
A Policy-Oriented Architecture for Opportunistic
Communication on Multiple Wireless Networks

A. Seth, M. Zaharia, S. Keshav
School of Computer Science

University of Waterloo
Waterloo, ON, Canada, N2L 3G1

S. Bhattacharyya
Sprint Advanced Technology Labs

Burlingame, California, USA

ABSTRACT
Today’s mobile devices are already equipped with multiple
wireless interfaces that differ in data rates, power consump-
tion, monetary cost, and coverage areas. Previous research
has shown that intelligent policy-based switching between
wireless interfaces can obtain better performance than us-
ing a single interface [29]. We build upon this pioneering
work to add the notion of user-defined policies that operate
at the session layer, unlike the network- and transport-layer
policies of past work. Session-layer policy definitions allow
us to include a delay component (such as a deadline for data
transfer) at a timescale of minutes and hours. This helps us
distinguish between online and offline applications, and al-
lows us a high degree of flexibility in network selection. For
example, we can defer data transfer on currently available
networks if they are too costly, and wait until a low cost
network (such as a free WiFi hotsopt) becomes available for
opportunistic use in the future.

However, actually using multiple interfaces, which requires
sessions to be maintained across interface switches, discon-
nections, and device shutdowns, is complex. Consequently,
to be useful in practice, we believe that application writers
need to be shielded from these details, while still exercising
fine-grained control over network usage policies. In this pa-
per, we describe a system that allows applications running
on a mobile device to seamlessly exploit multiple heteroge-
neous wireless networks based on user-defined session-layer
policies. We have designed, implemented, and evaluated
the performance of an Opportunistic Connection Manage-
ment Protocol (OCMP) that allows such applications to op-
portunistically communicate on multiple network interfaces,
switch across interfaces, remain disconnected or powered off
for arbitrarily long periods, and interoperate with legacy ap-
plications and servers. The implementation is in J2ME so
that it can be run on any Java-based mobile device. Ex-
tensive policy control for interface selection is also provided
to applications, along with a simple API for application de-
velopers. We explain the design, architecture, and imple-
mentation of OCMP, and illustrate its benefits through field
experiments. Our results are encouraging and suggest that
policy support for multi-network opportunistic communica-
tion is both achievable in current systems, and of significant
practical value.

1. INTRODUCTION

1.1 The opportunity of multi-NIC devices
The past few years have seen an explosive growth in the

number of mobile devices such as cellphones, PDAs, and
laptop computers. These devices are multi-NIC and can use
a variety of wireless access technologies ranging from wide-

area technologies such as GPRS, EDGE, CDMA 1xRTT,
EV-DO, and WiMax, to local-area technologies such as 802.11
and short-range technologies such as Bluetooth and UWB.
These wireless technologies differ from each other on a num-
ber of parameters, summarized in Table 1 [1, 2, 41].

In general, short-distance wireless technologies are better
than long-distance technologies on parameters of data rate,
power consumption per bit, and monetary cost:

• Data rate: Any wireless access technology must make
a difficult tradeoff between the coverage of an access
point and the capacity available to a user in that access
point’s coverage area. Thus, long distance technologies
such as EDGE have a range of a couple of kilometers,
but support a lower data rate than short distance tech-
nologies such as WiFi, that have coverage areas of only
a couple of hundred meters.

• Power consumption: The average power consumption
of a cellular radio such as EvDO is of the same order as
that of a WiFi radio, despite the larger communication
distances, because cellular technologies use protocols
for fine-grained open- and closed-loop power control
that enable efficient channel management. However,
due to the lower data rate of EvDO, the power con-
sumption per bit of WiFi is much lower than EvDO.

• Monetary cost : The monetary cost of using an access
network depends on the pricing policy of the network
provider. It is practically zero in the case of private
Bluetooth networks or free public access WiFi hot-
spots operating on unlicensed spectrum, but can be
very expensive (up to $25/MB) for cellular data ac-
cess plans.

Despite their superior performance, short distance tech-
nologies are very limited in their coverage. For example,
only a few CDMA base stations are sufficient to provide

Table 1: Comparison of wireless technologies∗

Blue- WiFi GPRS EvDO
tooth

Data-rate (Mbps) 2.1 54 20Kbps 1.8
Coverage-radius (m) ∼ 10 ∼ 100 ∼ 1000 ∼ 1000
Tx-power (mW) 130 1400 1250 3500
Rx-power (mW) 100 1150 600 1500
Energy(mJ)/Megabit∗∗ 47.6 21.3 30000 833
Cost/month 0 < $20 $30 $80

∗ These are representative values only. Actual values can
differ based on the coding scheme used, distance from the
base station, etc.
∗∗ Energy/Mbits in mW/Mbps = mJ/Megabit.

coverage to a large geographical area, but almost a hun-
dred times the number of WiFi access points are required to
cover the same area: this greatly increases the management
overhead. Unfortunately, besides having poor performance,
wide area technologies cannot provide ubiquitous coverage
either, and coverage can be decidedly spotty inside enclosed
areas such as buildings. Furthermore, strict call-admission
control is imposed on the number of simultaneous users in
a given geographic area.

To sum up, we think that no single wireless access technol-
ogy can be expected to provide ubiquitous high-bandwidth,
power-efficient, and low cost coverage. This points to the
need for intelligent switching among multiple wireless inter-
faces, such that users can opportunistically use one or more
wireless networks to increase their overall communication
capacity, power efficiency, and cost effectiveness [29–31].

1.2 Delay tolerant applications
In parallel, we observe that for many non-interactive ap-

plications, users can tolerate data delivery delays on the
order of minutes, hours, or even days. Examples include
non time-critical applications such as personal email, mobile
blog uploads, download of media clips, etc. This flexibility
in data transfer delays can be used to optimize communi-
cation overhead in novel ways. For example, data transfer
can be intentionally delayed such that cellular networks are
not utilized, and instead free WiFi or Bluetooth networks
are opportunistically used whenever they become available.
This can reduce the monetary cost per bit. It can also re-
duce the battery consumption on mobile devices because
faster WiFi networks used for short bursts of time consume
lesser power than slower cellular networks to transfer the
same amount of data. Note that the decision to delay data
transfer is a policy-based decision because it involves user
preferences for delay and cost.

Data transfer may be delayed not just on mobile devices,
but also within the infrastructure. This becomes useful in
situations when the wireless link supports data rates much
higher than the backhaul connection from a WiFi or WiMax
access point. This is a typical scenario because most back-
haul connections use DSL that provides up to 5 Mbps, whereas
802.11g wireless links can support up to 54 Mbps. In such
cases, WiFi access points can be enhanced with large local
storage buffers. This will allow data transfer on the fast
wireless link to proceed at the full data rate of the wire-
less technology: the data is buffered at an access points and
transmitted in batches over the slower backhaul link.

1.3 Policy design for opportunistic communi-
cation

Summarizing this discussion, consider for example a user
who has email with photo attachments to send from her mo-
bile device but prefers not to use the credit available on her
expensive cellular plan. The user may, however, be willing
to wait for a few hours in the hope of finding a free public
hot-spot for sending this email. We would like to design a
system that allows such a user to express interface usage
preferences (e.g., minimize overall cost but tolerate transac-
tion delays of no more than 3 hours). The rest of the process
should be automated - the emails should be held back on the
mobile until a free WiFi hot-spot is found. If none is found
within three hours, then they should be sent out anyway
over the cellular interface. The user should still be able to
use a legacy email client application and should not have to
be concerned with the intricacies of interface switching or
the scheduling of data transmission.

Generalizing from the above scenario, our goal is to de-
velop an architecture for policy controlled opportunistic com-
munication on multiple wireless networks. This should al-

low users to specify policies at the applications-level; for
example, can a certain application tolerate delays, and if so,
then what is the maximum tolerable deadline for data de-
livery. Users should also be able to define policies in terms
of bounds on the monetary cost associated with data deliv-
ery for different applications, or preferences to operate only
over a certain type of network, etc. Similarly, users should
be able to specify preferences on whether to minimize over-
all power consumption on the mobile device, or to minimize
the cost of data transfer, etc. While providing this flexi-
bility, our solution should also shield users and application
writers from the dreary details of interface switching and
session maintenance across disconnections.

We would like to mention that the notion of user-defined
policies is well-known in the areas of autonomic computing,
user interface design, and access control. The Policy SIG
defines policies as “a set of rules governing choices in the be-
havior of the system” [33]. The same concept clearly applies
to policy-based network selection. Although this has been
looked into in the past [29], the novelty of our work lies in
highlighting the importance of delay-based user preferences
for the selection of wireless networks on mobile devices.

We note in passing that the same factors of monetary
cost, data rates, and other user-defined policies that influ-
ence network selection on mobile devices, are equally rele-
vant for network selection in rural Internet kiosks. Rural
kiosks in developing countries provide a variety of services
such as birth certificates, bill collection, email, land records,
and consulting on medical and agricultural problems. These
kiosks are unproductive without reliable Internet connectiv-
ity. Today, kiosks connect using dialup lines, Very Small
Aperture (satellite) Terminals, EDGE and GPRS PCI/ PCM-
CIA cards, long-range WiFi, or through mechanical back-
haul such as cars and buses that ferry data to and from
villages and cities [37]. Each of these connectivity options
differ from each other based of parameters of monetary cost,
data rates, delay, and reliability. It is common for kiosks to
have multiple options for Internet connectivity, and the se-
lection of an appropriate network for different applications
at different times can be complex. Interestingly, the same
architecture we develop for network selection on mobile de-
vices is also applicable for network selection in rural Internet
kiosks. For ease of exposition, however, the focus of this pa-
per is in the context of network selection on mobile devices.

