node 2’s value changes just before this time, the com-
munication of this changed value from node 2 to node 1 at
time t is lost, and immediately after communication, node
2 also dies, then there is no way forf(St) to be computed.
Incidentally, if any one of these three conditions does not
hold, thenf can be correctly computed. This simple result
shows that, in general,f is not computable.

WhenN is large, it may be possible to compute some
functionsf over a sufficiently large fraction of nodes such
that the result computed on this fraction approximates its
true value. In the rest of this paper, we will only consider
such approximate computations of global aggregates.

2.2. Global Aggregate Maintenance

Computing global aggregates is very similar to main-
taining global consistency in a traditional distributed sys-
tem where protocols such as the Chandy-Lamport distrib-
uted snapshot protocol are employed [2]. However, such
protocols are limited in applicability to small-scale distrib-
uted environments and were not designed to massively scale
as required on the Internet today nor to handle challenges
found in other fields such as sensor databases. As a result,
gossip-based protocols have emerged as a lightweight and
robust mechanism for computing such aggregates.

Gossip-based (or epidemic) protocols perform excep-
tionally well for computing global aggregates [12, 3, 10, 9].
They work as follows: At every time step, each node selects
one or a few nodes with which to exchange data. The dy-
namics of how information spreads through the network re-
sembles the spread of an epidemic [1], which provides in-
creased fault-tolerance [5] and resilience to failures. How-

ever, due to randomness, only probabilistic bounds on con-
vergence are obtained.

More recently, gossip-based protocols have been shown
to provide time complexities of the order ofO(log n),
wheren is the number of participants in the network. Re-
cent efforts by [12, 3, 10] have also developed sophisti-
cated techniques that reduce the state space to within an
O(log n) bound of the network size. These protocols are,
therefore, extremely scalable and robust and a large body of
theoretical work provably confirms these properties [10, 7].
There has also been an interest in studying the effect of sys-
tem dynamics on the performance of these protocols. Al-
though some theoretical work provides encouraging results,
they do not consider incremental updates. Jelasity et al [9]
employ an automatic restart mechanism where they restart
the protocol on a periodic basis by dropping the current es-
timate of the global aggregate and rerunning the protocol
from scratch. Such drastic measures are not necessary if the
changes in the global aggregate are minimal. This motivates
the need to build more efficient mechanisms to disseminate
updates. Our work provides a first step in this direction.

In order to address the problem of global state mainte-
nance, it is important to understand the components which
make up a gossip-based protocol. We adopt the logical de-
coupling of routing (orRouting mechanisms and aggrega-
tion proposed by Nath et al. [12], which we discuss next.

2.3. Routing Mechanisms

Here we discuss different routing mechanisms used
in our work. We remind the reader that routing mecha-
nisms for gossip-based protocols typically function in the
form of rounds. In each round, one or more node(s) com-
municate with one or more other node(s) in the system.
In this way, information eventually reaches all partici-
pant nodes in the system.

• Flooding: Flooding involves sending data in an epi-
demic fashion, where the source node sends a message
to all of its neighbours, who then forward previously
unseen messages to all of their neighbours and so on.
This process repeats until either all nodes in the net-
work have received the data or a certain distance from
the initiating point (flood depth) is reached. Flood pro-
vides near optimal convergence properties but however
comes at the cost of excessive message transmission
overhead.

• Uniform Gossip: In uniform gossip, during each
round, each node selects one neighbour with whom
to exchange information. This process repeats and in-
formation eventually propagates through the entire
network. Uniform Gossip protocols have many use-
ful theoretical properties and have been shown to

provide exponentially fast convergence with low mes-
sage transmission overhead [10].

• Random Walk: A random walk is initiated by a node
sending its data to a random neighbour. During each
round, when a random walk (or package) arrives at a
node, that node adds its own data to the package and
passes it on to another random neighbour. This contin-
ues until all data is sent throughout the network. Mul-
tiple random walks can be used simultaneously to im-
prove performance. Random walk provides a greater
deal of flexibility than uniform gossip by allowing
a tuning mechanism between convergence time and
message transmission overhead, as we show later.

2.4. Aggregation Mechanisms

Aggregation refers to a technique where participants (or
nodes) in a distributed system combine their local values
(collected via a routing mechanism) into a global aggre-
gate of the system, e.g. the Top-K documents in a database.
A specific problem when computing aggregates isdouble-
counting, where nodes may contribute to an aggregate more
than once, causing inaccuracy in the final result. In order
to avoid such problems, Order and Duplicate Insensitive
(ODI) mechanisms can be used, such as was proposed by
Nath et al. [12]. Order and Duplicate Sensitive (ODS) ap-
proaches can also be employed but require additional state
to be maintained in order to prevent double counting.

