
Designing and Implementing
Internet Protocols

S. KeshavS. Keshav

University of WaterlooUniversity of Waterloo

TECS Week, TECS Week, PunePune

January 2009January 2009

Overview

 Module 1: IntroductionModule 1: Introduction
 Module 2: Requirements and challengesModule 2: Requirements and challenges
 Module 3: Implementation techniquesModule 3: Implementation techniques
 Module 4: Module 4: TechniquesTechniques for system design for system design
 Module 5: Module 5: TestingTesting
 Module 6: PModule 6: Pitfallsitfalls

Module 1: Introduction

Outline

 What is the What is the InternetInternet??
 What is an What is an Internet protocolInternet protocol??
 A running example:A running example: BuyLocal BuyLocal ServiceService

What is the Internet?

 Set of host interfaces reachable using the Set of host interfaces reachable using the Internet Protocol (IP)Internet Protocol (IP)
 A loose interconnection of networks thatA loose interconnection of networks that

 carry packets addressed using the Internet Protocolcarry packets addressed using the Internet Protocol
 that route packets using a standard Internet protocol (BGP)that route packets using a standard Internet protocol (BGP)

A bit more detail…

 Loose collectionLoose collection of networks organized into a multilevel of networks organized into a multilevel
hierarchyhierarchy
 10-100 machines connected to a10-100 machines connected to a hub hub or a or a routerrouter

 service providers also provide direct dialup accessservice providers also provide direct dialup access
 or over a wireless linkor over a wireless link

 10s of routers on a 10s of routers on a department backbonedepartment backbone
 10s of department backbones connected to 10s of department backbones connected to campus backbonecampus backbone
 10s of campus backbones connected to 10s of campus backbones connected to regional service providersregional service providers
 100s of regional service providers connected by 100s of regional service providers connected by national backbonenational backbone
 10s of national backbones connected by 10s of national backbones connected by international trunksinternational trunks

Example of message routing
 1 dccore-nsfw02-csresearch1net.uwaterloo.ca (129.97.7.1) 0.363 ms 0.308 ms 0.234 ms
 2 dc3558-cs2-csfwnet.uwaterloo.ca (172.19.5.1) 0.475 ms 0.468 ms 0.484 ms
 3 dc-cs2-trk1.uwaterloo.ca (172.19.1.17) 0.478 ms 0.475 ms 0.474 ms
 4 mc-cs2-trk2.uwaterloo.ca (172.19.1.1) 0.491 ms 0.465 ms 0.484 ms
 5 mc-cs1-trk1.uwaterloo.ca (172.19.1.10) 0.604 ms 0.466 ms 0.485 ms
 6 v719-cn-rt-mc.uwaterloo.ca (129.97.1.73) 0.477 ms 0.472 ms 0.512 ms
 7 ext-rt-mc-cn-rt-mc.uwaterloo.ca (129.97.1.6) 0.703 ms 0.464 ms 0.483 ms
 8 gi9-22.mpd01.yyz02.atlas.cogentco.com (38.99.202.213) 6.851 ms 6.966 ms 6.866 ms
 9 te3-2.mpd02.ord01.atlas.cogentco.com (154.54.7.18) 20.954 ms 21.075 ms 20.970 ms
10 vl3499.ccr02.ord03.atlas.cogentco.com (154.54.5.10) 21.210 ms te8-2.ccr02.ord03.atlas.cogentco.com
11 if-9-1.icore1.CT8-Chicago.as6453.net (206.82.141.37) 32.440 ms 21.201 ms 31.589 ms
12 if-2-0-0-18.core1.CT8-Chicago.as6453.net (66.110.14.33) 21.243 ms 21.071 ms
13 if-7-1-0-17.core1.CT8-Chicago.as6453.net (66.110.27.49) 21.091 ms
14 66.110.27.6 (66.110.27.6) 72.039 ms 71.928 ms 72.059 ms
 MPLS Label=970 CoS=5 TTL=1 S=0
15 if-9-0-0.mcore3.PDI-PaloAlto.as6453.net (216.6.29.25) 105.024 ms 110.145 ms 150.389 ms
 MPLS Label=2240 CoS=5 TTL=1 S=0
16 if-4-0-0.mse1.SV1-SantaClara.as6453.net (216.6.29.2) 224.358 ms 202.963 ms 203.384 ms
17 ix-2-11.mse1.SV1-SantaClara.as6453.net (209.58.93.30) 71.903 ms 72.040 ms 72.310 ms
18 59.163.55.253.static.vsnl.net.in (59.163.55.253) 350.914 ms 350.773 ms 351.017 ms
19 203.200.87.72 (203.200.87.72) 350.618 ms 350.652 ms 350.879 ms
20 delhi-203.197.224-18.vsnl.net.in (203.197.224.18) 378.103 ms 466.955 ms 410.726 ms
21 …

Internet growth trends
 Number of hosts on tNumber of hosts on the Internethe Internet

doubleddoubled in size every year from in size every year from
1969 to 19981969 to 1998

 LinLinear growthear growth subsequently subsequently
(~120 million/year)(~120 million/year)

 Roughly 1.2Roughly 1.2 billion hosts inbillion hosts in
20082008

Growth of Internet Hosts *

Sept. 1969 - Sept. 2002

0

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

9/
69

01
/7
1

01
/7
3

01
/7
4

01
/7
6

01
/7
9

08
/8
1

0
8
/8

3

10
/8
5

1
1
/8

6

0
7
/8

8

0
1
/8

9

1
0
/8

9

0
1
/9

1

1
0
/9

1

0
4
/9

2

1
0
/9

2

0
4
/9

3

1
0
/9

3

0
7
/9

4

0
1
/9

5

0
1
/9

6

0
1
/9

7

0
1
/9

8

0
1
/9

9

01
/0
1

08
/0
2

Time Period

N
o

.
o

f
H

o
s
ts

Source: ISOC:www.isoc.org/internet/history/2002_0918_Internet_History_and_Growth.ppt

Growth continues in services

 SkypeSkype
 FacebookFacebook
 Search (Google, Yahoo,Search (Google, Yahoo, Microsoft)Microsoft)
 Internet emailInternet email
 BitTorrentBitTorrent
 ……

 Each have more than 100 million users daily!Each have more than 100 million users daily!
 How should we design and implement the underlying protocols?How should we design and implement the underlying protocols?