1.4 Road map
We describe a detailed use case for opportunistic commu-

nication in Section 2, and use it to derive design goals for
our system in Section 3. Based on these goals, we give an
overview of our system design in Section 4, and present the
detailed system architecture in Section 5. Evaluations of the
implementation of our system is given in Section 6. This is
followed by a description of future work in Section 7, related
work in Section 8, and a final discussion in Section 9.

2. DETAILED USE CASE
In addition to the policy directed use of wireless NICs, a

practical solution to policy-oriented opportunistic commu-
nication has to deal with several other issues. These issues
are illustrated in more detail through the email-with-photo-
attachments example from Section 1.3, in the scenario of
Fig. 1.

Here, a set of proxy (email cache) servers (marked ‘P’),
located in different data centers in the Internet, are accessed
by the mobile device. The device is initially at location (1)
in overlapping 3G and WiFi wireless coverage areas. Be-
cause it can access the Internet using more than one wire-
less network, it needs to decide which network to use. The
choice is complex, dictated by the dollar cost to use a wire-

Access

network

3G coverage

area

Email server

P

Proxy

3G access

network

AP

AP

AP

AP

Access

network

Internet

WiFi coverage

area

P

1

3

2

4

Figure 1: Opportunistic communication

less network, the power cost per bit, and the data rate, while
simultaneously satisfying application requirements such as a
3 hour deadline for data delivery. How should these choices
be resolved? Existing work on NIC selection only considers
network properties such as cost and data rate to hierarchi-
cally rank networks with respect to each other [28, 29], and
does not take delay based user preferences into account.

The device then moves to location (2), where it has only
3G coverage. How does it even know that it has left the WiFi
coverage area? And how does it decide whether to use 3G,
or to just wait for the next WiFi network? Should the user
be involved in making this decision? This choice is equally
complex, dictated by the user requirements, mobility sched-
ule, and other network characteristics. Further, suppose the
mobile decides to switch from WiFi to 3G because it pre-
dicts that it will not run into any WiFi network before the
deadline. How can we hide this switch from the applications
running on the mobile? Prior work to handle NIC switch-
ing or disconnections has only looked at small timescales at
the network and transport layer [27, 30, 36]. Although sys-
tems such as [15, 22] do consider large timescale operations
handled at the session layer, policy-based network selection
using these systems has only considered the problem from a
routing perspective, with a goal to minimize overall delays
for data delivery [10]. To the best of our knowledge, design
of a general user-defined policy framework operating at the
session layer has not been studied in the past.

Now suppose the device moves to location (3), where it has
no coverage. At this location, the applications on the device
have to deal with disconnection. How should this be hid-
den from applications, most of which are not disconnection-
tolerant? Other systems handle this by constructing appli-
cation specific plugins to hide disconnections from legacy
applications [22], and we adopt a similar approach.

The device now moves to location (4), where it can access
the Internet from the second WiFi access network. The
device now has to decide whether this network is safe to use,
and, if not, then use application-layer security mechanisms
to protect privacy. Moreover, applications need to recover
session state established in location (1) or (2) so that they
don’t start from scratch each time the mobile moves to a new
location. Such scenarios have not been explore in existing
work.

This use-case above elicits the requirements that we enu-
merate in the next Section.

3. DESIGN GOALS

1. User-directed use of multiple networks: Today’s mobile
devices can detect the availability of one or more ac-
cess networks, but the interface selection is completely
manual. This is clearly not suitable for opportunistic
access. We’d like a mobile device to have knowledge
of factors such as the bandwidth and congestion state
of the available wireless networks, energy-efficiency of
the radios, and monetary costs of the networks. The
device should then be able to use this knowledge to
decide connectivity choices that satisfy the user re-
quirements, and automatically connect to the appro-
priate networks. Thus, users should be able to spec-
ify application-specific policies such as data delivery
deadlines, or bounds on monetary costs, or network
preferences. Similarly, users should be able to spec-
ify application-independent preferences such as mini-
mization of cost or power consumption. Whenever the
mobile device is in the presence of one or more net-
works, it should be able to automatically select and
connect to a suitable network in accordance with the
user-defined policies.

2. Support for legacy servers: It is unlikely that a solution
that requires changes at a server will ever be deployed
in practice. Consequently, we would like a solution
that inter-operates with existing servers.

3. Application session persistence across disconnections:
Consider a mobile device that has established a con-
nection to a server using one of several network inter-
faces. Suppose the mobile decides to power itself off or
switch to a different interface; then reconnects to the
same server with a different IP address. With existing
systems the server would be unable to recognize that
the two connections correspond to a single ongoing
data transfer session, and therefore would not be able
to migrate persistent application state from the old
connection to the new. For network access to be truly
opportunistic and seamless, an application should be
able to exchange data with a server when changing net-
work interfaces or even when faced with intermittent
loss of connectivity. This requires the maintenance of
persistent application state at both the server and the
client so that data transfer can resume from the point
where it stopped once connectivity is restored.

4. Optimized network switching : Consider a user who is
walking or driving in a car, and whose mobile device
opportunistically connects to WiFi networks. Discon-
nections are likely to be unclean in such a scenario,
and connections may terminate without an appropri-
ate handshake that clears data in transit, or data sit-
ting in local transport and link layer buffers. Although
session layer persistence [3, 22, 27, 36] can ensure cor-
rectness that such data is not permanently lost, these
protocols operate at timescales of the order of min-
utes (TCP timeouts); this can delay retransmission of
data and result in large re-sequencing buffers at the
receiver. It can also lead to the maintenance of redun-
dant connection state at the proxy, because the proxy
may wait for lengthy transport layer timeouts before
tearing down the connections even though the mobile
is already disconnected. Thus, we would like to have
alternative mechanisms to better deal with network
disconnections.

Detecting and selecting a ‘good’ network from among
multiple networks also has room for optimization. Sup-
pose the device is confronted with a choice of five to ten

publicly accessible WiFi networks at the same time,
which can be quite common in some urban settings. If
the device connects to a few networks and probes the
network quality to find a good network, valuable con-
nection time can be wasted [32]. Again, optimization
is required so that the mobile device can make quick
decisions.

5. Ease of application design and implementation: Ap-
plication designers who are familiar with the socket-
bind-connect approach to writing distributed applica-
tions cannot deal well with systems where connections
may fail arbitrarily, be resumed arbitrarily, and ex-
hibit large variations in bandwidth depending on the
currently available network. We would like to insulate
application developers from these problems and pro-
vide them with a simple and intuitive communication
interface.

6. Support for buffered access points: Access points en-
hanced with local persistent storage make better use
of the faster wireless links because data is not bottle-
necked at a slow backhaul link from the AP to an ISP.
We would like to support such APs.

This design goal is also motivated from the desire to
support rural kiosks connected to the Internet via me-
chanical backhaul [25]. In such a system, cars and
buses that regularly travel between villages and cities,
carry a WiFi access point having local storage. This
‘mobile’ AP ferries data between rural kiosks and an
Internet gateway. The rural kiosks and the gateway
also possess a similar AP to hold the data locally until
it is picked up by a mobile AP. APs communicate with
each other over short distances using WiFi, and data is
transferred whenever a mobile AP comes in range with
a stationary AP at a kiosk or gateway. Since cellular
connections are typically unavailable in remote rural
areas, users possessing mobile devices can continue to
upload or download data via these WiFi based APs at
the kiosks. Therefore, we would like solutions that can
support buffer APs that may or may not be connected
directly to the Internet.

We address these goals by means of our system architec-
ture and Opportunistic Connection Management Protocol
(OCMP). We present an overview of the system design in
the next Section, deferring details of OCMP to Section 5.

Note that efficient opportunistic communication also re-
quires solutions to issues such as 802.11 association delays,
wireless losses due to interference and mobility, appropri-
ate MAC rate adjustment, impact of lower layers on TCP
and other transport layer implementations, etc. We defer
an analysis of such factors to future work, and focus only on
the design of a policy-based architecture for opportunistic
communication.

4. DESIGN OVERVIEW
Fig. 1 also presents an overview of the system architec-

ture. The main components are the content host, the prox-
ies – which run OCMP servers, and the mobile host – which
runs the OCMP client. We describe each component next.

4.1 Content host
At the right of Fig. 1 is the content host, a server that

either provides content such as video or stored voice to a mo-
bile device, or receives uploads and content requests from the
mobile. This represents popular web sites like youtube.com
and yahoo.com, or media servers that provide audio and
video content. Content hosts reside in a data center at

the core of the Internet. These servers are connected to
a wired, high-capacity, and global IP core backbone. Exist-
ing content servers run legacy applications and do not sup-
port disconnection resilience or parallel transport connec-
tions over multiple networks for a single application session.
We would like to provide a feasible path for supporting op-
portunistic communication without requiring modifications
to legacy servers. We achieve this via the deployment of
network-based proxies which are described next.

