Designing and Implementing
Internet Protocols

S. Keshav
University of Waterloo
TECS Week, Pune
January 2009

Overview

Module 1: Introduction

Module 2: Requirements and challenges
Module 3: Implementation techniques
Module 4: Techniques for system design
Module 5: Testing

Module 6: Pitfalls

Module 1: Introduction

Outline

e What is the Internet?
e Whatis an Internet protocol?

e A running example: BuylLocal Service

What is the Internet?

Set of host interfaces reachable using the
A loose interconnection of networks that

» carry packets addressed using the Internet Protocol
» that route packets using a standard Internet protocol (BGP)

A bit more detalil...

of networks organized into a multilevel
hierarchy

» 10-100 machines connected to a hub or a router
» Service providers also provide direct dialup access
» Or over a wireless link

» 10s of routers on a department backbone

» 10s of department backbones connected to campus backbone

» 10s of campus backbones connected to regional service providers
» 100s of regional service providers connected by national backbone
» 10s of national backbones connected by international trunks

Example of message routing

dccore-nsfw02-csresearch1net. (129.97.7.1) 0.363 ms 0.308 ms 0.234 ms
-cs2-csfwnet.uwaterloo.ca (172.19.5.1) 0.475 ms 0.468 ms 0.484 ms
dc-cs2-trk1.uwaterloo.ca (172.19.1.17) 0.478 ms 0.475 ms 0.474 ms
mc-cs2-trk2.uwaterloo.ca (172.19.1.1) 0.491 ms 0.465 ms 0.484 ms
mc-cs1-trk1l.uwaterloo.ca (172.19.1.10) 0.604 ms 0.466 ms 0.485 ms
v719-cn-rt-mc.uwaterloo.ca (129.97.1.73) 0.477 ms 0.472 ms 0.512 ms
ext-rt-mc-cn-rt-mc. (129.97.1.6) 0.703 ms 0.464 ms 0.483 ms
219-22.mpd01.yyz02.atlas. (38.99.202.213) 6.851 ms 6.966 ms 6.866 ms
te3-2.mpd02.ord01.atlas.cogentco.com (154.54.7.18) 20.954 ms 21.075 ms 20.970 ms
10 v13499.ccr02.0rd03.atlas.cogentco.com (154.54.5.10) 21.210 ms te8-2.ccr02.ord03.atlas.cogentco.com
11 if-9-1. as6453.net (206.82.141.37) 32.440 ms 21.201 ms 31.589 ms
12 if-2-0-0-18.corel.CT8-Chicago.as6453.net (66.110.14.33) 21.243 ms 21.071 ms
13 if-7-1-0-17.corel.CT8-Chicago.as6453.net (66.110.27.49) 21.091 ms
14 66.110.27.6 (66.110.27.6) 72.039 ms 71.928 ms 72.059 ms
MPLS Label=970 CoS=5 TTL=1 S=0
15 1f-9-0-0.mcore3.PDI- .as6453.net (216.6.29.25) 105.024 ms 110.145 ms 150.389 ms
MPLS Label=2240 CoS=5 TTL=1 S=0
16 if-4-0-0.msel.SV1- .as6453.net (216.6.29.2) 224.358 ms 202.963 ms 203.384 ms
17 ix-2-11.msel.SV1-SantaClara.as6453.net (209.58.93.30) 71.903 ms 72.040 ms 72.310 ms
18 59.163.55.253.static. (59.163.55.253) 350.914 ms 350.773 ms 351.017 ms
19 203.200.87.72 (203.200.87.72) 350.618 ms 350.652 ms 350.879 ms
197.224-18.vsnl.net.in (203.197.224.18) 378.103 ms 466.955 ms 410.726 ms

O 00 I N L B W IN =

21

Internet growth trends

Number of hosts on the Internet
in size every year from
1969 to 1998

subsequently
(~120 million/year)

Roughly 1.2 billion hosts in
2008

Growth of Internet Hosts *
Sept. 1969 - Sept. 2002
250,000,000 -
200,000,000
150,000,000 /

No. of Hosts

100,000,000 /

50,000,000

0 i

\\\\\\\ & B A R S S S S S S N
CRLFLELELFEEEFLELLEFFIFFLFTELE EES
Time Period

Source: ISOC:www.isoc.org/internet/history/2002_0918_Internet_History_and_Growth.ppt

1800

1700

1600

1500

1400

1300

1200

1100

1000

900

Millions of Users

800

T00

600

500

300

200

100

Internet Users in the World
Growth 1995 - 2010

"5 96 9T '8 99 00 01 02 03 ‘04 05 06 07 ‘08 0% 0

Year

Source: www.intemetworldstats.com - January, 2008
Copyright ® 2008, Miniwatts Marketing Group

Growth continues in services

o Skype

o Facebook

e Search (Google, Yahoo, Microsoft)
e Internet email

e BitTorrent

e Each have more than 100 million users daily!

e How should we design and implement the underlying protocols?