Protocols

 A A protocolprotocol is a set of rules and formats that govern the is a set of rules and formats that govern the
communication between communicating peerscommunication between communicating peers
 set of valid message formats (set of valid message formats (syntaxsyntax))
 meaning of each message (meaning of each message (semanticssemantics))
 actionsactions to be carried out on receipt of all possible messages and to be carried out on receipt of all possible messages and

message orderingsmessage orderings
 Necessary for any function that requires cooperation betweenNecessary for any function that requires cooperation between

peerspeers

Peer entities

 Customer A and B are Customer A and B are peerspeers
 Postal worker A and B are Postal worker A and B are peerspeers

Example: careful file transfer

 Exchange a file over a network that corrupts packetsExchange a file over a network that corrupts packets
 but doesnbut doesn ʼ̓t lose or reorder themt lose or reorder them

 A simple protocolA simple protocol
 send file as a series of packetssend file as a series of packets
 send a send a checksumchecksum
 receiver sends OK or not-OK messagereceiver sends OK or not-OK message
 sender waits for OK messagesender waits for OK message
 if no response, resends entire fileif no response, resends entire file

 ProblemsProblems
 single bit corruption requires retransmission of entire filesingle bit corruption requires retransmission of entire file
 what if link goes down?what if link goes down?
 what if peer OSwhat if peer OS fails?fails?
 what if not-OK message itself is corrupted?what if not-OK message itself is corrupted?

Another way to view a protocol

 As providing a As providing a serviceservice
 The example protocol provides The example protocol provides careful file transfer servicecareful file transfer service
 Peer entities use a protocol to provide a service to a higher-levelPeer entities use a protocol to provide a service to a higher-level

peer entitypeer entity
 for example, postal workers use a protocol to present customersfor example, postal workers use a protocol to present customers

with the abstraction of an with the abstraction of an unreliable letter transferunreliable letter transfer service

What is an Internet protocol?

 Any protocol layered on IPAny protocol layered on IP
 Endpoints can be anywhere on the InternetEndpoints can be anywhere on the Internet

 many non-trivial consequencesmany non-trivial consequences

Example protocol suite for a service

 WeWe ʼ̓ll design the ll design the ʻ̒BuyLocalBuyLocal ʼ̓ serviceservice
 search for local supplier of a good or servicesearch for local supplier of a good or service
 distributed searchable directorydistributed searchable directory

Module 2: Requirements and challenges

Requirements (1)

 Universal accessUniversal access
 anyone, anywhere, on any deviceanyone, anywhere, on any device
 should scale to millions of usersshould scale to millions of users

 geographically distributedgeographically distributed
 multi-lingualmulti-lingual
 multi-currencymulti-currency
 can potentially have flash crowdscan potentially have flash crowds

Requirements (2)

 Universal accessUniversal access
 ExtensibleExtensible

 should allowshould allow new services to be addednew services to be added
 advertisingadvertising
 social networkssocial networks
 ……

Requirements (3)

 Universal accessUniversal access
 ExtensibleExtensible
 RobustRobust

 tolerant of failures in any componenttolerant of failures in any component
 results should be repeatableresults should be repeatable

Requirements (4)

 Universal accessUniversal access
 ExtensibleExtensible
 RobustRobust
 SecureSecure

 privacyprivacy
 integrityintegrity
 rights managementrights management

Requirements (5)

 Universal accessUniversal access
 ExtensibleExtensible
 RobustRobust
 SecureSecure
 AccountableAccountable

 should be able to measure usageshould be able to measure usage
 potentially allow billingpotentially allow billing

Requirements (6)

 Universal accessUniversal access
 ExtensibleExtensible
 RobustRobust
 SecureSecure
 AccountableAccountable
 Legacy-compatibleLegacy-compatible

 by far theby far the most onerous requirementmost onerous requirement

Requirements summary

 Universal accessUniversal access
 ExtensibleExtensible
 RobustRobust
 SecureSecure
 AccountableAccountable
 Legacy-compatibleLegacy-compatible

These are mutually incompatible!These are mutually incompatible!

Universal access (1)

 Centralization is impossible!Centralization is impossible!
 why?why?

 DistributedDistributed
 multiple federated administrative entities (e.g. IP)multiple federated administrative entities (e.g. IP)

 varying implementations on varying implementations on heterogeneous platformsheterogeneous platforms
 potentially non-cooperativepotentially non-cooperative

•• need incentive-compatibilityneed incentive-compatibility
•• best possible outcome when each entitybest possible outcome when each entity ʻ̒does the right thingdoes the right thingʼ̓

 need inter-operabilityneed inter-operability
•• opennessopenness

Universal access (2)

 DistributedDistributed
 multiple federated administrative entities (e.g. IP)multiple federated administrative entities (e.g. IP)
 or, single administrative control (e.g. Amazon, Google, eBay)or, single administrative control (e.g. Amazon, Google, eBay)

•• allows tight controlallows tight control
•• proprietary interfacesproprietary interfaces

–– but how to grow a developer community?but how to grow a developer community?

Universal access (3)

 DistributedDistributed
 in both cases, have to deal with in both cases, have to deal with lack of global statelack of global state
 root cause of nearly all problems in distributed systemsroot cause of nearly all problems in distributed systems

Universal access (3)

 DistributedDistributed
 High performanceHigh performance

 there is a standard set of tools and techniquesthere is a standard set of tools and techniques
 clustersclusters
 pseudo-processespseudo-processes
 ……

Universal access (4)

 DistributedDistributed
 High performanceHigh performance
 Multiple platformsMultiple platforms

 desktops, laptops, mobile phones, embedded devices, desktops, laptops, mobile phones, embedded devices, ……
 Windows, Linux, Windows, Linux, MacOSMacOS, , ……
 different browsersdifferent browsers
 different languagesdifferent languages
 different currenciesdifferent currencies
 ……

Universal access (5)

 DistributedDistributed
 High performanceHigh performance
 Multiple platformsMultiple platforms
 Deal withDeal with underlying problemsunderlying problems

 firewallsfirewalls
 gatewaysgateways
 VPNsVPNs
 ……

Extensible

 Future requirements are unknownFuture requirements are unknown
 Need to deal with incompatibilities with existing requirementsNeed to deal with incompatibilities with existing requirements

and implementationand implementation
 Difficult to detect and deal with side effectsDifficult to detect and deal with side effects

Robust

 Many failure modesMany failure modes
 server failureserver failure
 device failuredevice failure
 storage failurestorage failure
 link failurelink failure
 bad implementationsbad implementations
 or a combination!or a combination!

