
An Axiomatic Basis for Communication
Martin Karsten S. Keshav Sanjiva Prasad

University of Waterloo University of Waterloo IIT Delhi

ABSTRACT

The de-facto service architecture of today’s communica-
tion networks lacks a well-defined and coherent theoreti-
cal foundation. With layering as the only means for func-
tional abstraction, the diversity of current technologies
cannot be expressed consistently and analyzed properly.
In this paper, we present an axiomatic formulation of fun-
damental mechanisms in communication networks. In
particular, we reconcile the existing but somewhat fuzzy
concepts of naming and addressing and present a consis-
tent set of primitives that are sufficient to compose com-
munication services. The long-term goal of this exercise
is to better document, verify, evaluate, and eventually im-
plement network services.

1 INTRODUCTION

Traditionally, the Internet is modelled as a graph, where
each node implements a set of protocol layers and each
edge corresponds to a physical communication link. Un-
fortunately, when compared to the actual Internet, this
model falls far short. In the traditional model, nodes are
addressed by one or more static IP addresses. End sys-
tems implement a simple five-layer stack, with applica-
tions using a transport layer to access IP, which is layered
on the data link and physical layers. Packet forwarding
decisions are made purely on the basis of IP ‘routing’ ta-
bles. Moreover, a protocol layer at any node only inspects
packet headers associated with that layer, obeying strict
layering rules in dealing with other layers. In reality:

• DHCP, anycast, multicast, NAT, mobile IP and IP
tunnelling break the static association between a
node and its IP address.

• Nodes implement many more layers, including IP-
in-IP and VLAN tunnels, P2P overlays, and shims,
such as MPLS.

• Forwarding decisions are made not only by IP
routers, but also by VLANs, MPLS routers, NAT
boxes, firewalls, and mesh routing nodes.

• Middleboxes and cross-layered nodes such as
NATs, firewalls, and load balancers violate layering.

In face of these significant extensions to the classi-
cal model, understanding the topology of the Internet in
terms of its connectivity has become a daunting task. It

has become difficult to even define elementary concepts
such as a neighbour and peer relationships, let alone the
more complex processes of forwarding and routing. Fur-
ther, there is not even a common and well-defined lan-
guage for fundamental networking concepts, with terms
such as ‘name’, ‘address’, or ‘port’ being the subject of
seemingly endless debate.

Yet, surprisingly, the system still works! Most users,
most of the time, are able to use the Internet. What lies
behind the unreasonable effectiveness of the Internet?
We postulate that there are a set of underlying principles
that are obeyed by extensions to the traditional model,
no matter how ad hoc, preserve connectivity. However,
these principles have rarely been systematically studied
(with [3, 4] being notable exceptions).

Our research goal, over the long term, is to axiomat-
ically specify basic Internet concepts that allow us to
construct (a) a theoretically sound framework to ex-
press architectural invariants–such as the deliverability
of messages–even in the presence of network dynamism,
middleboxes, and a variety of compositions of differ-
ent protocols, and (b) an expressive pseudo-language in
which to rapidly implement a variety of packet forward-
ing schemes. Therefore, the concepts, and the pseudo-
language derived from them, serve not only to clarify the
essential architecture of the Internet, but also provide a
bridge between formal proofs on node reachability us-
ing a particular forwarding scheme, and a practical im-
plementation of that scheme. Our goals are inspired by
Hoare’s axiomatic basis for programming [6].

In this paper, we take a first step in this direction by
presenting an axiomatic framework of communication
concepts and pseudo-language primitives derived from
these concepts. We sketch how the framework can be
formalized, but we do not discuss the implementation of
the pseudo-language primitives. However, it will become
clear that the primitives can be implemented in any rea-
sonable packet forwarding engine.