Protocols

A IS a set of rules and formats that govern the
communication between communicating peers

» set of valid message formats ()
» meaning of each message ()

b to be carried out on receipt of all possible messages and
message orderings

Necessary for any function that requires cooperation between
peers

Peer entities

.

e Customer A and B are peers

o Postal worker A and B are peers

Example: careful file transfer

Exchange a file over a network that corrupts packets

» but doesn’t lose or reorder them
A simple protocol

» send file as a series of packets

» send a checksum

» receiver sends OK or not-OK message
» sender waits for OK message

» if no response, resends entire file

Problems

» single bit corruption requires retransmission of entire file
» what if link goes down?

» what if peer OS fails?

» what if not-OK message itself is corrupted?

Another way to view a protocol

As providing a
The example protocol provides careful file transfer service

Peer entities use a protocol to provide a service to a higher-level
peer entity

» for example, postal workers use a protocol to present customers
with the abstraction of an unreliable letter transfer service

What is an Internet protocol?

e Any protocol layered on IP

e Endpoints can be anywhere on the Internet

» many non-trivial consequences

Example protocol suite for a service

We’'ll design the service

» search for local supplier of a good or service
» distributed searchable directory

Module 2: Requirements and challenges

Requirements (1)

» anyone, anywhere, on any device
» should scale to millions of users

» geographically distributed

» multi-lingual

» multi-currency

» can potentially have flash crowds

Requirements (2)

Universal access

» should allow new services to be added
» advertising
» social networks

» s

Requirements (3)

Universal access
Extensible

» tolerant of failures in any component
» results should be repeatable

Requirements (4)

Universal access
Extensible
Robust

» privacy
» integrity
» rights management

Requirements (5)

Universal access
Extensible
Robust

Secure

» should be able to measure usage
» potentially allow billing

Requirements (6)

Universal access
Extensible
Robust

Secure
Accountable

» by far the most onerous requirement

Requirements summary

e Universal access
e Extensible

e Robust

e Secure

e Accountable

e Legacy-compatible

These are mutually incompatible!

Universal access (1)

Centralization is impossible!

» why?

» varying implementations on heterogeneous platforms
» potentially non-cooperative

* need incentive-compatibility

* best possible outcome when each entity ‘does the right thing’
» nheed inter-operability

* openness

Universal access (2)

e Distributed

» multiple federated administrative entities (e.g. IP)
» Or, single administrative control (e.g. Amazon, Google, eBay)
- allows tight control
 proprietary interfaces
— but how to grow a developer community?

Universal access (3)

Distributed

» in both cases, have to deal with
» root cause of nearly all problems in distributed systems

Universal access (3)

e Distributed

e High performance

» there is a standard set of tools and techniques
» clusters
» pseudo-processes

» s

Universal access (4)

Distributed
High performance

» desktops, laptops, mobile phones, embedded devices, ...
» Windows, Linux, MacOS, ...

» different browsers

» different languages

» different currencies

Universal access (5)

e Distributed
e High performance
e Multiple platforms

e Deal with underlying problems

v firewalls
» gateways
» VPNs

| S

Extensible

Future requirements are unknown

Need to deal with incompatibilities with existing requirements
and implementation

Difficult to detect and deal with side effects

Robust

» server failure

» device failure

» storage failure

» link failure

» bad implementations
» Or a combination!

Improving robustness usually degrades performance

Secure (1)

Assuring

» need to prevent or discover tampering
» a variety of cryptographic techniques
» problems

» user incomprehension

» reduced performance

» Key distribution

Secure (2)

Integrity

» need to prevent eavesdropping
» many known cryptographic techniques
» Same problems as with integrity

Accountable (1)

e Every action should be potentially attributable to a real-world
entity

e Reduces to two sub-problems

» identity
» data management

Accountable (2)

» entities have (and need to have) multiple identities

» anonymous, pseudonymous, and verinymous identities
» should they be linked?