 Improving robustness usually degrades performanceImproving robustness usually degrades performance

Secure (1)

 Assuring Assuring integrityintegrity
 need to prevent or discover tamperingneed to prevent or discover tampering
 a variety of cryptographic techniquesa variety of cryptographic techniques
 problemsproblems

 user incomprehensionuser incomprehension
 reduced performancereduced performance
 key distributionkey distribution

Secure (2)

 IntegrityIntegrity
 Assuring privacyAssuring privacy

 need toneed to prevent eavesdroppingprevent eavesdropping
 many known cryptographic techniquesmany known cryptographic techniques
 same problems as with integritysame problems as with integrity

Accountable (1)

 Every action should be potentially attributable to a real-worldEvery action should be potentially attributable to a real-world
entityentity

 Reduces to two sub-problemsReduces to two sub-problems
 identityidentity
 data managementdata management

Accountable (2)

 IdentityIdentity
 entities have (and need to have) multiple identitiesentities have (and need to have) multiple identities

 anonymous,anonymous, pseudonymous, and pseudonymous, and verinymous verinymous identitiesidentities
 should they be linked?should they be linked?

 many openmany open societal problemssocietal problems
 no consensusno consensus

Legacy compatible

 Depends on whatDepends on what to be compatible withto be compatible with……

Module 3: Implementation techniques

Overview

 A service corresponds to a set of protocols that implemented inA service corresponds to a set of protocols that implemented in
the wide area, in a cluster,the wide area, in a cluster, and withinand within a servera server

 Implementing protocols across the Implementing protocols across the wide areawide area
 structured and unstructured state disseminationstructured and unstructured state dissemination
 gossip, centralization, P2P, and hierarchygossip, centralization, P2P, and hierarchy

 Protocol implementation in a Protocol implementation in a clustercluster
 three-tier architecturethree-tier architecture

 Intra-serverIntra-server architecture architecture
 locationlocation
 interfacesinterfaces

Implementing protocols in the wide area

 Three challengesThree challenges
 deciding where to place functionalitydeciding where to place functionality
 bypassing firewallsbypassing firewalls
 state coordinationstate coordination

Placing functionality

 End-to-end argumentEnd-to-end argument
 highest protocolhighest protocol layerlayer needs assurance semantics that only it canneeds assurance semantics that only it can

provideprovide
 so, lower layers need not try too hard to provide assuranceso, lower layers need not try too hard to provide assurance

 Example: carefulExample: careful file transferfile transfer
 application needs to know every block reachedapplication needs to know every block reached
 cannot trust the network because crashes could happen at thecannot trust the network because crashes could happen at the peerpeer

OSOS
 retransmission is needed at the application layer, so no need to tryretransmission is needed at the application layer, so no need to try

too hard in thetoo hard in the networknetwork
 Fast and dumb pipes with intelligence pushed to Fast and dumb pipes with intelligence pushed to ʻ̒edgesedges ʼ̓
 Implications for Implications for BuyLocal BuyLocal service?service?

Dealing with firewalls

 Layer over HTTPLayer over HTTP
 allows universal egressallows universal egress

 Use a public Use a public rendezvousrendezvous serverserver
 each endpoint sets up a connectioneach endpoint sets up a connection
 rendezvous server does application-level routingrendezvous server does application-level routing

 I3, STUN, HIP, Mobile IP, etc.I3, STUN, HIP, Mobile IP, etc.
 Implications for Implications for BuyLocal BuyLocal service?service?

State coordination

 A node needs to know about state of some other nodeA node needs to know about state of some other node
 e.g., what requests it has served,e.g., what requests it has served, what data it has, its load, what data it has, its load, ……
 what is needed for what is needed for BuyLocal BuyLocal service?service?

 Accomplished by communicationAccomplished by communication
 Knowledge deteriorates due to event occurrencesKnowledge deteriorates due to event occurrences
 Need Need periodicperiodic updates updates
 TwoTwo choiceschoices

 structuredstructured
 unstructuredunstructured

Impossibility result

 Perfect coordination is impossible if there can be message orPerfect coordination is impossible if there can be message or
node failuresnode failures
 we have to settlewe have to settle for approximate coordination and failure-safetyfor approximate coordination and failure-safety

Structured coordination (1)

 Centralized solutionCentralized solution
 poor scaling and fault tolerancepoor scaling and fault tolerance
 outcomes are deterministicoutcomes are deterministic
 ʻ̒virtual centralizationvirtual centralization ʼ̓ works well works well

 using clusteringusing clustering

Structured coordination (2)

 Centralized solutionCentralized solution
 Tree-based solutionTree-based solution

 nodes form a tree overlay on IPnodes form a tree overlay on IP
 e.g., DNSe.g., DNS

 better scalingbetter scaling
 fault tolerance possible with redundant linksfault tolerance possible with redundant links
 outcomes are deterministicoutcomes are deterministic
 allows delegationallows delegation
 most widely used solution in practicemost widely used solution in practice

Unstructured coordination (1)

 Each server (node) knowsEach server (node) knows only about its only about its neighboursneighbours
 General algorithmGeneral algorithm

 global computation isglobal computation is divided into a sequence of local computationsdivided into a sequence of local computations
 local computation fuses local state to in-progress statelocal computation fuses local state to in-progress state

 nodenode does local computation then sends message to a does local computation then sends message to a neighbourneighbour
 computation aggregates local and in-progress statecomputation aggregates local and in-progress state

 Robust to node and link failures
 but outcomes are probabilistic
 and need to prevent double countingand need to prevent double counting

 ExampleExample
 countcount number of nodesnumber of nodes
 count sum of node valuescount sum of node values

Unstructured coordination (2)

 FloodingFlooding
 either either pullpull updates from all neighbors or updates from all neighbors or pushpush updates to them updates to them
 source-specific sequence numberssource-specific sequence numbers eliminate duplicateseliminate duplicates
 examples: OSPF, BGPexamples: OSPF, BGP

Unstructured coordination (3)