In [12], order and duplicate insensitivity is achieved
through the use of the approximate FM counting algorithm,
originally pioneered by Flajolet and Martin [6]. Other ODI
techniques include a push synopsis approach proposed by
[10]. However, due to the compact nature of FM, we re-
strict our attention to this mechanism for the remainder of
this paper.

In FM, each node maintains the aggregate of the entire
network ofn nodes in a bit vector of approximatelylog n
size. It should be noted, however, that the FM counting al-
gorithm has loose error bounds. We discuss in Section 2.6
how FM may be improved by slightly increasing the state
maintained at each of the nodes.

2.5. FM Aggregates

We now formally describe FM aggregates. We discuss
how to extend this framework in order to support updates to
these aggregates in Section 3.1.

Consider a multi-setSt = {st
1, s

t
2, ..., s

t
x} with x ele-

ments as described in Section 2.1. We would like to com-
pute f(St), where f is the count function. In FM, the
multi-setSt is represented as a bit vector of some length
k (typically k = 3

2 log2(n)). Initially the bit vector (de-
notedA) is set to zero. Then, with the help of a random

binary function cointoss, count is computed as fol-
lows:

Algorithm 1 ItemInsert(A)
1: k = 0;
2: while cointoss() = 0do
3: k = k + 1;
4: end while
5: A[k] = 1;

Algorithm 2 FM Counting Algorithm (S)
1: R = 0;
2: for i = 1 to x do
3: ItemInsert(A[i],si)
4: R = R

∨
A[i];

5: end for

Once the coin tossing experiments are complete, the re-
sulting bit vector is used to compute the actual value of
count. Functions other than count can also be computed
using the basic FM counting algorithm described above and
are discussed in more detail in [12, 3]. The FM counting
algorithm described above has some interesting properties
that allows the algorithm to be deployed in a distributed
fashion. In particular, FM has the following interesting fea-
tures:

• Constant Insertion time: Each element (or contribu-
tion) of the multi-set can be inserted into the vector in
O(1) time.

• Set Unions: The union of FM bit vectors representing
two multi-setsS1 andS2 is simply the bitwise OR of
their respective bit vectors.

• Duplicate Insensitive: FM bit vectors are duplicate in-
sensitive. Therefore, applying any duplicate values to
the FM bit vectors thus not affect the correctness of the
aggregate.

Using these three features, we can compute an aggregate
in a distributed fashion by having each node maintain an in-
dividual set that is part of theglobalmulti-set. Local sets are
also maintained as bit vectors and these bit vectors are prop-
agated in the network to other nodes that union them with
their local bit vectors (a.k.a fusing). Using this approach,
and given that the bit vectors are duplicate insensitive, we
can employ any randomized routing mechanism (described
in Section 2.3) in order to disseminate local bit vectors and
eventually compute the global aggregate of the entire net-
work.

2.6. Improving Accuracy of FM Aggregates

As originally proposed in [6], the accuracy of FM can
be improved by maintaining a larger bit vector represen-
tation. This is achieved by maintaining multiple bitmaps.
Considering the original multi-setS, each itemsi can be in-
serted in multiple bit vectors to producek values that can
then be averaged to produce the resulting aggregate.
More specifically, the aggregatef is computed as fol-
lows:

f = (1/m)(1/0.77351)Σi2si

where,
si= Bit position of rightmost zero inith vector

The resulting aggregate is more accurate, and the stan-
dard error decreases byO(1/

√
m), wherem is the number

of vectors. However, this technique requires more insertion
time sincem insertions are required in order to add an item
into the aggregate. This can be reduced by using a more effi-
cient PCSA technique that is discussed in more detail in [6].
With PCSA, the standard error is approximately0.78/

√
m.

In our study, since we are primarily interested in compar-
ing the performance of our incremental protocols with the
drop and recompute schemes, in order to limit the impact
of PCSA1 on our results, we employ them insertions tech-
nique discussed earlier.

3. Incremental Algorithms for Global Aggre-
gate Maintenance

In this section, we present our incremental algorithms
for maintaining up-to-date global aggregates. We first out-
line some basic requirements that the algorithms must
satisfy. We then present update enhancements to FM count-
ing to allow efficient aggregation and present incremental
routing protocols to support such updates. Ideally, incre-
mental algorithms should have:

• Fast ConvergenceThe algorithm must provide con-
vergence times comparable to or better than existing
methods (e.g.O(logN) for gossip-based protocols).