To keep the problem tractable, we propose to split
overall communication functionality into two broad ar-
eas: one area is concerned with connectivity, i.e. nam-
ing, addressing, forwarding, and routing. The second is
a set of mechanisms to provide additional functionality
related to communication quality and performance. This
includes medium access control, reliability, flow control,
congestion control, security, among others, and is not

1

presently considered in our work.
Our work draws from, and is related to, a handful of

other attempts to bring clarity to Internet architecture.
Clark’s seminal paper [3] succinctly laid out the design
principles of the classical Internet, but does not provide a
basis for formal reasoning about its properties. Recently,
Griffin has used formal semantics to model routing [4]
and Loo et al. have used a declarative approach to de-
scribe routing protocols [8]. Our work is most directly
related to past work in the area of naming and address-
ing. This has been considered both in existing technol-
ogy standards, such as IP Multicast, IPv6, or Mobile IP,
as well as research proposals [2, 5, 9, 12]. Similar to our
work, these proposals blur the traditional distinction be-
tween naming and addressing, and also consider inno-
vative packet forwarding mechanisms. However, to our
knowledge, these past proposals are essentially ad hoc,
without a consistent set of underlying formal principles.
In contrast, we suggest an axiomatic formulation of com-
munication principles and thereby represent a first at-
tempt at building a complete formal basis for reasoning
about communication systems.

2 CONCEPTUAL FRAMEWORK

2.1 Naming and Binding

Naming and binding in computer systems is relatively
well understood. Before introducing a new set of defini-
tions, we first review and summarize some fundamental
concepts from the seminal paper by Saltzer [11] with a
few minor modifications, as noted.

• An object is a software or hardware structure in a
computer system.

• A name is a regular expression that is used to re-
fer to a set of objects. This is an extension from the
definition in [11] which only refers to one string and
one object. We use regular expressions to allow for
wildcard matching and refer to a set of objects be-
cause of broadcast, anycast, and multicast commu-
nication styles.

• In [11], the term binding is used both as a noun, de-
scribing the existence of a mapping from a name to
a set of objects, as well as a verb, referring to choos-
ing the appropriate objects for a name. To avoid
confusion, we use the term mapping when referring
to the noun. In a traditional naming system, the sin-
gle object can be accessed through a “lower-level”
name [11], which is often called “address”.

• A context is a set of mappings. A name is always
interpreted relative to some context. To know the
“lower-level” name associated with a name, one
needs to also know which set of mappings is being

referred to, because multiple contexts may provide
different mappings for the same name.

• The resolution mechanism locates the appropriate
mapping for a name in a particular context. This
allows for access to the object through the corre-
sponding “lower-level” name. The original defini-
tion in [11] speaks of “locating the object” which is
identical to locating the mapping and accessing the
object.

With these definitions, it is possible to develop the de-
scription of a basic naming system. However, this set of
definitions stops at the concept of a “lower-level” name
and simply assumes that it can be used to access a certain
object. In a distributed system, however, the communica-
tion necessary to access a certain object is non-trivial and
greatly influences the overall system performance.

2.2 Communication Concepts

Similar to Saltzer’s usage of a “lower-level” name as
primitive, we assume that certain objects can directly
communicate with each other, without giving a formal
definition of “direct communication”. Direct communi-
cation is facilitated either by shared memory or takes
place between low-level network entities that can directly
exchange information via a physical medium, such as ca-
ble, radio, or fiber, for example in a local area network
such as Ethernet. Based on this assumption, we introduce
the following definitions:

• We define a network processing object (NPO) as
an object that can directly communicate with other
NPOs. An NPO is an abstraction of a traditional
protocol layer instance. Like any object, an NPO
can be referred to by one or multiple names. A spe-
cial type of NPO are the terminal NPOs which pro-
duce and/or consume messages.

• An NPO may have a set of mappings associated
with it, which is then called its context state. The
set of mappings comprising the context state may
contain wildcards. An example of a context state is
a routing (or forwarding) table.

• NPOs that can directly communicate with one an-
other are termed neighbours. An NPO can directly
communicate with each of its neighbours using
the neighbour’s name. Examples of neighbouring
NPOs are the TCP and IP NPOs on the same ma-
chine, or two MAC-layer NPOs on the same shared
medium.

• The unit of communication is a message, which
contains control information in the header and ar-
bitrary data in the payload. The header might be ex-
plicit, as in a traditional packet header, or implicit,

2

for example the time slot within a TDM frame dur-
ing which a message is transmitted.

• A name that is encoded in the header of a mes-
sage is termed an address. The message header con-
tains, among other control information, a stack of
addresses. The top-most address on the stack is the
destination address.

• We define forwarding as an extension of direct com-
munication, where NPOs repeatedly pass on a mes-
sage to a set of neighbours, such that the message
eventually arrives at a set of remote NPOs. In this
sense, forwarding is the transitive closure of direct
communication, necessary because not all NPOs are
each others’ neighbours.