 FloodingFlooding
 Random walksRandom walks

 node sends its state in a message to a randomly selected neighbor
 neighbor updates its local state, adds its local value to the

message’s state, and forwards to a random neighbour
 parallelizable
 each walk does a distributed computation over a random sample of

node states

Unstructured coordination (4)

 FloodingFlooding
 Random walksRandom walks
 GossipGossip

 computation proceeds in roundscomputation proceeds in rounds
 in each round,in each round, each node either pushes data to oreach node either pushes data to or pulls data from apulls data from a

random neighborrandom neighbor
 typically network is a cliquetypically network is a clique

 after after log Nlog N rounds, rounds, with high probability, all nodes know everythingwith high probability, all nodes know everything
 push better in early stages, pull in late stagespush better in early stages, pull in late stages
 termination is an open problemtermination is an open problem

Aggregation

 Need to prevent Need to prevent double countingdouble counting
 Three approachesThree approaches

 carry carry node IDsnode IDs
 does not scaledoes not scale

 use order and duplicate insensitive use order and duplicate insensitive sketchessketches
 can have high errorscan have high errors

 use use push synopsespush synopses
 each node has an initial weighteach node has an initial weight
 when sharing a value, share part of the weightwhen sharing a value, share part of the weight
 using mass conservation, can show that double counting is avoidedusing mass conservation, can show that double counting is avoided
 elegant, but poor fault toleranceelegant, but poor fault tolerance

(2) Cluster-based computing

 Set of geographically close nodesSet of geographically close nodes on a high-speed interconnecton a high-speed interconnect
form a clusterform a cluster

 ElementsElements
 Redundant serversRedundant servers
 Network interconnectNetwork interconnect
 Shared storageShared storage
 Load balancersLoad balancers

Source: Dell Computers

Key features

 Fault tolerantFault tolerant
 Highly scaleableHighly scaleable
 Great diversity of implementation environmentsGreat diversity of implementation environments

 J2EE, ASP, scriptingJ2EE, ASP, scripting
 Incrementally expandableIncrementally expandable
 Industry-standard componentsIndustry-standard components
 Multiple vendorsMultiple vendors

(3) Protocol implementation within a server

 Two main topicsTwo main topics
 LayeringLayering and protocol stacks and protocol stacks
 ImplementingImplementing a protocol stack a protocol stack

Protocol layering

 A network that provides many services needs many protocolsA network that provides many services needs many protocols
 Turns out that some services are independentTurns out that some services are independent
 But others depend on each otherBut others depend on each other
 Protocol A may use protocol B as a Protocol A may use protocol B as a stepstep in its execution in its execution

 for example, packet transfer is one step in the execution of thefor example, packet transfer is one step in the execution of the
example reliable file transfer protocolexample reliable file transfer protocol

 This form of dependency is called This form of dependency is called layeringlayering
 reliable file transfer is reliable file transfer is layeredlayered above packet transfer protocol above packet transfer protocol
 like a subroutinelike a subroutine

Protocol stack

 A set of protocol layersA set of protocol layers
 Each layer uses the layer below and provides a service to theEach layer uses the layer below and provides a service to the

layer abovelayer above
 Key ideaKey idea

 once we define a service provided by a layer, we need knowonce we define a service provided by a layer, we need know
nothing more about the details of nothing more about the details of howhow the layer actually implements the layer actually implements
the servicethe service

 information hidinginformation hiding
 decouples changesdecouples changes

The importance of being layered

 Breaks up a complex problem into Breaks up a complex problem into smaller manageablesmaller manageable pieces pieces
 can compose simple service to provide complex onescan compose simple service to provide complex ones
 for example, WWW (HTTP) is Java layered over TCP over IP (andfor example, WWW (HTTP) is Java layered over TCP over IP (and

uses DNS, ARP, DHCP, RIP, OSPF, BGP, PPP, ICMP)uses DNS, ARP, DHCP, RIP, OSPF, BGP, PPP, ICMP)
 AbstractionAbstraction of implementation details of implementation details

 separation of implementation and specificationseparation of implementation and specification
 can change implementation as long as service interface iscan change implementation as long as service interface is

maintainedmaintained
 Can Can reuse functionalityreuse functionality

 upper layers can share lower layer functionalityupper layers can share lower layer functionality
 example: WinSock on Microsoft Windowsexample: WinSock on Microsoft Windows

Problems with layering

 Layering Layering hides informationhides information
 if it didnif it didn ʼ̓t then changes to one layer could require changest then changes to one layer could require changes

everywhereeverywhere
 layering violationlayering violation

 But sometimes hidden information can be used to improveBut sometimes hidden information can be used to improve
performanceperformance
 for example, flow control protocol may think packet loss is alwaysfor example, flow control protocol may think packet loss is always

because of network congestionbecause of network congestion
 if it is, instead, due to a if it is, instead, due to a lossy lossy link, the flow control breakslink, the flow control breaks
 this is because we hid information about reason of packet loss fromthis is because we hid information about reason of packet loss from

flow control protocolflow control protocol

Layering

 There is a tension between information-hiding (abstraction) andThere is a tension between information-hiding (abstraction) and
achieving good performanceachieving good performance

 Art of protocol design is to leak enough information to allowArt of protocol design is to leak enough information to allow
good performancegood performance
 but not so much that small changes in one layer need changes tobut not so much that small changes in one layer need changes to

other layersother layers
 Always allow bypassAlways allow bypass

BuyLocal protocol stack

 What protocols are needed?What protocols are needed?
 How should they be layered?How should they be layered?

Implementing a protocol stack

 Depends on Depends on structurestructure and and environmentenvironment
 StructureStructure

 partitioningpartitioning of functionality between user and kernel of functionality between user and kernel
 separation of layer processing (separation of layer processing (interfaceinterface))

 EnvironmentEnvironment
 data copy costdata copy cost
 interrupt overheadinterrupt overhead
 context switch timecontext switch time
 latency in accessing memorylatency in accessing memory
 cache effectscache effects

Structure: partitioning strategies

 How much to put in user space, and how much in kernel spaceHow much to put in user space, and how much in kernel space??
 tradeoff betweentradeoff between

 software engineeringsoftware engineering
 customizabilitycustomizability
 securitysecurity
 performanceperformance

 Three choicesThree choices
 monolithic in kernel spacemonolithic in kernel space
 monolithic in user spacemonolithic in user space
 per-process in user spaceper-process in user space

Structure: interface strategies

 Again, three well-known alternativesAgain, three well-known alternatives
 single-contextsingle-context
 taskstasks
 upcallsupcalls

Monolithic in kernel

Monolithic in user space

Per-process in user space

Interface choices

 Single-contextSingle-context
 TasksTasks
 UpcallsUpcalls

(1) Single context (shepherd threads)

(2) Tasks (pseudo-processes)

(3) Upcalls

Implementation of each layer

Module 4: Techniques for system design

Overview

 What is system design?What is system design?
 Critical resourcesCritical resources
 Tools and techniquesTools and techniques
 Rules of thumbRules of thumb

What is system design?