• Cost-EffectivenessThe algorithm must provide sig-
nificant cost advantages (e.g. computation time, com-
munication time) over existing methods.

• Fault-Tolerance The algorithm must, in the least, ex-
hibit fault-tolerance capabilities of existing solutions.

1 The bias of PCSA is significant till about 32 vectors and needs to be
corrected for smaller numbers of vectors

• Scalability The algorithm must provide the same guar-
antees on both small as well as large-scale systems.

• Accuracy The algorithm must provide an acceptable
amount of accuracy compared to existing methods.

3.1. Incremental FM Aggregates

In this section, we present our first contribution by dis-
cussing how changes may be applied to a previously com-
puted FM aggregate. We assume that our functionf is the
sumover the multi-setS. To compute the functionf , we fol-
low the approach discussed in [3], where for any given item
si in S whose value is given byv, we performv coin toss
experiments and union the bits to produce the resulting bit
vector for that value. We do the same for all other items in
S and obtain the aggregate vector (calledsum(S)) that rep-
resents the global sum of the items inS. As one may ex-
pect, this approach does not scale for very large values ofv
and can be improved in which case we can adopt the scal-
able version discussed in [3]. Using this method, we are able
to efficiently compute the sum over the multi-setS.

Now suppose that a value of any given itemsi in the
multi-set changes fromv to v́. How do we incorporate the
new value into the already computedsum(S)? Suppose an
item si’s initial value v sets the first 3 bits and it unions
them to the bit vector representing the aggregatesum(S).
Later, when its value changes tov́, it may not be able deter-
mine what bits it contributed to the vector. Moreover, even
if it did, since the first 3 bits may possibly have been set by
one or more other items inS as well, these cannot be legit-
imately reset bysi. Therefore, intuitively, it seems that we
may need to drop and recompute the entire sum again. How-
ever, as we discuss further, this may not be needed.

Two cases need to be considered for the new value
v́, i.e. v́ > v and v́ < v. For v́ > v, we can sim-
ply do (v́ − v) more coin toss experiments in order
to incorporate the new larger valuév in the aggregate
sum(S). For v́ < v, suppose instead that we construct an-
other multi-setD that is defined as follows:

D = {d|d = vi − v́i, wherevi = old value
v́i = new value at nodei}

Using this multi-setD, we can now maintain the differ-
encev− v́ for multiple updated items inS. Further, we can
apply the samesum function for summing up the values of
all the items inD to generate the aggregatesum(D). Once
bothsum(S) andsum(D) are computed, we can apply the
FM evaluation function discussed in [6] in order to obtain
the sum values for both setsS andD. Using these two val-
ues, we then compute the new aggregate by subtracting the
sum value ofS from the sum value ofD to produce the new

Figure 1. The left diagram illustrates our IRWP
protocol while the right diagram illustrates the
standard random walk protocol.

sum of the network, after the updates were applied. There-
fore, this technique can be used in order to support updates
to FM aggregates.

Although the update techniques described above allow
additions/deletions to already computed aggregates, note
that FM can only count in steps of powers of two. As the
count gets large, FM can only represent coarse-grained in-
formation, as for every extra bit that is set, the count dou-
bles. Moreover, when a large amount of contributions have
been made to the bit vectors, over time the vectors may be-
comepolluted. In this situation, we advocate dropping and
recomputing the aggregate. The decision of when to drop
and recompute could be based on an update-specific thresh-
old or through the use of some other mechanism to identify
anomalies in the stored aggregate. For example, when com-
puting count, if thedeletevector becomes larger than the
add vector, a negative aggregate results and this can sig-
nal a re-computation of the aggregate. However, this prob-
lem is an open area of research.

3.2. Incremental Routing Protocols

In this section, we discuss extensions to protocols de-
scribed in Section 2.3 for our incremental algorithm. We
propose the following incremental routing techniques.

• Incremental Flooding Protocol (IFP): Tradi-
tional flooding works by having every node flood
its data to the entire network. We propose an incre-
mental version, where, if an update occurs at a node,
only that node floods an update message through-
out the network.

• Incremental Gossip Protocol(IGP): In our incremen-
tal approach, nodes gossip with each other only if they
have received the update. Nodes receiving the update
becomeactive and begin communicating with their
neighbours until the update protocol terminates. This
approach reduces wasteful communications between

Algorithm 3 Update Algorithm: Phase One
1: for eachupdated nodedo
2: Update local aggregateGt

3: ∆G = Gt −Gt−1

4: if β > ∆G >= α then
5: Send update to neighbour node(s)
6: else if∆G > β then
7: Drop local aggregate and send re-computation

command to all nodes
8: else
9: Do nothing

10: end if
11: end for

Algorithm 4 Update Algorithm: Phase Two
1: if received updateA at noden then
2: Union updateA with local aggregateGt.
3: ∆G = Gt −Gt−1

4: if ∆G >= α then
5: Send update to neighbour node(s)
6: else
7: Do nothing
8: end if
9: end if

neighbours that do not have updates to contribute to
the aggregate being maintained at the nodes.