• The definition of resolution in [11] needs to be gen-
eralized in that the result is not only a “lower-level”
name, but includes further information to forward a
message towards the set of NPOs referred to by a
name.

Note that we have a particularly simple definition of
an address: it is just a name that happens to be in a
packet header and is therefore used to make a forwarding
decision. This operational approach to defining an ad-
dress bypasses myriad conceptual difficulties of other ap-
proaches. One immediate conclusion from this approach
is that a name only needs to have local (per-NPO) syntax,
while each address format must be standardized between
NPOs. Note also that we explicitly describe each mes-
sage as having a stack of addresses. When reading from
and writing to the stack of addresses, multiple addresses
may be transformed into one local name and vice versa.
This allows us to model non-layered (or layer-violating)
NPOs, such as middleboxes.

2.3 Communication Operations

We define the local context state as the set of mappings
from a name to an opcode and a set of name/NPO tuples
as {<name → opcode, {<NPO, name>}>}.
The ‘opcode’ element is described in Section 2.7. The
generic forwarding algorithm can then be described with
the following pseudo-code using the primitives send, re-
ceive, push, pop, lookup with their obvious semantics:

message msg = receive();
name n, msg = pop(msg);
opcode op, {<NPO, name>} s = lookup(n);
for each <NPO, name> x in s

outmsg = push(msg, x.name);
send(x.NPO, outmsg);

endfor

The push and pop primitives are specific to an NPO
class and transform between a prefix of the address stack

and a local name. Note that the above processing steps
cover both ingress and egress processing for each NPO.
Also, an NPO typically provides a default control vec-
tor which is used for all those names that do not have
an explicit mapping in the context state. For example, in
case of IPv4 routing, this is called default routing entry.
In addition to the primitives above, terminal NPOs use
produce and consume primitives to produce or consume
messages respectively.

The concepts and primitives introduced so far allow
for the description of static communication scenarios,
where forwarding tables and topologies do not change
over time, and where local context tables are sufficient
to determine the neighbouring NPOs to whom a mes-
sage should be forwarded. As a example, consider an IP
network with pre-configured routing tables, running over
Ethernet with all ARP lookups also pre-configured in the
ARP cache.

2.4 Structure Concepts

The following definitions extend the basic communica-
tion concepts and allow to describe network structure at
the familiar level of nodes and links.

• The NPO that inserts an address into a message
header (by a push operation) along with those
NPOs that potentially resolve the same address (per
lookup) are termed peers.

• The communication association between a peer that
writes a destination address into a message and a set
of corresponding peers that receive the message and
logically remove the destination address from the
message (so that it it is no longer used for making a
forwarding decision) is termed link.

Note that links are between peers. In contrast, neigh-
bouring NPOs communicate via direct communication.
Links are similar to ISO protocol interfaces, whereas di-
rect communication refers to service interfaces.

Using the concepts introduced so far, it is possible to
describe data path mechanisms of a communication net-
work. For example, we can talk of a link between TCP
NPOs that is established by a three way handshake. Sim-
ilarly, a transient HTTP link exists between a browser
client and a web server for the duration of the TCP link
between them. An HTTP load balancer that examines
the HTTP header would be a peer of the browser, and
it would also be a peer to the web server. In this sense,
the load balancer is a forwarding engine, on par with an
IP router.

2.5 Control Concepts

If suitable context state exists in all NPOs along a path,
the message state necessary for forwarding a message to

3

a set of remote NPOs can be reduced to a single name.
Then, forwarding can be regarded as binding the name to
the set of destination NPOs. Based on this understanding,
the following definitions are used to introduce concepts
for configuration and control of forwarding activities.

• A set of peers that forward messages with the same
destination address to the same set of NPOs provide
consistent binding for this name.

• A scope for a set of names is a set of peers that
provide consistent binding for each of these names.
Specifically, peers form a directed and acyclic graph
where NPOs are the nodes and mappings to neigh-
bours are the edges. For each name in a scope, there
is a unique path representing the distributed map-
ping for this name.

• There can be special names in a scope, for example
broadcast referring to all peers in a scope.

• The mechanisms and algorithms used to achieve
consistency in a scope are collectively termed rout-
ing.

In the absence of errors, we assume that each individ-
ual NPO forms a natural scope for all addresses covered
by its context state. Distributed control state such as dis-
tributed IP routing state can be described as a set of col-
laborating NPOs that form a scope for a set of names.