4.2 Proxy servers
Proxy servers (marked ‘P’) allow interworking between

legacy servers and our protocols [4, 15, 22]. A proxy is lo-
cated in the communication path between a mobile device
and a content host. It serves as the termination point for
the transport connections opened by the mobile host over
multiple network interfaces. The proxy server hides mul-
tiple connections and disconnections from the content host.
It can also provide fine-grained and application-specific con-
nection management, as will be described in Section 5.

The proxy can either be provided by an Internet Service
Provider, or by an enterprise on behalf of its employees.
Proxies should be placed so that the round trip time from
the proxy to the bulk of the mobile devices is as low as
possible [23]. For example, cellular providers could keep the
proxies adjacent to the PDSNs in CDMA or the GGSNs in
GPRS networks, or on the backhaul point to the Internet
core [24]. On the other hand, if a third party provides a
proxy as a value-added service, it should place the proxy in a
well-connected data center. We only require that the proxies
have one or more globally-reachable public IP addresses, or
dynamic DNS registrations.

The proxy acts as a store-and-forward agent for data down-
loads to a mobile device. A download starts with a mo-
bile application initiating a data transfer request, e.g., an
HTTP GET request. This request is intercepted by the
OCMP client on the device and forwarded to the proxy, as
in PCMP [22]. The OCMP server on the proxy supports
an application plug-in that allows it to understand how to
process application-specific data transfer requests. If the re-
quest is from an application supported by the proxy, the
proxy processes the request and then uses legacy protocols
to contact the content host on behalf of the mobile device.
Thus the content host is completely shielded from all details
of communication between the mobile and the proxy.

Once data is downloaded from the content host to the
proxy, the proxy caches the data and looks for available
connections to the mobile device. No such connection may
be available at that time if the mobile device is temporarily
disconnected from all access networks. If so, the proxy holds
the downloaded data in persistent storage until the device
reconnects. Alternatively, the proxy can use an out-of-band
mechanism (e.g., an SMS message if the mobile device is a
smart phone) to inform the mobile device about the avail-
ability of data. When the mobile device reconnects over one
or more wireless networks, the proxy segments the applica-
tion data into bundles (which are the message units in Delay
Tolerant Networking [15]) and routes the bundles over these
connections. The policy-based algorithm for determining
which bundles to transmit on what connections is negoti-
ated in advance between the OCMP peers on the mobile
client and the proxy.

When data is being uploaded from the mobile device to
a content host (e.g., blog or picture uploads), the proxy
receives bundles from a single application, potentially over
multiple transport connections from the mobile, reassembles
them into a single stream, opens a connection to the con-
tent host and forwards the data using application-specific
protocols. Thus the OCMP client on the mobile host and

the proxy implement analogous functions for segmentation
and reassembly of application data as well as policy-based
routing of application data segments.

We envision that the multi-connection state between a
mobile and a proxy can be packaged and moved to a differ-
ent proxy to allow a mobile to always use a ‘nearby’ proxy,
greatly improving performance. Similarly, the state on a
mobile device can be retained persistently across arbitrary
periods of disconnection or power loss. The state can even
be transferred to a different end-point like a home or of-
fice desktop, and unpackaged to recreate an operating state
identical to the state on the mobile prior to disconnections.
This can be used to provide semantics similar to that pro-
vided by Internet Suspend and Resume [18]. Note that we
have not implemented a multiple-proxy system as yet. We
describe it briefly as part of future work in Section 7.

4.3 OCMP
The proxy and a mobile may be connected by multiple

heterogeneous wireless networks that differ in coverage, ca-
pacity, pricing, and availability. An OCMP server-side pro-
tocol running on the proxy coordinates access on these net-
works with an OCMP client-side protocol running on each
mobile. OCMP defines a message format for encapsulating
application data segments for session-level data reassembly.
OCMP also supports control messages, i.e., messages that
consist of only an OCMP header and an empty body. For ex-
ample, control messages are exchanged between the OCMP
client and the proxy to coordinate policies regarding selec-
tion of network connections as described in Section 5.8.

Unlike past work [27, 36], OCMP does not depend on
TCP semantics of the underlying connections, as long as the
transport layer provides end-to-end reliability. An underly-
ing connection can be a standard or modified TCP/IP con-
nection [8, 20] or can be a transport protocol optimized for
wireless networks, such as erasure-coded UDP [6,7]. OCMP
can therefore exploit systems that compress and transcode
data on wireless links to optimize bandwidth use [42].

Using OCMP, data can be striped on multiple connections
in parallel, under fine-grained application control. Essen-
tially, OCMP clients and servers choose the connection to
be used for each application-level data unit based on pre-
specified policies. Moreover, if a connection abruptly termi-
nates, or even if all the connections terminate, the OCMP
client and server gracefully recover from the failure, provid-
ing applications the illusion of seamless connectivity.

Besides working with the server-side, the OCMP client-
side also has the additional responsibility of detecting net-
work connections and disconnections. It uses application-
specific policies to decide whether it should initiate a con-
nection to the server side when a connection opportunity
arises. It also has a notification mechanism to inform an
application if there is any data that has arrived for it.

Connections between an OCMP client and OCMP server
are always initiated by the client. A new transport layer con-
nection is created each time the device connects on a new
network and torn down when the device disconnects. Each
network interface is associated with a single transport con-
nection that is shared by all application data units assigned
to that interface.

4.4 Mobile
The proxy identifies a mobile device (and all connections

originating from it) by a globally unique identifier (which
could be an IMSI or phone number). The GUID for a
mobile device is common to all its transport connections,
and serves several purposes. It decouples device address-
ing (a GUID) from routing (in terms of IP addresses), as
in HIP [21]. This solves the problem of IP address changes

due to mobility and/or disconnections. It also enables the
proxy to maintain persistent data transfer state even when a
mobile application uses parallel transport connections over
different access networks.

The OCMP client on a mobile device provides two ap-
plication interfaces. The first is meant for legacy applica-
tions that are designed in the socket-bind-connect paradigm.
For such applications, application-specific data download re-
quests are intercepted by the OCMP client and sent on a
control connection to the proxy. The OCMP server layer in
the proxy, acting on behalf of the client, initiates a connec-
tion to the server and downloads the data. It then transmits
the data to the mobile device. The OCMP client layer on
the mobile device reassembles the data before delivering it
to the application. For data uploads, the proxy reassembles
data received from the device and transmits it to the server.

We have also built a new application interface for disconnection-
and delay-tolerant applications. It takes the form of a ‘com-
munication directory’, which is a standard directory in the
file system. An application writer drops a file into this di-
rectory, and is guaranteed that the file will appear at a cor-
responding directory on the destination at some point in
the future. Policies can be associated with each directory,
and can be defined through a configuration file for different
classes of applications. This is described in more detail in
Section 5.1. We have found that this API is both robust
and easily understood by application developers.

We have developed a Java-based prototype implementa-
tion for the system described above and evaluated its perfor-
mance on laptops with diverse wireless access technologies
such as 802.11b/g, CDMA 1xRTT, and GPRS EDGE. A de-
tailed performance evaluation of our prototype is presented
in Section 6.

4.5 Buffered Access Points
Whereas our solution will work with off-the-shelf WiFi or

WiMax access points, we recommend enhancing these access
points with store-and-forward infrastructure. This allows for
better utilization of the wireless link capacities, which are
typically much higher than backhaul bandwidths for public
access networks. We have developed such prototype access
points using single-board computers from Soekris Corpora-
tion [40] fitted with 40 GB harddisks. These access points
run the DTNRG Delay Tolerant Networking software [9].
They interface with OCMP running on the mobile devices
on the wireless network, and OCMP running on the proxies
in the Internet on the wired network. Note that the same
DTNRG software can also be used for mechanical backhaul
because it supports multiple hops of disconnections. We
have suitably extended it to make it usable as a practical me-
chanical backhaul solution for rural kiosk communication, as
well as to support data transfer for mobile devices via rural
kiosks [25].

Such buffered access points are ideal for data uploads from
mobile devices. Data can be opportunistically transferred
to the intermediate access points at the highest data rates
possible, and session level persistence ensures that the data
is correctly reassembled and conveyed to the proxy server.

Data downloads are more difficult because the proxy servers
need to be aware of the next access-point that the mobile
will connect to pre-cache downloaded data, and this de-
pends on the mobility pattern of the users. We envision
using network coding for redundancy and to compensate for
incorrect mobility prediction by replicating data on multi-
ple access points, such that if the mobile device is able to
pick up a certain minimum amount of data, it can decode
and reassemble the rest of the data. Although we have not
addressed the problems of mobility prediction and optimal
network coding in this paper, our implementation is flexible

to accommodate such features in the future.