 A computer network provides computation, storage andA computer network provides computation, storage and
transmission resourcestransmission resources

 System design is the art and science of putting resourcesSystem design is the art and science of putting resources
together into a harmonious wholetogether into a harmonious whole

 Extract the most from what you haveExtract the most from what you have

Goal

 In any system, some resources are more freely available thanIn any system, some resources are more freely available than
othersothers
 high-end PC connected to Internet by a 28.8 modemhigh-end PC connected to Internet by a 28.8 modem
 constrainedconstrained resource is link bandwidth resource is link bandwidth
 PC CPU and and memory are PC CPU and and memory are unconstrainedunconstrained

 Maximize a set of performance metrics given a set of resourceMaximize a set of performance metrics given a set of resource
constraintsconstraints

 Explicitly identifying constraints and metrics helps in designingExplicitly identifying constraints and metrics helps in designing
efficient systemsefficient systems

 ExampleExample
 maximize reliability and MPG for a car that costs less than $10,000maximize reliability and MPG for a car that costs less than $10,000

to manufactureto manufacture

System design in real life

 CanCan ʼ̓t always quantify and control all aspects of a systemt always quantify and control all aspects of a system
 Criteria such as scalability, modularity, extensibility, andCriteria such as scalability, modularity, extensibility, and

elegance are important, but unquantifiableelegance are important, but unquantifiable
 Rapid technological change can add or remove resourceRapid technological change can add or remove resource

constraints (example?)constraints (example?)
 an ideal design is an ideal design is ʻ̒future prooffuture proof ʼ̓

 Market conditions may dictate changes to design halfwayMarket conditions may dictate changes to design halfway
through the processthrough the process

 International standards, which themselves change, also imposeInternational standards, which themselves change, also impose
constraintsconstraints

 Nevertheless, still possible to identify some principlesNevertheless, still possible to identify some principles

Some common resources

 Most resources are a combination ofMost resources are a combination of
 timetime
 spacespace
 computationcomputation
 moneymoney
 laborlabor

(1) Time

 Shows up in many constraintsShows up in many constraints
 deadline for task completiondeadline for task completion
 time to markettime to market
 mean time between failuresmean time between failures

 MetricsMetrics
 response timeresponse time: mean time to complete a task: mean time to complete a task
 throughputthroughput: number of tasks completed per unit time: number of tasks completed per unit time
 degree of parallelism degree of parallelism = response time * throughput = response time * throughput

 20 tasks complete in 10 seconds, and each task takes 3 seconds20 tasks complete in 10 seconds, and each task takes 3 seconds
 => degree of parallelism = 3 * 20/10 = 6=> degree of parallelism = 3 * 20/10 = 6

(2) Space

 Shows up asShows up as
 limit to available memory (kilobytes)limit to available memory (kilobytes)
 bandwidth (kilobits)bandwidth (kilobits)

 Note: 1 kilobit/s = 1000 bits/sec, but 1 kilobyte/s = 1024 bits/sec!Note: 1 kilobit/s = 1000 bits/sec, but 1 kilobyte/s = 1024 bits/sec!

(3) Computation

 Amount of processing that can be done in unit timeAmount of processing that can be done in unit time
 Can increase computing power byCan increase computing power by

 using more processorsusing more processors
 waiting for a while!waiting for a while!

(4) Money

 ConstrainsConstrains
 what components can be usedwhat components can be used
 what price users are willing to pay for a servicewhat price users are willing to pay for a service
 the number of engineers available to complete a taskthe number of engineers available to complete a task

(5) Labor

 Human effort required to design and build a systemHuman effort required to design and build a system
 Constrains what can be done, and how fastConstrains what can be done, and how fast
 Also, the level of training determines how much sophisticationAlso, the level of training determines how much sophistication

can be assumed on the part of the userscan be assumed on the part of the users

(6) Social constraints

 StandardsStandards
 force design to conform to requirements that may or may not makeforce design to conform to requirements that may or may not make

sensesense
 underspecified standard can faulty and non-interoperableunderspecified standard can faulty and non-interoperable

implementationsimplementations
 Market requirementsMarket requirements

 products may need to be backwards compatibleproducts may need to be backwards compatible
 may need to use a particular operating systemmay need to use a particular operating system
 exampleexample

 GUI-centric designGUI-centric design

(7) Scaling

 A design constraint, rather than a resource constraintA design constraint, rather than a resource constraint
 Cannot use any centralized elements in the designCannot use any centralized elements in the design

 forces the use of complicated distributed algorithmsforces the use of complicated distributed algorithms
 Hard to measureHard to measure

 but necessary for successbut necessary for success

Common design techniques

 Key concept: Key concept: bottleneckbottleneck
 the most constrained element in a systemthe most constrained element in a system

 System performance improves by removing bottleneckSystem performance improves by removing bottleneck
 but creates new bottlenecksbut creates new bottlenecks

 In a In a balancedbalanced system, all resources are simultaneously system, all resources are simultaneously
bottleneckedbottlenecked
 this is optimalthis is optimal
 but nearly impossible to achievebut nearly impossible to achieve
 in practice, bottlenecks move from one part of the system toin practice, bottlenecks move from one part of the system to

anotheranother
 example: Ford Model Texample: Ford Model T

Top level goal

 Use unconstrained resources to alleviate bottleneckUse unconstrained resources to alleviate bottleneck
 How to do this?How to do this?
 Several standard techniques allow us to trade off one resourceSeveral standard techniques allow us to trade off one resource

for anotherfor another

(1) Multiplexing

 Another word for sharingAnother word for sharing
 Trades time and space for moneyTrades time and space for money
 Users see an increased response time, and take up space whenUsers see an increased response time, and take up space when

waiting, but the system costs lesswaiting, but the system costs less
 economies of scaleeconomies of scale

(1) Multiplexing (contd.)