• Incremental Random Walk Protocol (IRWP): In
this protocol, when an update occurs, instead of start-
ing random walks at random nodes in the network,
all the random walks are initiated from the update
point, and contain update-specific contents (as shown
in Figure 1. This can be viewed as a node “sending
out” packages to its neighbours containing its update.
Nodes receiving the package update their local aggre-
gate and if needed, the aggregate contained in the pack-
age. They then perform the standard random walk pro-
tocol as described in Section 2.3, until the network
has converged. For multiple updates, multiple random
walks will be initiated from different points in the net-
work. Deciding how to allocate random walks to each
update in a decentralized fashion is a hard problem.

Population control (first proposed in [15]) provides
intuitions on how to control the assignment of ran-
dom walks (RWs) to each update. Such a mecha-
nism operates in a completely decentralized and self-
adaptive manner. Using this technique, each node in-
creases/decreases the RWs it assigns to its updates
based on feedback that it receives over time. More-
over, what mechanisms to exactly use to achieve this
is an important and open problem.

3.3. Incremental Update Algorithm

The update algorithm we propose combines the aggre-
gation mechanism described in Section 3.1 with the incre-
mental routing protocols presented in Section 3.2. The pro-
tocol proceeds in the form ofroundswhere in each round,
a single communication process takes place between pairs
of nodes. The time to converge to the correct global aggre-
gate is referred to as anepoch.

The update algorithm proceeds in two phases. In the ini-
tiation phase (Algorithm 3), at the beginning of an epoch (at
timet), when an update occurs at a particular noden, n uses
the updatable FM approach discussed in Section 3.1 in or-
der to generate the new aggregate that incorporates the up-
date. Using this newly generated aggregateGt, n computes
the change in the locally maintained aggregate by comput-
ing ∆G = |Gt − Gt−1|. If ∆G is greater than or equal to
achange thresholdα, n propagates the change to its neigh-
bors using an incremental routing protocol. However, if∆G
is greater than arecompute thresholdβ, the aggregate is
dropped and a re-computation is initiated on all of the nodes
(e.g. by flooding a restart message). If∆G is strictly less
thanα, thenn does nothing as the change is not significant.

In the processing phase (Algorithm 4), the algorithm
propagates updates throughout the network. When an up-
date is received at a node, the node unions it with the local
aggregate and propagates the result to its neighbours. Due to
the nature of FM, propagated aggregates may contain mul-
tiple updates as they proceed through the network. This al-
lows faster dissemination in the network and such update
propagations can be viewed asco-operative.

The algorithm terminates when there is no update that
causes∆G at any of the nodes to be greater than the change
thresholdα. As discussed next, this is a coarse-grained way
of deciding when to terminate the protocol.

3.3.1. Update ThresholdsThe update thresholds func-
tion as tuning knobs allowing the system designer to trade
off the accuracy and cost of the incremental update algo-
rithm. Thresholds should be chosen based on global signifi-
cance which is defined as the significance of alocal change
to the global aggregate.

Significance should also depend on the query type. For
example, if we are computing the sum across a very large
network (e.g. 100k nodes), updates that cause very large
changes in the sum (e.g. updates on 50K nodes) should sig-
nal a re-computation of the aggregate. In this case,β could
be equal tox, wherex is the percentage of error tolerated for
the aggregate. On the other hand, if we are computingmax,
thenβ may be set to infinity since no change in the system
will be significant enough to require re-computation. Up-
dates need only be sent for changes to the maximum value.
Therefore, the selection of thresholds depends on the query
type. Determining the global significance of a local change

as a function of the query type is difficult. For queries such
assum andmax, the choice is relatively straight forward.
However, the general problem is hard.

3.4. Analysis

In this section, we present a proof of correctness of our
update algorithm. We gain additional insight through simu-
lations in Section 4.2.

3.4.1. Correctness of Update-AlgorithmWe now
present a simple proof to support the methods used by our
update algorithm.

Lemma 1. Once updated to a new value, a node cannot re-
vert back to an old value.

Proof. By construction.

Theorem 2. Given that an update is applied to any node
in the network and the network does not experience a parti-
tion, all nodes eventually receive the update.