4.6 Control channel
We observe that cellular networks are nearly ubiquitous,

even though they may not support high data rates. We use
this insight to assign a special role in OCMP to the cellular
network, other than its regular use for data transfer. The
cellular network in OCMP provides a control plane. For ex-
ample, when mobile devices are confronted with a choice of
multiple WiFi networks to choose from, they can use the
control channel to query a centralized GIS (Geographic In-
formation System) for the best-performing network at that
time [38], or report back the performance status of different
networks to keep the database updated in real time. Simi-
larly, the control channel can be used for DHCP negotiations
and pre-authentication to achieve small WiFi drive-thru as-
sociation latencies. The control channel can also be used to
send disconnection notifications for more efficient handling
of in-transit or buffered data that is lost during unclean
disconnections, and reduce the amount of redundant con-
nection state being maintained. Applications can use the
control channel in many other ingenious ways too [26].

4.7 Policy control
We now turn our attention to the main focus of this pa-

per, that is, policy control of communication over multi-
ple wireless NICs. OCMP allows policy definitions at the
application-specific and application-independent levels, and
provides a framework in which algorithms can be imple-
mented to exercise these policies. Policies can be modeled
in a number of ways, such as through utility functions, or
as a set of rules. For example, application-specific prefer-
ences may be modeled as utility functions where the utility
gained is greatest when application data is delivered imme-
diately, and the utility decays with time, eventually going
to zero. Algorithms can then be designed to schedule appli-
cations such that the overall utility is maximized. Alterna-
tively, application-independent utility functions can be re-
designed to minimize power consumption and maximize the
total application-specific utility simultaneously. Rule-based
policies can also be designed; for example, a policy may dic-
tate to always use WiFi instead of EDGE, unless application
deadlines are only an hour away.

These policies reside in a policy module in OCMP, and
can be queried to enforce policy at two key decision points.

1. Which network to connect to: When faced with a choice
of multiple networks which may be of different types,
decisions can be made based on the policy specifica-
tions.

2. Which application data unit to schedule for data trans-
mission: When multiple applications compete for a
common network resource, decisions have to be made
based on the policy specifications.

OCMP is designed such that policy enforcement algo-
rithms and policy specification can be distributed among
different entities. For example, policy specification data may
reside on the mobile device, but proxies may remotely query
the policy module on the mobile device. If the enforcement
algorithms are complex, then the algorithm evaluation can
be performed in the infrastructure instead of using valuable
battery and computation resources on the mobile device.
The results of the algorithm can then be conveyed to the
mobile device and enforced locally using a control channel.

Policy enforcement algorithms may require data such as
the current performance status of nearby WiFi networks,
or the network costs, or the remaining battery life, or the
expected mobility schedule of a user. This data can also be
conveyed to the algorithms, wherever they are evaluated.

5. SYSTEM ARCHITECTURE
This section describes the OCMP client and server proto-

cols in greater detail.

5.1 Client-side communication API
OCMP interacts with applications on the mobile client

either by means of a ‘communication directory’ or by inter-
cepting socket calls made by legacy applications.

A communication directory is simply a directory in the
file system that contains application data. To send data, an
application creates a new file in the directory, or modifies
an existing file. A ‘watcher’ process periodically looks for
modifications to the last modified time of the directory. If
the modification time is more recent than the last time the
directory was checked, the newly created or modified files
are sent to the OCMP stack using the OCMP API.

The watcher also registers itself as a default plugin with
OCMP, much like inetd. When called, it writes data to a
file in the appropriate communication directory, and invokes
an application-specific script to notify the application when
its data has been received. The application can simply read
this file to get its incoming data.

Each communication directory has two special files. The
config file has application-specific configuration parameters.
For example, for the blog-upload application, this is the
username and password for the user. The config file also con-
tains application-specific policies to control the interface(s)
used for transferring data for that application. These poli-
cies are passed to OCMP by the watcher. The other special
file is the status file. This file has one entry for each file
in the communications directory and contains the status of
that file. The status of a file can be, for example, ‘ready to
send’, ‘partially sent’, or ‘sent’. An application that wants
to know the status of a file’s transfer can read the status
file. This can be used, for example, to display progress in a
user-friendly GUI, shown later in Fig. 8.

The use of a communication directory simplifies applica-
tion development. An application writer has to only create
a send and receive directory and the associated config and
status files. After that, all communication is achieved by
writing files or reading files from the directory.

In addition to the communication directory, we support
legacy Java applications by intercepting ‘socket’ calls in the
Java API. These calls are instead handled by OCMP, specif-
ically by the application plugin associated with that appli-
cation. OCMP infers the plugin associated with a socket
call by looking at the destination port number as well as the
first few bytes of the written data. We describe this in more
detail in Section 5.4. After the interception, the remain-
der of the processing is identical as with the communication
directory.

5.2 OCMP protocol stack
The OCMP client and server stacks that run on a mobile

and on a proxy respectively are shown in Fig. 2. On the
client side, OCMP-aware applications interact with OCMP
through a communication directory monitored by a ‘direc-
tory watcher’. Also, socket calls made by legacy applica-
tions are intercepted by OCMP, which redirects them to
application-specific plugins.

We assume that applications or their associated plugins
can categorize their communications into either a control or
one or more data streams. For example, an email applica-
tion may create a data stream for email bodies, and another
stream for email attachments, where the delivery deadlines
for attachments may be more relaxed than the deadlines
for email bodies. The application control stream (shown by
‘App Ctrl’ in Fig. 2) provides an explicit control channel
between the application plugin peers running on the mobile

Scheduler

Wired interface

Storage manager (SAR)

Application

OCMP interface

TCP obj TCP obj

IP

Mobile device

App Ctrl

App plugin

Sockets

P
o

li
c
y
 m

o
d

u
le

GPRS WiFi

Data stream
persistence

Dir watcher

DTN obj

RMI

BPA

Storage manager (SAR)

Application specific plugin

DTN obj TCP obj

Proxy

P
o

li
c
y
 m

o
d

u
le

OCMP interface

App Ctrl

TCP obj

Legacy
server

TCP

or

UDP

Internet

WiFi

Persistent
storage

DSL

L
in

k

d
et

ec
ti

o
n

Other
apps

Connection Pool

Scheduler

Data stream
persistence

Other
apps

Connection Pool

IP

Figure 2: OCMP stack

and proxy. For example, it is used to tell a receiver about
the length of the bulk data sent on a data stream, or ap-
plication parameters required by a peer plugin. It can also
convey to the mobile the status of the data transfer between
the plugin on the proxy and legacy servers.

Each application data stream is assigned to a Storage
manager that segments/reassembles the data into/from mul-
tiple bundles. It also stores the data in persistent local stor-
age to deal with power loss on the device. Each data stream
has an associated policy that is registered with the OCMP
policy module. The policy module maintains a collection of
preferences for data streams belonging to different applica-
tions. It also contains user-defined preferences. This set
of user and application preferences are used by the OCMP
scheduler to run policy enforcement algorithms to schedule
application bundles on different interfaces.

The scheduler contains a connection pool object that main-
tains a list of active transport layer connections, one on each
interface. Each connection is encapsulated in a connection
object. The scheduler maintains a pre-fetch buffer for each
data stream to minimize latencies in fetching data from the
disk. It then selects bundles and sends them to one of the
connection objects depending upon network availability and
the user-specified policy. The scheduler can also decide what
kind of a transport layer to use on each interface. The sched-
uler also may choose to asscociate on a network when a link
detection module notifies it of new networks in range.

At a proxy, incoming bundles are processed by a symmet-
ric stack and eventually handed to an application-specific
plugin. These plugins can be loaded into OCMP dynami-
cally on packet arrival. The plugin can then take application-
specific actions to transfer the data to a legacy server. The
plugin can also fetch data from a legacy server on behalf of
an application and store it in data streams on the proxy.
When a mobile opportunistically connects with the proxy,

this data is sent to the mobile.
Note that the scheduler can be implemented either on the

mobile or at the proxy. Computationally-efficient devices
can run scheduling algorithms on the device itself and re-
motely set light-weight scheduling rules on the proxy. On
the other hand, computationally-starved devices can shift
schedule computation to the proxy, and rely on simple rules
for bundle scheduling on the device. This flexibility is pos-
sible because the policy module that contains various user
preferences can be queried remotely over the cellular con-
trol channel. Data on network status or mobility pattern
can similarly be exchanged over the control channel to pro-
vide timely information to the scheduling algorithm. Note
that in an area with no coverage, where the control chan-
nel is absent, no scheduling decisions are needed in the first
place.

5.3 Session-level reliability
Due to the presence of a send buffer in the network stack,

write calls that enqueue data into a non-empty send buffer
return successfully, making an application think that the
data was reliably delivered to the receiver, even though it
might not be delivered at all if the connection closes pre-
maturely! In this case, the data in the send buffer is ac-
tually lost after a connection termination is announced to
the application. Similarly, on the receive side, bundles that
have been acked by TCP, are not necessarily passed to the
OCMP agent on an unclean disconnection. Hence, with any
buffered protocol stack, there is always a possibility that
data equal to the sum of the send and receive buffers is ac-
tually lost, even though the sending side believes the data to
have been delivered successfully. For this reason, transport
layer semantics are insufficient for reliable delivery, and a
session level reliable data transfer protocol is needed to re-
cover from lost data.