 ExamplesExamples
 multiplexed linksmultiplexed links
 shared memoryshared memory

 Another way to look at a shared resourceAnother way to look at a shared resource
 unshared virtual resourceunshared virtual resource

 Server Server controls access to the shared resourcecontrols access to the shared resource
 uses a uses a scheduleschedule to resolve contention to resolve contention
 choice of scheduling critical in proving quality of service guaranteeschoice of scheduling critical in proving quality of service guarantees

(2) Statistical multiplexing

 Suppose resource has capacity CSuppose resource has capacity C
 Shared by N identical tasksShared by N identical tasks
 Each task requires capacity cEach task requires capacity c
 If Nc <= C, then the resource is underloadedIf Nc <= C, then the resource is underloaded
 If at most 10% of tasks active, then C >= Nc/10 is enoughIf at most 10% of tasks active, then C >= Nc/10 is enough

 we have used statistical knowledge of users to reduce system costwe have used statistical knowledge of users to reduce system cost
 this is this is statistical multiplexing gainstatistical multiplexing gain

Statistical multiplexing (contd.)

 Two types: spatial and temporalTwo types: spatial and temporal
 SpatialSpatial

 we expect only a fraction of tasks to be simultaneously activewe expect only a fraction of tasks to be simultaneously active
 TemporalTemporal

 we expect a task to be active only part of the timewe expect a task to be active only part of the time
 e.g silence periods during a voice calle.g silence periods during a voice call

Example of statistical multiplexing gain

 Consider a 100 room hotelConsider a 100 room hotel
 How many external phone lines does it need?How many external phone lines does it need?

 each line costs money to install and renteach line costs money to install and rent
 tradeofftradeoff

 What if a voice call is active only 40% of the time?What if a voice call is active only 40% of the time?
 can get both spatial and temporal statistical multiplexing gaincan get both spatial and temporal statistical multiplexing gain
 but only in a packet-switched network (why?)but only in a packet-switched network (why?)

 RememberRemember
 to get SMG, we need good statistics!to get SMG, we need good statistics!
 if statistics are incorrect or change over time, weif statistics are incorrect or change over time, we ʼ̓re in troublere in trouble
 example: road systemexample: road system

(3) Pipelining

 Suppose you wanted to complete a task in less timeSuppose you wanted to complete a task in less time
 Could you use more processors/cores to do so?Could you use more processors/cores to do so?
 Yes, if you can break up the task into Yes, if you can break up the task into independent independent subtaskssubtasks

 such as downloading images into a browsersuch as downloading images into a browser
 optimal if all subtasks take the same timeoptimal if all subtasks take the same time

 What if subtasks are dependent?What if subtasks are dependent?
 for instance, a subtask may not begin execution before anotherfor instance, a subtask may not begin execution before another

endsends
 such as in cookingsuch as in cooking

 Then, having more processors doesnThen, having more processors doesn ʼ̓t always help (example?)t always help (example?)

Pipelining (contd.)

 Special case of Special case of serially dependent serially dependent subtasks subtasks
 a subtask depends only on previous one in execution chaina subtask depends only on previous one in execution chain

 Can use a Can use a pipelinepipeline
 think of an assembly linethink of an assembly line

Pipelining (contd.)

 What is the best decomposition?What is the best decomposition?
 If sum of times taken by all stages = R
 Slowest stage takes time S
 Throughput = 1/S
 Response time = R
 Degree of parallelism = R/S
 Maximize parallelism when R/S = N, so that S = R/N => equal

stages
 balanced pipelinebalanced pipeline

(4) Batching

 Group tasks together to amortize overheadGroup tasks together to amortize overhead
 Only works when overhead for N tasks < N time overhead forOnly works when overhead for N tasks < N time overhead for

one task (i.e. one task (i.e. nonlinearnonlinear))
 Also, time taken to accumulate a batch shouldnAlso, time taken to accumulate a batch shouldn ʼ̓t be too longt be too long
 WeWe ʼ̓re trading off re trading off reduced overhead and increased throughputreduced overhead and increased throughput

for a longer worst case response timefor a longer worst case response time

(5) Exploiting locality

 If the system accessed some data at a given time, it is likely thatIf the system accessed some data at a given time, it is likely that
it will access the same or it will access the same or ʻ̒nearbynearby ʼ̓ data data ʻ̒soonsoon ʼ̓

 Nearby => spatialNearby => spatial
 Soon => temporalSoon => temporal
 Both may coexistBoth may coexist
 Exploit it if you canExploit it if you can

 cachingcaching
 get the speed of RAM and the capacity of diskget the speed of RAM and the capacity of disk

(6) Optimizing the common case

 80/20 rule80/20 rule
 80% of the time is spent in 20% of the code80% of the time is spent in 20% of the code

 Optimize the 20% that countsOptimize the 20% that counts
 need to measure first!need to measure first!
 RISCRISC

 How much does it help?How much does it help?
 AmdahlAmdahl ʼ̓s laws law
 Execution time after improvement = (execution affected byExecution time after improvement = (execution affected by

improvement / amount of improvement) + execution unaffectedimprovement / amount of improvement) + execution unaffected
 beyond a point, speeding up the common case doesnbeyond a point, speeding up the common case doesn ʼ̓t helpt help

(7) Using hierarchy

 Recursive decomposition of a system into smaller pieces thatRecursive decomposition of a system into smaller pieces that
depend only on parent for proper executiondepend only on parent for proper execution

 No single point of controlNo single point of control
 Highly scaleableHighly scaleable
 Leaf-to-leaf communication can be expensiveLeaf-to-leaf communication can be expensive

 shortcuts helpshortcuts help

(8) Binding and indirection

 Abstraction is goodAbstraction is good
 allows generality of descriptionallows generality of description
 e.g. mail aliasese.g. mail aliases

 Binding: translation from an abstraction to an instanceBinding: translation from an abstraction to an instance
 If translation table is stored in a well known place, we can bindIf translation table is stored in a well known place, we can bind

automaticallyautomatically
 indirectionindirection

 ExamplesExamples
 mail alias filemail alias file
 page tablepage table
 telephone numbers in a cellular systemtelephone numbers in a cellular system