Proof. We construct an inductive argument to prove the the-
orem. Starting at the updated node, since it is the node that
initiates the update, clearly it has the new state. Further,
every message from this node to any of its randomly cho-
sen neighbours in all subsequent rounds causes the neigh-
bours to receive and apply the update. In the same way, the
neighbours also propagate the update to their randomly cho-
sen neighbours. Since, by Lemma 1, an updated node does
not revert, eventually all nodes in the network receive the
update.

One way to visualize update propagation is to think of
all nodes being assigned a starting color of blue. A node
that is updated turns from blue to green. Further, its mes-
sage to a blue node causes that node to change its color to
green. Since a green node can never turn to blue, as long as
all nodes are touched, eventually every blue node will turn
green.

4. Simulations

In this section, we provide detailed simulations to ana-
lyze the performance of our protocols. In Section 4.1, we
outline the simulation setup and the performance metrics.
We then discuss the simulation results in Section 4.2.

4.1. Simulation Setup

We have implemented a compact simulator in C. Since
we are interested only in analyzing the behavior of our in-
cremental techniques, we set theα threshold to0 and β

Component Accuracy Protocol
Cost

Delay Robustness

Incremental Routing − X X X

Incremental Aggre-
gation

X X − −

Update Threshold X X X −

Table 1. Effect of protocol components on perfor-
mance metrics

threshold to∞. We use thesum query for our simula-
tions and only model data changes in the system. All partic-
ipants in the system maintain identical configurations and
are equal in their capabilities. Until otherwise indicated, the
topology considered for our simulations is a clique.

4.1.1. AssumptionsHere we briefly list the assumptions
made in our simulations:

• Non-malicious Peers:We assume that peers cooper-
ate with each other and do not behave maliciously. Ex-
isting research has already addressed such issues [8].

• Uniform Data Distribution: We assume data changes
are uniformly distributed across the entire system. We
do not considerhotspotchanges within the system.

• Batched Data Changes:In our study, data changes
and the running of the incremental update algorithm
occur sequentially. We use this model for ease of sim-
ulation.

All nodes are synchronized and our protocol proceeds
in the form ofrounds. This assumption is made for ease of
simulation and does not affect the correctness of our incre-
mental update algorithm.

4.1.2. Simulation Metrics Here we briefly list the perfor-
mance metrics that we use in our simulations. Each of our
three contributions affect multiple metrics as shown in Ta-
ble 1. They are briefly discussed further:

Accuracy. We use the mean error in the local esti-
mate of the global aggregate to measure the accuracy of
each of the schemes. The mean error is defined aset =
1
N

1
mt

∑
|m̂t −mt|, wherem̂t is the local estimate of the

aggregate,mt is the true value of the aggregate, andN is
the total number of nodes in the network.

Protocol Cost.The cost of a protocol has three compo-
nents: computation time, communication time, and the state
maintenance overhead. In this study, we only consider the
communication time (that includes message transmission
overhead and message size) and the state maintenance over-
head. Moreover, since message size and state maintenance
overhead are fixed for our incremental FM aggregates, we
analyze only the message transmission overhead.

Delay. The delay metric is defined as the time taken to
converge to the approximate global aggregate from the time
the update occurred. Therefore, the equation for delay (d)
is d = tdet + tconv, wheretdet is the time to detect the up-
date andtconv is the time to converge to the approximate
global aggregate. We assume thattdet is zero and only con-
sidertconv in our study. Convergence time is measured in
terms of the number of rounds, where each round repre-
sents a fixed time interval2.

Robustness.The robustness of each of the schemes is
characterized by the protocol’s resilience to node/link fail-
ures and in the system. Since our change model only con-
siders changes to the data at individual nodes, we defer sim-
ulating such changes as part of future work.

In our simulations, we report the average measure over
500 epochs. We begin our simulations with astablenet-
work, i.e. where the global aggregate has converged. Dur-
ing the update process, we introduce updates uniformly at
random in the network. Unless otherwise indicated, we ex-
periment with 10,000 nodes in order to analyze the scalabil-
ity of our protocols; for the random walk and IRWP proto-
cols, we utilize as many random walks as there are nodes in
the system. We show in Section 4.2.4 that this does not sig-
nificantly increase the overhead of the IRWP protocol.

4.2. Simulation Results

First, we present results comparing our incremental up-
date algorithm with existing re-computation schemes. Sec-
ond, we provide a comparison between our incremental
routing protocols, followed by an analysis of the effect of
increasing the number of random walks (RWs) on IRWP.
Third, we present results quantifying the accuracy of incre-
mental FM aggregation and finally end with a sensitivity
analysis of our incremental routing protocols.