To avoid the overhead of a per-bundle ack or nak proto-
col, an OCMP sender keeps track of the order in which it
transmitted data on each network interface, and retains, in
persistent store, all data that might possibly get lost in tran-
sit. When a connection closure is detected, the receiver uses
the control channel to inform the sender of the last sequence
number bundle it successfully received on that connection.
This allows the sender to infer the set of bundles that were
not successfully received. The sender therefore queues them
for transmission on a working interface, or marks them as
undelivered for subsequent retransmission.

The ability for one end of a connection to inform the other
of unclean connection termination on an alternate interface
is a useful feature of OCMP. This is because we have found
that in practice, one of the ends knows about a disconnection
far sooner than the other. This technique allows both ends
to reason correctly about the disconnection and to take cor-
rective action. Typically, disconnections are due to wireless
failures, which the mobile device finds out about much faster
than the proxy. The mobile then sends a disconnection no-
tification, along with the last sequence number it received
on the WiFi interface, on the control channel. If the proxy
was sending some data to the mobile on the WiFi interface,
it can immediately retransmit the data sent on the failed
interface after the last sequence number received by the mo-
bile. The proxy responds to a disconnection message with
a reply that carries the last sequence number it received on
the failed interface. In case the mobile was uploading data,
it can now retransmit everything it sent after the last se-
quence number that was received by the proxy. This allows
us to quickly recover from a broken connection. We evaluate
the performance of this technique in Section 6.

The discussion is illustrated in a sample scenario shown
in Fig. 3 for a mobile device that encounters intermittent
WiFi connectivity and uses both WiFi and EDGE for data
transfer. The protocol begins when the OCMP proxy noti-
fies the mobile device that it has data waiting to be picked
up by the device. We assume that these notifications can
be sent through an out-of-band mechanism, such as SMS.
When the mobile receives this notification, it asks the link
detection module to raise an event whenever the device con-
nects to a new network. Thus, when the mobile connects
to a WiFi hotspot, the OCMP control layer decides to use
TCP as a transport layer on WiFi to connect to the proxy.
The connection is initiated through a control message, which
first instantiates an OCMP connection entity for the mobile
on the proxy if it did not exist already. The connection is
then added into the connection pool. If the WiFi connec-
tion breaks uncleanly, the EDGE connection is used to send
control messages to the proxy so that the proxy does not
have to wait until a TCP timeout to detect the connection
failure.

5.4 Application-specific plugins
Both the OCMP client and the server support application-

specific plugins. These short-lived code modules are invoked
to carry out application-specific actions for each client-server
interaction. All applications need a plugin at the proxy, and
legacy applications need a plugin at the client end as well.
For example, a legacy web browser request on a mobile is
associated with an instance of a HTTP plugin both on the
client on the proxy that initiates an HTTP GET on its be-
half. The proxy-side plugin stores the results in persistent
storage and communicates them to the client over oppor-
tunistic links. Other examples are a blog plugin to support
upload from a mobile device to Blogger, and a Flickr plu-
gin to upload a photograph to Flickr. Application plugins
attempt to mask a mobile’s disconnections from legacy ap-
plications either on the mobile or at the content host. Of

course, long disconnections that last for hours or days cannot
be masked, particularly from interactive applications. How-
ever, opportunistic communication is ideal for delay-tolerant
applications, such as music downloads and email.

An instance of a plugin is created on the mobile if OCMP
intercepts a socket call made by legacy applications. The
destination port number or the first few bytes written into
the socket are used to disambiguate applications, and a cor-
responding plugin object is created to handle the connec-
tions. Whenever a new plugin is created, or a new file is
dropped into the ‘communication directory’, an application
control message is also sent to the proxy to ask it to dynam-
ically instantiate a peer plugin on the proxy. Application
control messages have an application ID and application
type field to uniquely identify the correct plugin and the
type of the plugin. The plugin then collects one-time data
from the legacy server, hands it to a SAR (Segmentation
and Reassembly) agent, and finally destroys itself. A dis-
tinct plugin object is therefore associated with each client
interaction with the server.

Persistent application daemons can also be created at the
proxy that either monitor legacy servers for updates, or re-
ceive ‘push’-style updates from the servers. The data from
these updates is then handed to an application plugin, which
hands over the data to SAR agents in the usual way. If the
mobile is already connected to the proxy over a control chan-
nel, an application control message is sent to the mobile to
notify it about pending data lying at the proxy. The mobile
now either downloads the data into the ‘communications di-
rectory’, or instantiates the appropriate application plugin
to handle the incoming data. If the mobile is not connected
to the proxy, which could happen if the mobile is temporar-
ily unable to access data services on cellular networks, an
out-of-band SMS message can be sent to the mobile to indi-
cate pending data. The client OCMP running on the mobile
receives this SMS and tries to connect to the proxy whenever
connection opportunities arise.

5.5 OCMP identifiers
As described earlier, OCMP identifies each mobile device

by a unique GUID such as its IMSI [34]. The proxy uses this
ID to demultiplex bundles belonging to different users. A
different class of identifiers is needed for some applications.
Consider a proxy that registers itself as the email server for a
set of mobile users using a DNS MX record. When receiving
incoming email, the proxy needs to find the user’s OCMP-
GUID. Therefore, the proxy needs to maintain a mapping
from the user’s application-specific address, such as an email
address, to the user’s GUID so that when the user connects
to the proxy, it can send data to the correct user.

We have defined a framework on the proxy to support
translation from application-IDs to OCMP-GUIDs. A reg-
istered application can create a daemon on the proxy that
maintains mappings from application identifiers to the OCMP
identifiers for all users of that application. This daemon is
also registered to receive content from legacy servers. So,
when a content server pushes data to the application dae-
mon, it can instantiate an application specific plugin with
the correct OCMP-GUID for the user, and redirect the in-
coming data to the plugin. The plugin caches the data in the
usual way and delivers it to the mobile whenever it connects.

Note that each bundle carries a GUID to distinguish bun-
dles belonging to different users, an application identifier so
that bundles can be routed to the correct application, a SAR
agent identifier for each data stream, and a sequence num-
ber. A concatenation of the first three identifiers defines a
unique session identifier.

OCMP Client Agent (Id) OCMP Proxy

Out of bandOut of band

Sms/wap(data avbl, proxy)
Connect at the

next opportunity

SchedulerLink detection

Avbl
WiFi
start

EDGE
start

WiFi
end

Connect? Yes. Use TCP

TCP conn objects

newConnMessage(Id, If-1)

�TCP conn objects

Construct OCMP stack
for ID. Get packets

OCMP stack (Id)

�(Interface-1, WiFi)

Avbl
�(Interface-2, EDGE)

Connect? Yes, Use TCP

newConnMessage(Id, If-2)

sendBundle(TCP, WiFi)

Error (WiFi
disconnection)

Conn
close

closeConnPacket(Id, If-1) Infer lost bundles.
Retransmit

sendBundle(TCP, EDGE)

Figure 3: Control flow sequence diagram

5.6 DTN support
DTN is modeled as a network interface for OCMP that

implements its own transport layer protocol. Whenever a
mobile device detects a WiFi network, OCMP examines the
SSID to determine whether the network belongs to a DTN
access-point, or it is a third party WiFi network providing a
direct connection to the Internet (other methods can also be
used, such a UDP broadcast on a particular port, or query-
ing a GIS over the control channel for more information
about the WiFi network). A different type of connection is
instantiated depending upon whether the access-point pro-
vides a store-and-forward facility or not. We have imple-
mented a new Connection object for DTN that talks to a
DTN Bundle-Protocol-Agent (BPA) running on the DTN
access-point. This is shown in Fig. 2, and works as follows:

• OCMP on mobile host : A BPA does not run locally
on the mobile host because the DTNRG reference im-
plementation is not in Java. Instead, OCMP connects
wirelessly to a BPA stub on the DTN access-point, and
transfers data to it using TCP over the stub’s RPC
interface. Custody transfer acknowledgments are re-
layed back from the BPA to the DTN Connection ob-
ject in OCMP. Thus, OCMP is made to believe that it
is actually talking to a proxy in the Internet, but the
BPA successfully masks the absence of an end-to-end
route to the Internet.

• DTN on access point : The BPA receives bundles from
OCMP, and stores them locally for subsequent for-
warding to the OCMP proxy over DTN.

• OCMP on proxy : The proxy has a corresponding BPA
running locally that receives DTN bundles from the
access-points. OCMP bundles are extracted from the

DTN bundles, and passed on to application plugins
just like other OCMP bundles.

For data to be sent to a mobile device through a DTN
access-point, the scheduler on the proxy first checks
whether the mobile device is registered with a DTN
access-point, or it is likely to be in the presence of one.
This step is crucial for the proxy to decide whether to
retain the data in OCMP or to push it into the DTN
overlay by routing it to an appropriate access-point.
In the former case OCMP layers itself on TCP/IP as
usual, but for the latter case, the proxy instantiates a
connection to the BPA running locally and dispatches
all the data to this BPA for eventual delivery to the
user’s custodian.

5.7 Control channel
Based on the discussions above, we summarize the uses of

the control channel:

1. Send disconnection notifications when links terminate
uncleanly, so as to reduce the amount of redundant
state being maintained, and to exchange session state
between the end points to reduce the size of the rese-
quencing buffers.

2. Query the policy module on the mobile device for in-
formation about user preferences.

3. Exchange data required for policy enforcement algo-
rithms. This data may include network performance
status, or remaining battery life on the mobile device,
or network cost information, etc.