» Mmany open societal problems

» NO consensus

Legacy compatible

Depends on what to be compatible with...

Module 3: Implementation techniques

Overview

A service corresponds to a set of protocols that implemented in
the wide area, in a cluster, and within a server

Implementing protocols across the

» structured and unstructured state dissemination
» gossip, centralization, P2P, and hierarchy

Protocol implementation in a

» three-tier architecture
architecture

» location
v interfaces

Implementing protocols in the wide area

e Three challenges

» deciding where to place functionality
» bypassing firewalls
» state coordination

Placing functionality

» highest protocol layer needs assurance semantics that only it can
provide

» S0, lower layers need not try too hard to provide assurance
Example: careful file transfer

» application needs to know every block reached

» cannot trust the network because crashes could happen at the peer
OS

» retransmission is needed at the application layer, so no need to try
too hard in the network

Fast and dumb pipes with intelligence pushed to ‘edges’

Dealing with firewalls

Layer over HTTP
» allows universal egress
Use a public

» each endpoint sets up a connection

» rendezvous server does application-level routing
» 13, STUN, HIP, Mobile IP, etc.

State coordination

A node needs to know about state of some other node

» e.g., what requests it has served, what data it has, its load, ...
» what is needed for BuyLocal service?

Accomplished by communication

Knowledge deteriorates due to event occurrences
Need updates

Two choices

» structured
» unstructured

Impossibility result

Perfect coordination is impossible if there can be message or
node failures

» we have to settle for approximate coordination and failure-safety

Structured coordination (1)

» poor scaling and fault tolerance
» outcomes are deterministic

» ‘virtual centralization’ works well
» using clustering

Structured coordination (2)

Centralized solution

» nodes form a tree overlay on IP
» €.9., DNS

» better scaling

» fault tolerance possible with redundant links
» outcomes are deterministic

» allows delegation

» most widely used solution in practice

Unstructured coordination (1)

Each server (node) knows only about its neighbours

» global computation is divided into a sequence of local computations
» local computation fuses local state to in-progress state

» node does local computation then sends message to a neighbour
» computation aggregates local and in-progress state

Robust to node and link failures

» but outcomes are probabilistic

» and need to prevent double counting
Example

» count number of nodes
» count sum of node values

Unstructured coordination (2)

» either pull updates from all neighbors or push updates to them
» source-specific sequence numbers eliminate duplicates
» examples: OSPF, BGP

Unstructured coordination (3)

Flooding

» node sends its state in a message to a randomly selected neighbor

» neighbor updates its local state, adds its local value to the
message’s state, and forwards to a random neighbour

» parallelizable

» each walk does a distributed computation over a random sample of
node states

Unstructured coordination (4)

Flooding
Random walks

» computation proceeds in rounds

» in each round, each node either pushes data to or pulls data from a
random neighbor

» typically network is a clique
» after log N rounds, with high probability, all nodes know everything
» push better in early stages, pull in late stages
» termination is an open problem

Aggregation

Need to prevent
Three approaches

» carry
» does not scale
» use order and duplicate insensitive
» can have high errors
» use
» each node has an initial weight
» when sharing a value, share part of the weight
» USing mass conservation, can show that double counting is avoided
» elegant, but poor fault tolerance

(2) Cluster-based computing

Set of geographically close nodes on a high-speed interconnect
form a cluster

Elements

» Redundant servers
» Network interconnect
» Shared storage

» Load balancers

I Hmu, firewall,

Inrr.'rmru
Presentation tier
Weh saever farm running A58 NET
Windows Server 2003 B : 5 E 3

Full production-scaled Web fanm
Business logic tier I Roarter and firewall
Web services farm ranning ASPNET and COM-+___"'_F hardorars
Windows Server 2003
Fdl;md-:hmmhd Web farm Active Dtmnw
Windows Server 2003

Data tier
S0L Server 2000 custer
Windows 2000 Server

Source: Dell Computers

Key features

Fault tolerant
Highly scaleable

Great diversity of implementation environments

» J2EE, ASP, scripting
Incrementally expandable

Industry-standard components
Multiple vendors

(3) Protocol implementation within a server

e Two main topics

» Layering and protocol stacks
» Implementing a protocol stack

Protocol layering

A network that provides many services needs many protocols
Turns out that some services are independent