(9) Virtualization

 A combination of indirection and multiplexingA combination of indirection and multiplexing
 Refer to a virtual resource that gets matched to an instance atRefer to a virtual resource that gets matched to an instance at

run timerun time
 Build system as if real resource were availableBuild system as if real resource were available

 virtual memoryvirtual memory
 virtual modemvirtual modem
 Santa ClausSanta Claus

 Can cleanly and dynamically reconfigure a systemCan cleanly and dynamically reconfigure a system

(10) Randomization

 A powerful toolA powerful tool
 allows us to break a tie fairlyallows us to break a tie fairly
 immune to systematic failure in any componentimmune to systematic failure in any component

 ExamplesExamples
 resolving contention in a broadcast mediumresolving contention in a broadcast medium
 choosing multicast timeoutschoosing multicast timeouts
 gossip protocolsgossip protocols

(11) Soft state

 State: memory in the system that influences future behaviorState: memory in the system that influences future behavior
 for instance, VCI translation tablefor instance, VCI translation table

 State is created in many different waysState is created in many different ways
 signalingsignaling
 network managementnetwork management
 routingrouting

 How to delete it?How to delete it?
 Soft state => delete on a timerSoft state => delete on a timer
 If you want to keep it, refreshIf you want to keep it, refresh
 Automatically cleans up after a failureAutomatically cleans up after a failure

 but increases bandwidth requirementbut increases bandwidth requirement

(12) Representing state explicitly

 Network elements often need to exchange stateNetwork elements often need to exchange state
 Can do this implicitly or explicitlyCan do this implicitly or explicitly
 Where possible, use explicit state exchangeWhere possible, use explicit state exchange

 makes system easier to debug (reduces time)makes system easier to debug (reduces time) but can reducebut can reduce
efficiencyefficiency

(13) Hysteresis

 Suppose system changes state depending on whether aSuppose system changes state depending on whether a
variable is above or below a thresholdvariable is above or below a threshold

 Problem if variable fluctuates near thresholdProblem if variable fluctuates near threshold
 rapid fluctuations in system staterapid fluctuations in system state

 Use state-dependent threshold, or Use state-dependent threshold, or hysteresishysteresis
 reduces efficiency but improvesreduces efficiency but improves stabilitystability

(14) Separating data and control

 Divide actions that happen once per data transfer from actionsDivide actions that happen once per data transfer from actions
that happen once per packetthat happen once per packet
 Data path and control pathData path and control path

 Can increase throughput by minimizing actions in data pathCan increase throughput by minimizing actions in data path
 ExampleExample

 connection-oriented networksconnection-oriented networks
 On the other hand, keeping control information in data elementOn the other hand, keeping control information in data element

has its advantageshas its advantages
 per-packet QoSper-packet QoS

(15) Allowing extensibility

 Always a good idea to leave hooks that allow for future growthAlways a good idea to leave hooks that allow for future growth
 Design for the future because it will be here sooner than youDesign for the future because it will be here sooner than you

thinkthink
 ExamplesExamples

 Version field in headerVersion field in header
 Modem negotiationModem negotiation

 ReducesReduces performanceperformance

(16) Hashing and Bloom filters

 Hashes allow for rapid testing of membership of a string in a setHashes allow for rapid testing of membership of a string in a set
 hash function H defined over an arbitrary string maps to array indexhash function H defined over an arbitrary string maps to array index

hh
 H(String) = hH(String) = h

 if(if(hash_tablehash_table[h] ==1) then member else not[h] ==1) then member else not
 problem with collisions, i.e.,problem with collisions, i.e., H(S1)H(S1) = H(S2) = h= H(S2) = h

 Bloom filter definesBloom filter defines multiple hash functions H1, H2,multiple hash functions H1, H2,……HkHk
 S is a member S is a member iff iff H1(S) = H2(S) = H1(S) = H2(S) = ……= = HkHk(S)(S) = 1= 1
 ReducesReduces possibility of collisions even with small hash tablespossibility of collisions even with small hash tables
 False positives remain a problemFalse positives remain a problem

(17) Tries

 Two ways to improve performanceTwo ways to improve performance
 cache recently used addresses in a CAMcache recently used addresses in a CAM
 move common entries up to a higher level (match longer strings)move common entries up to a higher level (match longer strings)

(18) Ternary CAMs

 Allows stringsAllows strings with elementswith elements 0, 1, X0, 1, X
 Each TCAM entryEach TCAM entry can be wildcardcan be wildcard

 allows aggregationallows aggregation
 Fast lookup ofFast lookup of maps from contiguous name sub-spacesmaps from contiguous name sub-spaces

 e.g., for routinge.g., for routing

(19) Name-space encapsulation

 Clever trick to deal with legacy systemsClever trick to deal with legacy systems
 Pre-pend Pre-pend existing namespaces with an encapsulating stringexisting namespaces with an encapsulating string

 ftp://ftp://
 postal://postal://

(20) Tolerating server and device failure

 All state stored in stable storage andAll state stored in stable storage and updated when stateupdated when state
changeschanges

 To improve performanceTo improve performance
 keep a copy inkeep a copy in RAMRAM
 readsreads are from RAMare from RAM
 writes are to RAM as well as stable storewrites are to RAM as well as stable store

 On reboot, in-memory state recreated from stable storeOn reboot, in-memory state recreated from stable store

(21) Timing wheels

 Timers support four operations:Timers support four operations:
 start timerstart timer
 stop timerstop timer
 timeout operationstimeout operations
 per time-tick operationsper time-tick operations

 Using hashed and hashed hierarchical Using hashed and hashed hierarchical timing wheelstiming wheels (or a (or a
variant called variant called calendar queuescalendar queues), these operations can be O(1)), these operations can be O(1)
expected caseexpected case

 Essentially, associate events with an array of time values ratherEssentially, associate events with an array of time values rather
than associating times with an array of eventsthan associating times with an array of events

More rules of thumb

 Design for simplicity, adding complexity only when you mustDesign for simplicity, adding complexity only when you must
 UseUse ASCIIASCII instead of integers: clarity is better than clevernessinstead of integers: clarity is better than cleverness
 Fine tune inner loopsFine tune inner loops
 Choose good data structuresChoose good data structures
 Beware of data and non-data touching touching overheadsBeware of data and non-data touching touching overheads
 Minimize number of packets sentMinimize number of packets sent
 Send the largest packets possibleSend the largest packets possible
 Use hardware if possibleUse hardware if possible
 Exploit (persistent) application propertiesExploit (persistent) application properties