4. Transfer application control data to instantiate plug-
ins.

App-1

(5MB, 15min)

App-2

(10MB, 18min)

App-3

(10MB, 30min)

App-4

(4MB, 38min)

App-5

(6MB, 42min)

Envelope

Applications

Envelope

Time (min)

D
a

ta
 (

M
B

)

Figure 4: Simple network selection algorithm

However, availability of the cellular network is not essen-
tial for correctness in OCMP. It is meant only as an op-
timization mechanism. We quantify some benefits of this
approach in Section 6.

5.8 Policy control
The focus of this paper is on an architecture that supports

policy definitions. To exercise the architecture, we evaluate
a simple policy described next (we are studying more so-
phisticated policies in current work).

We have implemented a simple policy enforcement algo-
rithm for messages with deadlines, which works as follows.
We connect to WiFi networks in preference to cellular net-
works, assuming lower usage costs for WiFi. We assume
having prior knowledge of the average throughput provided
by the cellular network. This assumption is easily justified
by an experiment, where an EDGE network was regularly
probed over the duration of one day, and found to have a
throughput of 16 KBps or more approximately 80% of the
time [24].

Each application data stream registers itself with the pol-
icy module on the mobile device, and specifies the size of its
data stream, a delivery deadline, and direction of data trans-
fer(uplink or downlink). The scheduler then back-computes
an approximate commencement time for each data stream,
ordering the streams from the furthest deadline to the near-
est deadline. This is done by assuming the worst case sce-
nario, i.e. the device may not run into any WiFi network
and the cellular network will have to be used for data trans-
fer; thus, data delivery must commence for each data stream
preceding its deadline by a time of at least (size of remaining
data / cellular throughput). If the commencement time for
a data stream overlaps with the deadline for another data
stream preceding it in the stream ordering, then the com-
mencement time is appropriately adjusted to accommodate
both the streams.

This is shown in Fig. 4 as a threshold envelope for data
delivery: the cellular network will be used only when the
amount of data remaining to be transferred exceeds the en-
velope. The envelope can be computed at any instant of
time using dynamic programming, given the deadlines and
amount of remaining data for the applications currently in
progress. For example, Fig. 4 shows the commencement
times for five applications ordered according to deadlines.
The cellular network throughput is assumed to be 16KBps
(∼ 1MB per minute). The figure shows that since the
commencement time computed for App-2 overlaps with the
deadline for App-1, the corresponding threshold envelope is
computed with an earlier commencement time. A similar

adjustment is made for App-4 and App-5. In general, given
n applications with corresponding deadlines and sizes of re-
maining data (di, si), ordered according to deadline such
that di ≤ di+1, and given the mean cellular throughput f ,
the commencement times (ci) can be iteratively computed
as:

if ci ≥ di−1, then ci = di − fsi

else ci−1 = di − f(si + si−1) and the process is repeated.

The threshold envelope is recomputed whenever a new
data stream is registered, or a disconnection takes place
from a WiFi network that was being used for data transfer.
Timers are then initialized for each commencement time,
so that data delivery can be triggered at that time instant.
Now, whenever a new WiFi network is seen and there is
pending data waiting for delivery, the WiFi network is al-
ways used for data transfer. On the other hand, the cellular
network is used only when the amount of remaining data ex-
ceeds the commencement time and there is no WiFi network
available, or data is striped across both cellular and WiFi
networks in case both are available. At any instant of time,
the data stream with an earlier deadline is given preference
over other data streams.

Experiments with this algorithm are evaluated in Section
6. We also describe several different policy alternatives in
Section 7.

6. EVALUATION
We used an HP-Compaq 1.8GHz laptop running Windows

XP for our experiments. A WiFi connection was provided
over 802.11g with a DSL backhaul of 5Mbps, and a cellu-
lar connection was provided through an EDGE PCMCIA
card. All our experiments were conducted in a stationary
environment to minimize the effects of mobility on our re-
sults because mobility is not the focus of this paper. We
instead implemented an emulation-module in OCMP to em-
ulate WiFi connections and disconnections, assuming an ar-
bitrary mobility schedule. We recognize the fact that our
emulation methodology does not take into account factors
such as 802.11 association delays, wireless losses due to in-
terference and mobility, automatic rate adjustment, impact
of lower layers on TCP and other transport layer implemen-
tations, etc. We defer an analysis of such factors to future
work, and retain the focus of the evaluations in this paper on
the design of the policy based system that we have proposed.

6.1 Meeting the design goals
We evaluate how we have met our design goals stated in

Section 3.

1. User-directed use of multiple networks:

Fig. 5 and Fig. 6 show a runtime trace of the num-
ber of bytes that remain to be transferred for a single
application during one emulation run, while using the
simple algorithm of Section 5.8. In both the figures,
grey regions denote the times when WiFi is absent.
We have divided the timeline into multiple zones for
clarity of explanation. We will use r(t) to denote the
number of bytes that remain to be transferred at time
t. We call the scenario depicted in Fig. 5 as having an
easy deadline because when the application starts, the
size of its data to be transferred (1.5 MB) is less than
the maximum amount that can be sent on EDGE even
if no WiFi network shows up. The scenario in Fig. 6 is
correspondingly termed as having an aggressive dead-
line because the amount of data to be transferred (3
MB) is larger than the maximum amount that can be
sent on EDGE alone.

Figure 5: Single application, easy deadline

Figure 6: Single application, aggressive deadline

Figure 7: Multiple applications

(a) Zone I (Idle): This denotes an idle state, either
when there is no application waiting for data de-
livery, or all the applications have completed their
respective data transfers.

(b) Zone II (Do-nothing): This denotes the time dur-
ing which an application is active, but there is no
data transfer is progress because r(t) is below the
envelope. Thus, Zone II occurs in Fig. 5 when
the application is started at a time that is much
before the commencement time calculated assum-
ing that no WiFi network will be available until
the application deadline.

(c) Zone III (EDGE): This denotes the intervals dur-
ing which there is no WiFi network available, and
r(t) will either cross the envelope if EDGE is not
used, or is already above the envelope.

(d) Zone IV (WiFi): This denotes the short intervals
of time when WiFi networks are available for op-
portunistic use. In Fig. 6, these opportunities
present themselves when r(t) is above the enve-
lope; hence, both WiFi and EDGE are simulta-
neously used. However, only WiFi networks are
used in Fig. 5 because r(t) always stays at or
below the envelope.

Fig. 7 shows a runtime trace for 4 applications running
under the same policy enforcement algorithm, each ap-
plication having a single data stream. All applications
have been shown to have aggressive deadlines, where
they start above the EDGE envelope that is available
for them. Note that the applications are labeled ac-
cording to their start times, but their deadlines are
not in the same order: App-3 < App-4 < App-1 <
App-2. At any time instant, the application having an
earlier deadline is given preference over other applica-
tions. Thus, App-1 is allowed to use WiFi in prefer-
ence to App-2 always, and App-3 preempts App-1 at
t = 38sec when App-3 starts and has an earlier dead-
line than App-1. The earliest-deadline-first ordering
is also followed on EDGE. Thus, App-2 which has the
last deadline, is able to use EDGE only when all other
applications have either completed, or have dropped
below their individual EDGE envelopes.

These experiments show that user and application-
directed use of multiple interfaces is possible through
OCMP.

2. Ease of application design and implementation: We
believe we have successfully met this goal because both
our plugin and directory APIs completely mask the
effects of network disconnections and switching. As
anecdotal evidence, a student without any knowledge
of the underlying details of OCMP was able to develop
an Email plugin in just 4 days, “simply by parsing
/var/spool/mail and dumping the emails in the OCMP
communication directory”.

3. Support for legacy servers: We have so far built OCMP
application plugins for the following services which
are otherwise available only through applications that
connect directly to the legacy servers hosting these
services: send and receive email, upload photos to
www.flickr.com, post blogs to www.blogger.com, and
receive HTML pages using HTTP GET.

Fig. 8 shows a screenshot of the OCMP status man-
ager that displays the status of data transfer for dif-
ferent applications. In this particular case, two blog
entries for www.blogger.com and three images for
www.flickr.com were uploaded using OCMP.

Figure 8: Screenshot of OCMP status-manager

4. Application session persistence across disconnections:
Instances such as the occurrence of Zone II in Fig. 5
and Fig. 6, when no networks are used, show that
session persistence is supported in OCMP.

5. Optimized network switching : We stated earlier that in
the absence of quick notifications of WiFi disconnec-
tions sent over the cellular control channel, the proxy
will have to maintain a large amount of state until
when a TCP timeout occurs. To observe this effect,
we ran a set of 10 experimental runs both with and
without an EDGE cellular channel, and calculated the
mean and standard deviation of the delay incurred by
the proxy in inferring a disconnection. We did this by
manually disconnecting the laptop from WiFi and ob-
served the delay until when the proxy closed the TCP
connection. The results are shown in Table 2.