But others depend on each other

Protocol A may use protocol B as a step in its execution

» for example, packet transfer is one step in the execution of the
example reliable file transfer protocol

This form of dependency is called

» reliable file transfer is layered above packet transfer protocol
» like a subroutine

Protocol stack

Each layer uses the layer below and provides a service to the
layer above

Key idea

» once we define a service provided by a layer, we need know

nothing more about the details of how the layer actually implements
the service

» information hiding
» decouples changes

The importance of being layered

Breaks up a complex problem into pieces

» can compose simple service to provide complex ones

» for example, WWW (HTTP) is Java layered over TCP over IP (and
uses DNS, ARP, DHCP, RIP, OSPF, BGP, PPP, ICMP)

of implementation details

» Separation of implementation and specification

» can change implementation as long as service interface is
maintained

Can

» upper layers can share lower layer functionality
» example: WinSock on Microsoft Windows

Problems with layering

Layering

v if it didn’t then changes to one layer could require changes
everywhere

» layering violation

But sometimes hidden information can be used to improve
performance

» for example, flow control protocol may think packet loss is always
because of network congestion
» ifitis, instead, due to a lossy link, the flow control breaks

» this is because we hid information about reason of packet loss from
flow control protocol

Layering

There is a tension between information-hiding (abstraction) and
achieving good performance

Art of protocol design is to leak enough information to allow
good performance

» but not so much that small changes in one layer need changes to
other layers

BuyLocal protocol stack

What protocols are needed?
How should they be layered?

Implementing a protocol stack

Depends on and
Structure

v partitioning of functionality between user and kernel
» separation of layer processing (interface)
Environment

» data copy cost

» interrupt overhead

» context switch time

» latency in accessing memory
» cache effects

Structure: partitioning strategies

e How much to put in user space, and how much in kernel space?

» tradeoff between
» Software engineering
» customizability
» Security
» performance

e Three choices
» monolithic in kernel space

» monolithic in user space
» per-process in user space

Structure: interface strategies

Again, three well-known alternatives

» single-context
» tasks
» upcalls

Monolithic in kernel

ATFPLICATION APPLICATION
x 5
LSER v ';
KERNEL SESSION
TRANSPORT

NETWORK

DIEVICEDRIVER

DEVICE

Monolithic in

user space

SESSION LIC
e APPLICATION
TRANSPORT
APPLICATION
NETWORK

DEVICE DRIVER

A USER
KERNEL
v
PROXY

DEVICE

APPLICATION

7
|

SESSION

TRANSPORT

NENVORK

DEVICE DRIVER

Y

REGISTRY
SERVER
Y T
CONTROL

Per-process in user space

APPLICATION

SESSION

TRANSPORT

NENMVORK

DEVICE DRIVER

=Y

USER

N\ /).\'l;\
¥ &

PROXY

DEVICE

KERNEL

Interface choices

e Single-context
e Tasks
e Upcalls

(1) Single context (shepherd threads)

APPLICATION

..

--

DEVICEDRIVER

K" DEVICE 4)
o

(2) Tasks (pseudo-processes)

ATPLICATION

APPLICATION

S~

_/

O_, _

BUFFER
ol T
DEVICE
—)' N > T —* DL

SCHEDULER

T = TRANSFORT
N« NETWORK
DL« DATALINK

(3) Upcalls

APPLICATION

REGISTRATION
TIME

SEP RET
TS,
A\

SEP REP
.}\}R‘(.I

SEP REP
'\‘\}l?c'l

\

. \'}“o
aI?

SEP « SEND ENTRY P'1.

REP « RECEIVE ENTRY FL

RGP « REGISTRATION
ENTRY I

| t
\

BN
SI.I}P' REP

v

APPLICATION

SESSION

TREANSPORT

NETWORK

DATALINK/
DIEVICEDRIVER

J \
PACKET | PACKET
SENT RECEIVED
NEXT

PACKET TO SEND

Implementation of each layer

LIPER UPPER
LAYER LAYER
SEND RECEIVE

|

¥ |
L J .
. 4 TIMEOUT
- L]
' A

Y
LOWER LOWER
LAYER LAYER
SEND RECEIVE

Module 4: Techniques for system design

Overview

What is system design?
Critical resources

Tools and techniques
Rules of thumb

What is system design?