2.6 Distributed Resolution

The lookup primitive in Section 2.3 is defined on an indi-
vidual NPO’s context state and as such, inherently bound
to a single object. A context as defined in [11] is an ab-
stract concept and not bound to any particular resource.
Likewise, resolution is also not defined as local or dis-
tributed. While we assume that Saltzer implicitly refers
to a local system only, the concepts work well in a dis-
tributed system.

Distributed resolution consists of forwarding a resolu-
tion request within the scope of the name to an NPO that
has a mapping for this name and sending back the ap-
propriate response. In some sense, the forwarding part is
very similar to the definition of closure in Saltzer’s work
[11], which is defined as “the mechanism that connects
an object wishing to resolve a name to a particular con-
text”.

For most scenarios, the definition of consistent bind-
ing nicely carries over to distributed resolution and reso-
lution can be considered as binding a name to the appro-
priate action vector in a particular (distributed) context.
The one exception is given by an anycast name that maps
to multiple action vectors, but only a subset (typically
one) of them is needed to successfully complete the task.

In fact, caching in naming systems, being a special vari-
ant of replication, can be considered as anycast where
the requested name can be bound to any of the avail-
able replicated action vectors. We note that implemen-
tations of anycast either rely on a some form of (logical)
rendezvous point - which turns the process back into a
binding to a well-defined rendezvous point - or employ a
very simplistic algorithm that does not modify the orig-
inal binding to the original action vector, but shortcuts
the resolution whenever possible, if a cached replica is
found.

2.7 Control Operations

In this section, we introduce some basic primitives that
facilitate the interaction between control and communi-
cation operations. For simplicity and clarity, we do not
model the algorithmic part of a control regime, for ex-
ample distributed routing. Also, we ignore any access
control that is necessary to validate control operations in
reality.

In addition to the lookup operation introduced in
Section 2.3, three additional primitives are necessary:

update(name, {<NPO, name>})
This primitive is used to add, remove, or update a map-
ping in context state.

create(name, opcode, {<NPO, name>})
This primitive creates and returns a control message
containing the given arguments. The control message
is transmitted using the available forwarding primitives.
The LOOKUP and UPDATE opcodes trigger the corre-
sponding lookup or update operations at the destination
NPO. The INFO opcode is used to communicate context
state information to neighbours, for example routing in-
formation or name resolution replies.

intake(name, opcode, {<NPO, name>})
This primitive represents the actual control algorithm by
computing the set of local operations, and potentially
outgoing messages, based on the control semantics of the
message.

It is now possible to express several important tasks
using the available set of primitives. For example, com-
munication that implicitly triggers control activities can
be expressed in the context of the generic forwarding al-
gorithm by inserting the following code into the forward-
ing pseudo-code after the lookup operation:

while (op != NULL)
intake(n, s, op);
op, s = lookup(n);

endwhile

We use NAT as an example scenario between three
nodes, as sketched in Figure 1, to illustrate the opera-
tion of and interaction between communication and con-
trol primitives. We ignore the ARP and outgoing Ether-

4

ARPN

udpi ipni ipne
IPNUDPI

NAT NodeInternal Node External Node

ethni ethne
ETHNEETHNI

ethiETHI ethe

ARPI

ipiIPI ipeNAT

UDPE

ETHE

ARPE

IPE

udpe

UDPI: internal name of NPO udpi: external name (e.g. "port")

Figure 1: NAT Example Setup

net details to keep the example small and only show the
processing inside the NAT node. Further, the execution
of pop and send primitives is omitted from the exam-
ple, since they are obvious. We use IPUDP as the local
name of the UDP NPO instance at each node (aka “pro-
tocol number”) and ETHIP as the corresponding name
for the IP instance. The address stack top to bottom is
shown from left to right and we assume the convention
that source addresses are pushed before destination ad-
dresses. We show the creation of a new UDP mapping.

ETHNE: lookup(ethne,ethni,ETHIP)
NAT: lookup(ipe,ipi,IPUDP,udpe,udpi)
NAT: intake(NULL, UPDATE,
<NULL, [ipe,ipi,IPUDP,udpe,udpi]>)

update([ipe,ipi,IPUDP,udpe,udpi],
<IPN, [ipe,ipni,IPUDP,udpe,udpX]>)

update([ipni,ipe,IPUDP,udpX,udpe],
<IPN, [ipi,ipne,IPUDP,udpi,udpe]>)

NAT: push(ipe,ipni,IPUDP,udpe,udpX)
IPN: lookup(ipe,ipni,IPUDP)
IPN: push(ipe,ipe,ipni,IPUDP)
ARPN: lookup(ipe)
ARPN: push(ethe,ethni,ETHIP)
ETH: ...