Module 5: Testing

Overview

 Some techniques for protocol testingSome techniques for protocol testing
 formal verificationformal verification
 queueing analysisqueueing analysis
 emulationemulation
 simulationsimulation
 use of the the 'live Internet' use of the the 'live Internet'

(1) Formal verification

 Each peer is represented by a Each peer is represented by a state machinestate machine
 Message transmission and receipt lead toMessage transmission and receipt lead to state transitions atstate transitions at

communicating peerscommunicating peers
 Goal is to discover if some set of message exchanges, includingGoal is to discover if some set of message exchanges, including

losses, duplications,losses, duplications, and re-orderings leads to and re-orderings leads to deadlockdeadlock (i.e., no (i.e., no
progress possible)progress possible) or entry into a bad stateor entry into a bad state

 Problem is Problem is state explosionstate explosion
 Many clever techniques to mitigate this problemMany clever techniques to mitigate this problem
 Bottom line: useful but of limited use inBottom line: useful but of limited use in practicepractice

 too hardtoo hard for the average practitionerfor the average practitioner

(2) Queueing analysis

 Model arrivals to a serverModel arrivals to a server and departures from a server as aand departures from a server as a
stochastic processstochastic process

 If these processes are well-behaved (typically Poisson) we canIf these processes are well-behaved (typically Poisson) we can
compute the distribution of queuing delayscompute the distribution of queuing delays

 Provides excellent insights into a systemProvides excellent insights into a system
 But makes too many assumptions to be useful in practiceBut makes too many assumptions to be useful in practice

(3) Emulation

 Exactly reproduces protocol behaviorExactly reproduces protocol behavior
 by implementing the protocol in a controlled testbed and testing itsby implementing the protocol in a controlled testbed and testing its

behaviorbehavior
 TestsTests thethe actual protocol and workloadactual protocol and workload
 But difficult to set up and scaleBut difficult to set up and scale
 Realistic workload emulation is nearly impossible!Realistic workload emulation is nearly impossible!

(4) Simulation

 Studies a software model of the protocolStudies a software model of the protocol
 in some cases, the protocol is emulated, but the rest of the systemin some cases, the protocol is emulated, but the rest of the system

is simulatedis simulated
 TheThe most popular techniquemost popular technique

 complete control over environmentcomplete control over environment
 severalseveral standard simulator packages widely availablestandard simulator packages widely available

 PitfallsPitfalls
 lack of validationlack of validation
 cold startcold start
 not running the simulation long enoughnot running the simulation long enough forfor metric to achievemetric to achieve

stabilitystability
 statisticalstatistical significance of resultssignificance of results

(5) Testing in the live Internet

 ʻ̒Just do itJust do it ʼ̓ approach approach
 Completely uncontrolled environmentCompletely uncontrolled environment
 Can lead to Can lead to ʻ̒success disasterssuccess disasters ʼ̓

Module 6: Pitfalls

Overview

 Things to watch out forThings to watch out for
 debuggabilitydebuggability
 race conditionsrace conditions
 failing unsafelyfailing unsafely
 corner casescorner cases
 implementations that lieimplementations that lie
 performance problemsperformance problems

(1) Debuggability

 Bugs are inevitableBugs are inevitable
 Often the only way to debug a distributed system is by printingOften the only way to debug a distributed system is by printing

out eventsout events
 Invest in building a good logging systemInvest in building a good logging system

 standard event formats that can be post-processedstandard event formats that can be post-processed
 debugging levelsdebugging levels
 debugging node that collects events from all nodesdebugging node that collects events from all nodes

(2) Race conditions

 Protect allProtect all critical sectionscritical sections
 Multiple actions that stem from the same event shouldMultiple actions that stem from the same event should

coordinate with each othercoordinate with each other
 example: reader-writer shouldexample: reader-writer should use a synchronized listuse a synchronized list

(3) Failing unsafely

 Consider the consequences of each failureConsider the consequences of each failure
 Ideally, failures shouldIdeally, failures should only reduce performanceonly reduce performance withoutwithout

compromising correctnesscompromising correctness
 ExamplesExamples

 storing state in stable storagestoring state in stable storage
 link failurelink failure in OSPFin OSPF

(4) Corner cases

 Always consider Always consider extremal extremal values of input parameters (values of input parameters (ʻ̒cornercorner
casescases ʼ̓))
 as well as roll over ofas well as roll over of finite countersfinite counters

 A quick way to test for protocol correctnessA quick way to test for protocol correctness
 Examples:Examples:

 does the system work for zero-length packets as well as maximumdoes the system work for zero-length packets as well as maximum
size-packets?size-packets?

 what happens when sequence numbers reach the largest possiblewhat happens when sequence numbers reach the largest possible
size?size?

(5) Implementations that lie

 Sometimes, values received from a peer may not be correctSometimes, values received from a peer may not be correct
 buggy implementationbuggy implementation
 undetectedundetected data corruptiondata corruption
 malicious nodesmalicious nodes

 Two maxims applyTwo maxims apply
 ʻ̒trust but verifytrust but verify ʼ̓
 ʻ̒be liberal in what you accept and conservative in what you sendbe liberal in what you accept and conservative in what you send ʼ̓

 ExamplesExamples
 TCP RST (TCP RST (ʻ̒I am confusedI am confused ʼ̓))
 Byzantine agreementByzantine agreement

(6) Performance problems

 Performance relevant only after correctnessPerformance relevant only after correctness
 Collect good metricsCollect good metrics
 Use the techniques described earlierUse the techniques described earlier
 In my experience, getting 10x improvements in any metricIn my experience, getting 10x improvements in any metric cancan

be achieved with moderate effortbe achieved with moderate effort

Conclusions

 Protocol design and implementation is a complex problemProtocol design and implementation is a complex problem
 Many inherent challenges and incompatible requirementsMany inherent challenges and incompatible requirements
 We have a number of tools at our disposal and manyWe have a number of tools at our disposal and many workingworking

systems that scale to hundreds of millions of userssystems that scale to hundreds of millions of users
 By studying these systems and some care, it is possible to buildBy studying these systems and some care, it is possible to build

robust systems that scale wellrobust systems that scale well

 The great aim of education is not knowledge but action.The great aim of education is not knowledge but action.
 Herbert SpencerHerbert Spencer