4.2.1. Incremental Updates vs. Re-computation

• Convergence timeFigure 2 compares the performance
of our IGP protocol with the standard uniform gossip
protocol. We observe that convergence rates overlap
for varying numbers of updates. We observe this be-
cause when an update occurs, the updated nodes delete
vectors need to be propagated to the entire network and
this would have the same convergence rates as a re-
computation of the aggregate. Therefore, IGP does not
provide significant improvements in convergence time.
Figure 4 compares the convergence times of IRWP
and standard random walk. IRWP reduces convergence
time by as much as60% for small number of updates.

2 The actual length of the round depends on the underlying transmission
medium and is not explicitly considered in our simulations

0

5

10

15

20

25

30

1 10 100 1000
Number of Updates

C
on

ve
rg

en
ce

 ti
m

e
(#

 R
ou

nd
s)

Incremental Gossip Uniform Gossip

Figure 2. A Comparison of convergence times of
IGP and Uniform Gossip protocols.

0

50000

100000

150000

200000

250000

300000

1 10 100 1000
Number of Updates

N
um

be
r o

f M
es

sa
ge

s

Incremental Gossip Uniform Gossip

Figure 3. A Comparison of message transmission
overhead of IGP and Uniform Gossip protocols.

We conjecture that since IRWP minimizes the num-
ber of wasteful messages per round that do not propa-
gate updates, it is able to converge significantly faster.
Due to space limitations, we do not present results for
flood and incremental flood. However, we indicate that
flood and IFP perform identically.

• Protocol CostFigure 3 compares the message trans-
mission overhead of IGP with uniform gossip. For a
small number of updates, we see an almost 60% de-
crease in the number of messages required for con-
vergence. Since IGP on average requires significantly
fewer nodes to gossip in the first few rounds, the total
message overhead drops substantially. However, as the
number of updates are increased, more nodes commu-
nicate in earlier rounds causing an increase in the num-
ber of messages. If we compare IRWP with standard
random walk in Figure 5, we see similar trends that in-
dicate the benefits of propagating walks from the up-

0

5

10

15

20

25

30

35

1 10 100 1000
Number of Updates

C
on

ve
rg

en
ce

 ti
m

e
(#

 R
ou

nd
s)

IRWP Random Walk Protocol

Figure 4. A Comparison of convergence times of
IRWP and Random Walk protocols.

0

50000

100000

150000

200000

250000

300000

350000

1 10 100 1000
Number of Updates

N
um

be
r o

f M
es

sa
ge

s

IRWP Random Walk Protocol

Figure 5. A Comparison of message transmission
overhead of IRWP and Random Walk protocols.

dated node(s), thus minimizing the amount of wasted
messages. Although not presented here, the IFP and
traditional flood variation is much more marked for
small numbers of updates but exponentially decreases
with larger numbers of updates.

4.2.2. Comparison of Incremental Routing Protocols

• Convergence timeFigure 6 compares the convergence
times of our incremental routing protocols. We see that
IFP performs the best since it simply floods the update
in the first round to all nodes in the clique. IRWP con-
verges faster than IGP since IRWP performs more use-
ful transmissions per round (based on the number of
walks originating from the updated node(s)) than IGP.

• Protocol CostFigure 7 compares the message trans-
mission overhead of each of the incremental rout-
ing protocols. Clearly, incremental flood performs

0

5

10

15

20

25

30

1 10 100 1000
Number of Updates

C
on

ve
rg

en
ce

 T
im

e
(#

 R
ou

nd
s)

IRWP IGP IFP

Figure 6. A Comparison of convergence times of
incremental routing protocols.

0

50000

100000

150000

200000

250000

300000

1 10 100 1000
Number of Updates

N
um

be
r o

f M
es

sa
ge

s

IRWP IGP IFP

Figure 7. A Comparison of message transmission
overhead of incremental routing protocols.

the worst since update messages increase exponen-
tially with an increasing number of updates. Once
again, IRWP is, on average, more cost-effective
than IGP since it utilizes its communication re-
sources (i.e. walks) more effectively than IGP. Since
IGP causes more wasteful communications in later
rounds, the benefits of only a few nodes gossip-
ing in initial rounds is off-set by an increase in gos-
siping later. Therefore, due to the effectiveness of
IRWP in both convergence time and cost dimen-
sions, we analyze this protocol more closely in section
4.2.4.