When EDGE is used as a control channel, the total de-
lays are of the order of 1 sec. The primary component
of this delay is the large RTT of an EDGE network
(∼ 700ms). Note that in these measurements, we did
not count the latency incurred by the 802.11 MAC
layer to infer a disconnection and report it to OCMP.
This is because such link layer indications are not yet
a part of the 802.11 standard [5], although they are
useful for opportunistic communication. For now, we
assume that such link layer triggers exist, and discon-
nections can be detected by the mobile device within
a couple of milliseconds. This is because most wire-
less cards consider three consecutive MAC retransmis-
sion failures as a disconnection [35], which can be done
within a few milliseconds.

On the other hand, without an EDGE control chan-
nel, TCP timeouts often take over a minute to de-
tect a broken connection. This means, for example,
that the proxy maintains flow state over a period of
minutes even though opportunistic WiFi network res-
idence times will likely to be of the order of a few
tens of seconds [39]. This observation is of significant
concern because the OCMP proxy will likely be shared
among hundreds of users, and redundant state mainte-
nance can clearly decrease the scalability of the proxy.
This also shows that link layer indications can prove
helpful for opportunistic communication, and argues
for the inclusion of link layer triggers as a part of the

Table 2: Disconnection detection latencies
Mean Std. deviation

With EDGE 982ms 156ms
Without EDGE 49.2sec 13.7sec

500

400

300

200

100

 0 10 20 30 40 50 60 70 80

T
im

e
ta

ke
n

(s
ec

)

File size (MB)

OCMP
FTP

Figure 9: Performance comparison with FTP

802.11 standard.

6. Buffered Access Point support : We have extensively
tested the integration of OCMP and DTN with en-
couraging results obtained on Soekris boxes running
as access points. We also plan to repeat our experi-
ments with off-the-shelf AP hardware. On a related
note, we have deployed this system in a rural Internet
kiosk in India since the OCMP-DTN integration makes
our systems usable for mechanical backhaul [25].

6.2 Performance comparison with standard FTP
We ran further experiments to compare the performance

of OCMP with that of standard FTP to benchmark the ef-
ficiency of our implementation. We used a single WiFi net-
work without any disconnections. The results are shown in
Fig. 9. It can be seen that our implementation performs rea-
sonably well for filesizes up to 30MB, but the performance
drops for larger files. Although we expect most transfer sizes
to be below 30MB, these experiments indicate that policy-
based systems do incur greater processing requirements.

6.3 Experience on hand-held mobile devices
We also ran OCMP on an iMate K-JAM having a 195MHz

processor and 64MB RAM. Surprisingly, we were able to
get a WiFi throughput of only 12KBps as opposed to an
Internet Explorer HTTP download rate of approximately
60KBps. We believe that this is because OCMP is coded in
J2ME and its performance depends heavily on the resources
that are available to the Java virtual machine running on
the mobile device. However, our observations reaffirm the
previous conclusion that the benefits of policy-based systems
can be offset by the greater processing requirements of such
systems. Fortunately, the processing capabilities of devices
are increasing rapidly, and policy-based systems can provide
significant benefits.

7. FUTURE WORK

7.1 Policy control
We are currently developing more sophisticated and opti-

mal policies for network selection. Some factors we attempt
to take into consideration are:

1. Users generally follow a certain mobility schedule; eg.
leave home for office at 8:30am, travel along a partic-
ular road, return home at 5pm, etc. In the past, re-
searchers have developed mobility models using Markov
fields [11] and calendar schedules [12] that capture such
regularity in user movements. Knowledge of user mo-
bility patterns based on similar models can help us
solve decision processes of policies for network selec-
tion. For example, in the context of the simple algo-
rithm of Section 5.8, if the device knows with a high
probability that it will enter a WiFi network soon then
even if the amount of data remaining to be transferred
is currently above the EDGE envelope, the device need
not use EDGE at all.

2. When a device is in the range of multiple wireless net-
works, it was shown that aggressive switching across
these networks can actually degrade overall through-
put because of the switching latencies associated with
moving to a different network [28] . A make-up time
metric was suggested as the minimum amount of time
a mobile device must stay connected to a network be-
fore switching to a different one. Knowledge of mobil-
ity patterns and expected residence times in different
networks can help estimate such ‘make-up time’ met-
rics for optimized network selection.

3. During situations of data overload when a large amount
of data is to be downloaded or uploaded, users may as-
sociate different preferences with different applications
so that low priority applications can be temporarily
dropped. To model such situations, we plan to as-
sociate each application with a utility function that
decays with time. We can then use algorithms to max-
imize the overall system utility by scheduling different
applications at different times on multiple wireless in-
terfaces.

7.2 Multiple proxies
We mentioned in Section 4.2 the need to relocate appli-

cation state to the proxy ‘closest’ in terms of RTT to a
mobile device. Since TCP throughput is inversely propor-
tional to the RTT [14], this optimization can improve the
utilization of end-to-end opportunistic connections between
the mobile device and a proxy [23]. We plan to implement
inter-proxy state transfer by arranging globally distributed
OCMP proxies in an I3 overlay [13]. Mobile devices will be
able to register themselves with the closest OCMP proxy
(an I3 overlay node), and application state for the mobile
device will be automatically moved between proxies when-
ever a new registration is made. Note that we expect OCMP
proxies to have fairly large footprints [24], and therefore se-
lection of the closest proxy need not be done on the order
of every minute or even every hour.

8. RELATED WORK
We are not aware of any other work that provides the

same set of functionality provided by our system. However,
our work is closely related to, and builds on the insights of
several threads of past work in this area, as described next.

Policy-based selection of network interfaces was first intro-
duced in [29], and has since been extensively explored in the
context of vertical handoffs by researchers [30,31]. The prob-
lem was motivated by the desire to choose the best network
that optimizes metrics such as data rates or power consump-
tion in the long term, while preserving seamless connectivity.
We have built upon this definition by noticing that seamless
connectivity is not required for many non-interactive appli-
cations. Therefore, our policy definitions operate at the ses-
sion layer, unlike the network- and transport-layer policies

of past work. This allows us to include a delay component
(such as a deadline for data transfer) at a timescale of min-
utes and hours, which fundamentally alters the system.

Our use of many wireless interfaces in parallel is similar
in spirit to pTCP [16]. Unlike pTCP, which assumes an
underlying TCP connection, OCMP is transport-agnostic.
We are able to make this tradeoff because we are primar-
ily interested in delay-tolerant applications that can deal
with a large resequencing buffer. In contrast, pTCP sup-
ports interactive applications, and must therefore exploit
TCP structure to reduce the size of the resequencing buffer.
Unlike pTCP, we have built, deployed and evaluated the
performance of the system in a testbed, instead of relying
on simulations.

The use of location-independent identifiers for resuming
a session was proposed earlier in the context of Rocks-and-
Racks [36] and TCP Migrate [27]. However, these earlier
solutions are not only TCP-centric but also support only a
single interface. Our use of an almost-always-available cellu-
lar connection for the transmission of control messages (i.e.
data available, and link down) distinguishes us from these
proposals. Also, unlike these proposals, we have designed
and implemented a session-level reliability protocol.

Our use of a proxy for dealing with session disconnections
and the aggregation of multiple transport connections into a
single connection is similar to that proposed in PCMP [22].
However, OCMP differs from PCMP in several ways. First,
unlike PCMP, OCMP supports the use of multiple NICs in
parallel. We also support arbitrary transport protocols in-
cluding UDP with erasure codes [6, 7], and TCP optimized
for cellular networks [8, 20], whereas PCMP is essentially
TCP-centric. Unlike PCMP, OCMP nodes can be powered
down because application data and control is persistently
stored. Our architecture allows session state to be encap-
sulated and transferred from one proxy to another. This
allows us to reassign a mobile to the closest available proxy,
greatly improving performance. Finally, servers can push
data to OCMP proxies, or plugin daemons can poll legacy
servers to pull data, and the data can then be picked up
opportunistically by mobile devices. We believe that these
differences make OCMP much more suited to a dynamic
multi-network environment than PCMP.

Our proposal to use multiple OCMP proxies for better
throughput during opportunistic connections is similar to
that proposed in DHARMA [3]. DHARMA uses a network
of distributed home-agents to provide (a) mobile IP like
packet forwarding support when client IP addresses change
due to mobility, and (b) session persistence for preserving
TCP connections across disconnections. We believe that our
work is more general because it provides many more features
than just session persistence and mobility support.

Intelligent selection of network interfaces with session per-
sistence is also being explored in the context of the Haggle
project [17]. However, Haggle is focused on infrastructure-
less systems where devices communicate with each other in
an ad-hoc manner. Further, they do have a notion of appli-
cation plugins, proxies, or a control channel.

Finally, our work is complementary to, and extends, re-
cent work in the area of implementing a router for delay
tolerant networks (DTN) [9]. Our notions of session persis-
tence, data persistence, bundling, and multi-network sup-
port originate in this seminal work. However, we have made
several non-trivial extensions. These include the support for
fine-grained policy control, the notion of application plug-
ins, the use of a proxy, and the separation of the data and
control planes. Some of our detailed design decisions also
differ from that made in the DTN reference implementa-
tion. For instance, DTN associates a ‘convergence layer’
with each transport protocol, which means that all NICs

that support TCP would use the same convergence layer.
In contrast, we associate a connection with each NIC, al-
lowing us to exploit network heterogeneity by optimizing
different transport layer implementations for different types
of networks [6–8,20]. OCMP also supports a control channel
to communicate disconnection and reliable data transfer in-
formation between peers, which is not currently possible in
DTN. We observe that our work is motivated by a narrower
set of problem areas than DTN, which allows us to exploit
the inherent problem structure to make these optimizations.