The Ethernet NPO at the incoming NIC performs a
lookup for the destination address and the protocol field
to determine whether the Ethernet frame should be re-
ceived by this station and if yes, where to forward it
to. The NAT NPO detects that the packet is sent from
a non-local to an external address, but only finds the
default mapping for this case. The default mapping in-
vokes control processing via the intake primitive. In-
ternally, this leads to searching for a free local UDP port
udpX, which is then used to create incoming and outgo-
ing NAT context state. Afterwards, communication op-
erations continue: The packet header is modified and the
packet leaves via IP, ARP, and Ethernet NPOs.

The routing and forwarding of control requests and
replies can be accomplished using available communica-
tion and control primitives. For example, the routing of
reply requests, e.g. for resolution requests, is comparable
to a NAT NPO that creates forwarding state for an outgo-
ing messages and automatically routes the corresponding
incoming messages.

3 FORMALIZATION

Formalization of the concepts introduced in the previous
section provides a basis for rigorous analysis, validation
and even formal verification of protocol design. We wish
to operate at suitable levels of abstraction, and support
modular analysis and refinement of specifications and
formalizations. In this section, we sketch how a formal
basis for our framework can be defined, and how formal
analyses can be carried out.

3.1 Correctness Specifications

Consider the canonical requirement of deliverability of
messages. This is easily specified as an inductive prop-
erty of a message msg at a given NPO np being deliver-
able to its destination NPOs: (1) A message already at its
destination NPO is deliverable. (2) A message msg at a
particular NPO np is deliverable if from each neighbour
npi in mapping m, obtained from looking up the desti-
nation name, message msg′i, constructed as specified by
m, is deliverable. This is formalizable in logic as a predi-
cate msg@np deliverable using inductive inference rules.
Inference rules with no assumptions are called axioms.
Predicates defined in such a manner are amenable to in-
ductive proof techniques, with automated theorem prover
support.

3.2 Operational semantics

We formalize the operational semantics of constructing
and deconstructing messages, and manipulating context
state as an abstract machine in the style of [7] running
at each NPO. Configurations of the abstract machine are
triples 〈S|cs|p〉 consisting of (i) a stack of values manip-
ulated by the NPO (names, messages, mappings,..), (ii)
context state, and (iii) sequence of primitive operations
to execute. This formalization has a well-understood the-
ory [10] and mechanizable reasoning apparatus, which
permits the use of algebraic analysis techniques.

The low-level transition relation −→ describes the
change in configuration. Arguments to the operations are
implicitly specified; they are at the top of the stack in the
“pre” configuration, and in the “post” configuration, the
results of the operation are at the top of the stack. In each
rule, the first primitive operation of the third component
is executed; the remaining operations are subsequently
performed from the “post” state onwards.

〈(n1n2...,d)...|cs|pop; p′〉 −→ 〈{n1,(n2...,d)}...|cs|p′〉
〈{(n2...,d),x}...|cs|push; p′〉 −→ 〈(xn2...,d)...|cs|p′〉

〈n...|cs|lookup; p′〉 −→ 〈m...|cs|p′〉
provided cs associates m to name n

〈{n,m}...|cs|update; p′〉 −→ 〈...|cs[n 7→ m]|p′〉

〈{n,m}...|cs|control(o); p′〉 −→ 〈ctl(n,o,m)...|cs|p′〉

5

Execution of pop expects a message of the form
(n1n2...,d) on the stack, from the header of which the
leading name is removed, returning a pair consisting of
this name and the remainder of the message. Recall that
the format of names is specific to the NPO, and so n1 can
be a suitable prefix of the address stack, not merely the
topmost address. Executing push expects a message and
a name x, which is prepended to the message header to
yield the resulting message. The lookup operation ex-
pects a name n on the stack, and the mapping associated
with it in context state cs is returned. The update prim-
itive expects a name n and a mapping m on the stack,
which it uses to change the context state. The notation
cs[n 7→ m] describes the context state that is identical
to cs except that now name n is associated with map-
ping m. The control primitive takes an explicit opcode
argument o, and expects a name n and mapping m on
the stack. The result is a constructed message ctl(n,o,m)
which is placed on the stack for further processing.