4.2.3. Accuracy of Incremental FM Figure 8 compares
the accuracy of incremental FM aggregation with standard
FM aggregation, where the aggregate is dropped and recom-
puted each time an update occurs. Incremental FM is able
to consistently maintain better accuracy for small numbers

3001008060402097531

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250
Time (Rounds)

M
ea

n
Er

ro
r

Incremental FM Standard FM Number of Updates

Figure 8. Accuracy of standard FM and incremen-
tal FM as updates are made in the system; the
points at the top of the graph indicate the num-
ber of updates introduced into the system at that
point in time. Standard FM drops and recomputes
the aggregate when updates are introduced.

1 300100806040209753

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250
Time (Rounds)

M
ea

n
Er

ro
r

Incremental FM Standard FM Number of Updates

Figure 9. Accuracy of standard FM and incremen-
tal FM as updates are made in the system; stan-
dard FM does not drop the aggregate in this case.

of updates. On the other hand, standard FM’s accuracy con-
tinually changes and thus on average is higher than incre-
mental FM. Upon further analysis, Figure 9 presents a sim-
ilar graph where standard FM does not drop the aggregate
but maintains it over time as updates are applied to the sys-
tem. The noticeable gap between incremental FM and stan-
dard FM is due to the added accuracy achieved with the
use of delete vectors3. Incremental FM is able to make up-
dates to the aggregate and minimize the error where as for

3 Delete vectors are able to maintain a higher resolution since when
combined with the add vector, they can represent values that are not
representable by using just add vectors themselves

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000
Number of Vectors

M
ea

n
Er

ro
r

Count Aggregate

Figure 10. Accuracy of standard FM when com-
puting the count in a 10,000 node network. In-
creasing the number of vectors corresponds to in-
creasing the message size.

standard FM, the error compounds for an increasing num-
ber of updates. Therefore, higher accuracy is achieved with
the use of delete vectors. Moreover, Figure 10 shows that for
increasing numbers of bit vectors, a higher amount of accu-
racy can be maintained as was discussed in Section 2.6.

0

100

200

300

400

500

0 2000 4000 6000 8000 10000
Number of Nodes

C
on

ve
rg

en
ce

 T
im

e
(#

 R
ou

nd
s)

256 Walks 512 Walks 1024 Walks 2048 Walks

Figure 11. Analysis of differing number of walks
on IRWP convergence time.

4.2.4. Effect of Multiple Random Walks

• Convergence timeFigure 11 illustrates the effect of in-
creasing the number of random walks for IRWP on
convergence time. We observe that in almost all cases,
for a small number of walks (e.g. 32), doubling the
number of walks results in approximately a 50% de-
crease in the convergence time. This decrease eventu-
ally diminishes as the number of walks are increased,

0

20000

40000

60000

80000

100000

120000

140000

160000

0 2000 4000 6000 8000 10000
Number of Nodes

N
um

be
r o

f M
es

sa
ge

s

256 Walks 512 Walks 1024 Walks 2048 Walks

Figure 12. Analysis of differing number of walks
on IRWP message transmission overhead.

since the network eventually becomes saturated. Nev-
ertheless, the initial improvements in convergence time
are encouraging.

• Protocol CostIn Figure 12, which illustrates the ef-
fect of increasing the number of random walks on mes-
sage transmission overhead for IRWP, we surprisingly
see that the message transmission overhead is effec-
tively independent of the number random walks. We
attribute this to theco-operativenature of the updates.
Since each of the walks is able to carry information
for the others, increasing the number of random walks
increases the number of messages per round but de-
creases the overall number of rounds (as seen in the
convergence time). Therefore, as a result the message
transmission overhead does not change.

0

10

20

30

40

50

60

1 10 100 1000
Number of Updates

C
on

ve
rg

en
ce

 T
im

e
(#

 R
ou

nd
s)

Random Walk IRWP

Figure 13. IRWP and Random Walk Convergence
times on PLRG topology.

0

100000

200000

300000

400000

500000

600000

1 10 100 1000
Number of Updates

N
um

be
r o

f M
es

sa
ge

s

Random Walk IRWP

Figure 14. IRWP and Random Walk message
transmission overhead on PLRG topology.

Node Values: Degree
0

0

1

2

3

3

4

5

6

6

7

8

9

9

10

11

12

Figure 15. Sample 100 node PLRG topology, gen-
erated using BRITE. The line graph on the left rep-
resents the frequency of node degrees.

4.2.5. Effect of Complex TopologiesWe now pro-
vide a sensitivity analysis of our incremental routing pro-
tocols by presenting results on more complex topologies.
We make use of a BRITE-based [11] power-law ran-
dom graph (PLRG). An example of a PLRG for a network
of size 100 is shown in Figure 15. Due to space limita-
tions, we only present results comparing random walk and
IRWP protocols. Results for other protocols follow simi-
lar trends.