9. DISCUSSION AND CONCLUSIONS
We have designed and implemented an architecture for

session-layer policy-based selection of wireless networks for
opportunistic communication. We have shown that our sys-
tem meets all the design goals captured by the use-cases for
opportunistic communication, and we have highlighted some
interesting avenues for future research. We believe that our
system provides a broad foundation for building and study-
ing systems that incorporate smart mobile devices in an en-
vironment with multiple wireless networks. Our system is
not only usable on smartphones, but it is also highly appli-
cable for rural Internet kiosks [25].

There are many open areas of research related to oppor-
tunistic communication. How can a mobile device detect
networks in a power efficient manner, without having to keep
its radio switched on all the time? What is the interaction
between TCP and lower layers during an opportunistic con-
nection interval? What kind of transport layer implemen-
tations can efficiently handle these brief connection oppor-
tunities? How should wireless devices be designed to make
opportunistic communication more power efficient? Lastly,
what kind of a security scheme should be used for oppor-
tunistic communication such that protocol handshakes are
minimized? We plan to address these issues in future work.

10. REFERENCES
[1] T. Armstrong, O. Trescases, C. Amza, E. Lara, “Efficient and

Transparent Dynamic Content Updates for Mobile Clients,”
Proc. ACM/USENIX MOBISYS, Jun 2006.

[2] E. Shih, P. Bahl, M. Sinclair, “Wake on Wireless: An Event
Driven Energy Saving Strategy for Battery Operated Devices,”
Proc. ACM MOBICOM, 2002.

[3] Y. Mao, B, Knutsson, H. Lu, J. Smith, “DHARMA:
Distributed Home Agent for Robust Mobile Access,” Proc.
IEEE INFOCOM, 2005.

[4] H. Balakrishnan, V. Padmanabhan, S. Seshan, R. Katz, “A
Comparison of Mechanisms for Improving TCP Performance
Over Wireless Links,” In IEEE/ACM Transactions on
Networking, Vol. 5, No. 6, 1997.

[5] B. Aboba, “Architectural Implications of Link Layer
Indications,” http://www.ietf.org/internet-drafts/draft-iab-
link-indications-01.txt, Jan 2005.

[6] R. Chakravorty, A. Clark, I. Pratt, “GPRSWeb: Optimizing
the Web for GPRS Links,” Proc. ACM/USENIX MOBISYS,
2003.

[7] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A Digital
Fountain Approach to Reliable Distribution of Bulk Data,”
Proc. ACM SIGCOMM, 1998.

[8] M. Chan and R. Ramjee, “Improving TCP/IP Performance
Over Third Generation Wireless Networks,” Proc. IEEE
INFOCOM, 2004.

[9] M. Demmer, E. Brewer, K. Fall, S. Jain, M. Ho, and R. Patra,
“Implementing Delay Tolerant Networking,” Intel Research,
Berkeley, Technical Report, IRB-TR-04-020, Dec 2004.

[10] S. Jain, K. Fall, and R. Patra, “Routing in a Delay Tolerant
Network,” Proc. ACM SIGCOMM, 2004.

[11] L. Song, D. Kotz, R. Jain, and X. He, “Evaluating Location
Predictors with Extensive WiFi Mobility Data,” Proc. IEEE
INFOCOM, 2004.

[12] V. Srinivasan, M. Motani, and W. Ooi, “Analysis and
Implications of Student Contact Patterns Derived from
Campus Schedules,” Proc. ACM MOBICOM, 2006

[13] S. Zhuang, K. Lai, I. Stoica, R. Katz, S. Shenker, “Host
Mobility using an Internet Indirection Infrastructure,” Proc.
ACM/USENIX MOBISYS, 2003.

[14] J. Kurose and K. Ross, “Computer Networking,” Addison
Wesley, 3rd Edition, pg. 271, 2004.

[15] K. Fall, “A Delay-Tolerant Network for Challenged Internets,”
Proc. ACM SIGCOMM 2003.

[16] H. Hsieh and R. Sivakumar, “A Transport Layer Approach for
Achieving Aggregate Bandwidths on Multi-homes Mobile
Hosts,” Proc. ACM MOBICOM, 2002.

[17] J. Scott, J. Crowcroft, P. Hui, C. Diot, “Haggle: A Networking
Architecture Designed Around Mobile Users,” Conference on
Wireless On-demand Network Systems and Services (WONS),
2006.

[18] M. Kozuch and M. Satyanarayanan, “Internet
suspend/resume,” In Workshop on Mobile Computing Systems
and Applications, 2002.

[19] J. Kurose and K. Ross, “Computer Networking,” Addison
Wesley, 3rd Edition, pp.271, 2004.

[20] R. Ludwig and R. Katz, “The Eifel Algorithm : Making TCP
Robust Against Spurious Retranmission,” In ACM Computer
Communication Review, January 2000.

[21] R. Moskowitz, P. Nikander. P. Jokela, T. Henderson, “Host
Identity Protocol,” http://www.potaroo.net/ietf/ids/
draft-ietf-hip-base-00.txt, 2004.

[22] J. Ott and D. Kutscher, “A Disconnection-Tolerant Transport
for Drive-thru Internet Environments,” Proc. IEEE INFOCOM
2005.

[23] A. Seth, P. Darragh, S. Liang, Y. Lin, S. Keshav, “An
Architecture for Tetherless Communication,”
http://blizzard.cs.uwaterloo.ca/keshav/home/Papers/data/05/tca.pdf,
Manuscript, University of Waterloo, July 2005.

[24] A. Seth, S. Bhattacharya, S. Keshav, “Opportunistic
Communication Over Heterogeneous Access Networks,”
http://www.cs.uwaterloo.ca/ a3seth/ocmptech.pdf, Technical
report, Sprint Labs, CA, April 2005.

[25] A. Seth, D. Kroeker, M. Zaharia, S. Guo, and S. Keshav,
“Low-cost Communication for Rural Internet Kiosks Using
Mechanical Backhaul,” Proc. ACM MOBICOM, 2006.

[26] A. Seth, “The Use of Mobile Devices as Sensors for Efficient
Wireless Monitoring and Resource Utilization,”
http://www.cs.uwaterloo.ca/ a3seth/cellphones.pdf,
Manuscript, University of Waterloo, 2006.

[27] A. Snoeren and H. Balakrishnan, “An End-to-End Approach
to Host Mobility,” Proc. ACM MOBICOM, 2000.

[28] M. Stemm and R. Katz, “Vertical Handoffs in Wireless
Overlay Networks,” In Mobile Networks and Applications,
Volume 3, Number 4, Pages 335-350, 1998.

[29] H. Wang, R. Katz, and J. Giese, “Policy-Enabled Handoffs
across Heterogeneous Wireless Networks,” In Mobile
Computing Systems and Applications, 1999.

[30] F. Zhu and J. McNair, “Optimizations for Vertical Handoff
Decision Algorithms,” Proc. WCNC, 2004.

[31] T. Pering, Y. Agarwal, R. Gupta, R. Want, “CoolSpots:
Reducing Power Consumption Of Wireless Mobile Devices
Using Multiple Radio Interfaces,” Proc. ACM/USENIX
MOBISYS, 2006.

[32] A. Nicholson, Y. Chawathe, M. Chen, B. Noble, D. Wetherall,
“Improved Access Point Selection,” Proc. ACM/USENIX
MOBISYS, 2006.

[33] M. Sloman, “Policy Driven Management for Distributed
Systems,” In Journal of Network Systems Management, Vol. 2,
No. 4, 1994.

[34] V. Vanghi, A. Damnjanovic, B. Vojcic, “The CDMA2000
System for Mobile Communications,” Prentice Hall, 1st
Edition, pp.224, 2004.

[35] H. Velayos, “Autonomic Wireless Networking,” Doctoral
thesis, TRITA-S3-LCN-0505, ISSN 1653-0837, ISRN
KTH/S3/LCN/–05/05–SE, Stockholm, Sweden, May 2005.

[36] V. Zandy, and B. Miller, “Reliable Network Connections,”
Proc. ACM MOBICOM 2002.

[37] A. Garai and B. Shadrach, “Taking ICT to Every Indian
Village,” One World South Asia, New Delhi, India, 2006.

[38] D. Kutcher and J. Ott, “Service Maps for Heterogeneous
Network Environments,” Proc. Mobile Data Management
Conference, 2006.

[39] V. Bychkovsky, B. Hull, A. Miu, H. Balakrishnan, and S.
Madden, “A Measurement Study of Vehicular Internet Access
Using In Situ Wi-Fi Networks,” Proc. ACM MOBICOM, 2006.

[40] “Soekris Net4801,” http://www.soekris.com/net4801.htm,
2005.

[41] “Cellular Data Plan Comparison Chart,”
http://www.jiwire.com/cellular-data-cellular-data-the-
plans.htm, 2005.

[42] “Bytemobile,” http://www.bytemobile.com, 2006.