The opcodes with non-local effect are those for com-
munication. These may be described by rules that de-
scribe transfer of a message at one NPO to another:

np1[〈msg...|cs1|send(np2); p′1〉],
np2[〈...|cs2|receive; p′2〉]
−→ np1[〈...|cs1|p′1〉],np2[〈msg...|cs2|p′2〉]

provided np1,np2 can communicate directly. The no-
tation np[. . .] indicates the state at NPO np, and in the
rule the two communicating NPOs are juxtaposed. In
this rule, we have presented a synchronous transfer of
the message between the NPOs. However, for other se-
mantics, we can interpose a suitable abstract medium
with appropriate semantics (synchronous/asynchronous,
queue/bag, lossy/ideal), which can be modelled either
abstractly or explicitly.

3.3 Proof techniques

We separate notions of partial correctness or “safety”
from those of termination or progress. The former prop-
erties describe that nothing wrong happens during pro-
tocol execution, e.g., that no message is incorrectly for-
warded to an unintended NPO, or that no name is in-
terpreted in an incorrect context. These are fairly chal-
lenging to establish in the presence of dynamic changes
to the routing and forwarding state of the network [1],
and require coinductive techniques to show that essential
structural properties of the context state are maintained,
i.e., are invariant. A typical invariant is that the context
states for forwarding eventually form an acyclic directed
graph. Other important properties that need to be shown
are that updates due to messages maintain the necessary
consistency of how names are interpreted in the context
state. Another typical requirement is the existence of de-
fault forwarding actions which ensure deliverability.

We posit that the notion of scope provides a useful
handle in establishing invariant relationships between
classes of NPOs and messages, as well as uniformity in
the interpretation of names, e.g., by showing that any
messages for a particular set of destination NPOs are
always forwarded within particular scopes, or that any
message at an NPO in a particular scope will trigger mes-
sages only to NPOs in related classes of scopes.

4 CONCLUSIONS

We believe that a carefully chosen conceptual framework
of communication primitives not only provides a clear
understanding of the current, complex Internet, but also
serves as the basis for a formal model of its semantics.
We have presented such a framework and outlined its
operational semantics. In future work, we propose to fur-
ther extend this formal analysis, and also implement a
‘universal forwarding engine’ based on our primitives.

REFERENCES

[1] R. M. Amadio and S. Prasad. Modelling IP Mobil-
ity. Journal of Formal Methods in System Design,
17(1):61–99, 2000.

[2] H. Balakrishnan et al. A Layered Naming Architec-
ture for the Internet. In Proceedings of SIGCOMM
2004, pages 343–352.

[3] D. Clark. The Design Philosophy of the Darpa
Internet Protocols. In Proceedings of SIGCOMM
1988, pages 106–114.

[4] T. G. Griffin and J. L. Sobrinho. Metarouting. In
Proceedings of SIGCOMM 2005, pages 1–12.

[5] M. Gritter and D. Cheriton. An Architecture for
Content Routing Support in the Internet. In Pro-
ceedings of USITS 2001, pages 37–48.

[6] C. A. R. Hoare An Axiomatic Basis for Com-
puter Programming. Communications of the ACM,
12(10):576–580, 1969.

[7] P. J. Landin. The Mechanical Evaluation of Expres-
sions. Computer Journal, 6(4):308–320, 1964.

[8] B. Loo et al. Declarative Routing: Extensible Rout-
ing with Declarative Queries. In Proceedings of
SIGCOMM 2005, pages 289–300.

[9] C. Partridge et al. RFC 1546 - Host Anycasting
Service, November 1993.

[10] G. D. Plotkin. A Structural Approach to Opera-
tional Semantics. Technical Report DAIMI FN-19,
University of Aarhus, 1981.

[11] J. H. Saltzer. Naming and Binding of Objects. In
Rudolph Bayer et al. (eds.), Operating Systems - An
Advanced Course, pages 99–208. Springer LNCS
60, 1978.

[12] I. Stoica et al. Internet Indirection Infrastruc-
ture. IEEE/ACM Transactions on Networking,
12(2):205–218, April 2004.

6