Figures 13 and 14 present a comparison of the conver-
gence times and message transmission overheads for IRWP
and standard random walk on a 10,000 node BRITE-based
PLRG topology. As can be seen, IRWP still performs sig-
nificantly better both in terms of convergence time and mes-
sage overhead than standard random walk. This indicates

that the protocol is insensitive to the underlying topology.

5. Conclusions and Future Work

Computing global aggregates is an important problem
that has been well studied in traditional distributed database
literature [13]. Incrementally maintaining such aggregates
has also been well studied in this context, particularly for
incremental view maintenance of materialized views in dis-
tributed databases. However, this work relies on the stability
and reliability found in traditional distributed systems (of-
ten relying on a central server) [13], which precludes its use
on today’s large-scale decentralized networks.

Our work takes a first step in addressing the problem
of maintaining global aggregates in dynamic decentralized
networks, an area with many open problems. Our contribu-
tions are: 1) We introduce new incremental routing proto-
cols such incremental random walk and incremental gos-
sip and show through simulations that these protocols out-
perform existing protocols by as much as 60%, 2) We
present an incremental version of FM that we show main-
tains higher amounts of accuracy than standard FM aggre-
gation and 3) We highlight the important elements required
for an incremental algorithm that allows maintenance of ag-
gregates. To the best of our knowledge, this is the first se-
rious treatment of maintaining up-to-date aggregates in dy-
namic decentralized systems. Our ongoing efforts include
evaluating other aspects of the problem space including a
more elaborate change model that incorporates node and
link failures, an examination of protocol performance using
more sophisticated aggregate queries, and a detailed theo-
retical framework for our methods.

References

[1] N. Bailey. The Mathematical Theory of Infectious Diseases
and its Applications. Hafner Press, 1975.

[2] K. M. Chandy and L. Lamport. Distributed snapshots: de-
termining global states of distributed systems.ACM Trans.
Comput. Syst., 3(1):63–75, 1985.

[3] J. Considine, F. Li, G. Kollios, and J. Byers. Approximate ag-
gregation techniques for sensor databases. InICDE ’04: Pro-
ceedings of the 20th International Conference on Data Engi-
neering, page 449, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[4] F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and T. D.
Nguyen. PlanetP: Using Gossiping to Build Content Ad-
dressable Peer-to-Peer Information Sharing Communities.
In Twelfth IEEE International Symposium on High Perfor-
mance Distributed Computing (HPDC-12), pages 236–246.
IEEE Press, June 2003.

[5] A. Demers, D. Greene, C. Houser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry. Epidemic
algorithms for replicated database maintenance.SIGOPS
Oper. Syst. Rev., 22(1):8–32, 1988.

[6] P. Flajolet and G. N. Martin. Probabilistic counting algo-
rithms for data base applications.J. Comput. Syst. Sci.,
31(2):182–209, 1985.

[7] C. Gkantsidis, M. Mihail, and A. Saberi. Random walks
in peer-to-peer networks. InProceedings of INFOCOMM
2004, March 2004.

[8] M. Jelasity, A. Montresor, and O. Babaoglu. Towards se-
cure epidemics: Detection and removal of malicious peers in
epidemic-style protocols. Technical Report UBLCS-2003-
14, University of Bologna, Nov. 2003.

[9] M. Jelasity, A. Montresor, and O. Babaoglu. Gossip-based
aggregation in large dynamic networks.ACM Journal, 15(5),
November 2004.

[10] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computa-
tion of aggregate information. InFOCS ’03: Proceedings of
the 44th Annual IEEE Symposium on Foundations of Com-
puter Science, page 482, Washington, DC, USA, 2003. IEEE
Computer Society.

[11] A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: an
approach to universal toplogy generation. InProceedings of
MASCOTS, Aug. 2001.

[12] S. Nath, P. Gibbons, S. Seshan, and Z. Anderson. Synop-
sis diffusion for robust aggregation in sensor networks. In
Proceedings of SenSys ’04, November 2004.

[13] M. T. Ozsu and P. Valduriez.Principles of distributed data-
base systems. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1991.

[14] R. V. Renesse, K. P. Birman, and W. Vogels. Astrolabe: A
robust and scalable technology for distributed system moni-
toring, management, and data mining.ACM Trans. Comput.
Syst., 21(2):164–206, 2003.

[15] E. H. Spafford. The internet worm program: An analy-
sis. Technical Report Purdue Technical Report CSD-TR-
823, West Lafayette, IN 47907-2004, 1988.