e A computer network provides computation, storage and
transmission resources

e System design is the art and science of putting resources
together into a harmonious whole

o Extract the most from what you have

Goal

In any system, some resources are more freely available than
others

» high-end PC connected to Internet by a 28.8 modem
» constrained resource is link bandwidth
» PC CPU and and memory are unconstrained

Explicitly identifying constraints and metrics helps in designing
efficient systems

Example

» maximize reliability and MPG for a car that costs less than $10,000
to manufacture

System design in real life

Can’t always quantify and control all aspects of a system

Criteria such as scalability, modularity, extensibility, and
elegance are important, but unquantifiable

Rapid technological change can add or remove resource
constraints (example?)

» an ideal design is ‘future proof’

Market conditions may dictate changes to design halfway
through the process

International standards, which themselves change, also impose
constraints

Nevertheless, still possible to identify some principles

Some common resources

Most resources are a combination of

» time

» Space

» computation
» money

» labor

(1) Time

Shows up in many constraints

» deadline for task completion
» time to market
» mean time between failures

Metrics

» response time: mean time to complete a task
» throughput. number of tasks completed per unit time

» degree of parallelism = response time * throughput
» 20 tasks complete in 10 seconds, and each task takes 3 seconds
» => degree of parallelism =3 * 20/10 =6

(2) Space

Shows up as

» limit to available memory (kilobytes)

» bandwidth (kilobits)
» Note: 1 kilobit/s = 1000 bits/sec, but 1 kilobyte/s = 1024 bits/sec!

(3) Computation

Amount of processing that can be done in unit time
Can increase computing power by

» USINg mMore processors
» waiting for a while!

(4) Money

Constrains

» what components can be used
» what price users are willing to pay for a service
» the number of engineers available to complete a task

(5) Labor

Human effort required to design and build a system
Constrains what can be done, and how fast

Also, the level of training determines how much sophistication
can be assumed on the part of the users

(6) Social constraints

Standards
» force design to conform to requirements that may or may not make
sense

» underspecified standard can faulty and non-interoperable
implementations

Market requirements

» products may need to be backwards compatible
» may need to use a particular operating system
» example

» GUI-centric design

(7) Scaling

A design constraint, rather than a resource constraint
Cannot use any centralized elements in the design

» forces the use of complicated distributed algorithms
Hard to measure

» but necessary for success

Common design techniques

Key concept:

System performance improves by removing bottleneck

» but creates new bottlenecks

In a balanced system, all resources are simultaneously
bottlenecked

» this is optimal
» but nearly impossible to achieve

» in practice, bottlenecks move from one part of the system to
another

» example: Ford Model T

Top level goal

e Use unconstrained resources to alleviate bottleneck

e How to do this?

e Several standard techniques allow us to trade off one resource
for another

(1) Multiplexing

e Another word for sharing
e Trades time and space for money

e Users see an increased response time, and take up space when
waiting, but the system costs less

» economies of scale

Usiers Llsarrs

Servers Server

(1) Multiplexing (contd.)

Examples

» multiplexed links
» shared memory

Another way to look at a shared resource

» unshared virtual resource
Server controls access to the shared resource

» USes a schedule to resolve contention
» choice of scheduling critical in proving quality of service guarantees

(2) Statistical multiplexing

Suppose resource has capacity C

Shared by N identical tasks

Each task requires capacity ¢

If Nc <= C, then the resource is underloaded

If at most 10% of tasks active, then C >= Nc/10 is enough

» we have used statistical knowledge of users to reduce system cost
v this is statistical multiplexing gain

Statistical multiplexing (contd.)

Two types: spatial and temporal
Spatial

» we expect only a fraction of tasks to be simultaneously active
Temporal

» We expect a task to be active only part of the time
» €.g silence periods during a voice call

Example of statistical multiplexing gain

Consider a 100 room hotel

How many external phone lines does it need?
» each line costs money to install and rent
» tradeoff
What if a voice call is active only 40% of the time?

» can get both spatial and temporal statistical multiplexing gain
» but only in a packet-switched network (why?)
Remember

» to get SMG, we need good statistics!
» if statistics are incorrect or change over time, we’re in trouble
» example: road system

(3) Pipelining

Suppose you wanted to complete a task in less time
Could you use more processors/cores to do so?
Yes, if you can break up the task into independent subtasks

» such as downloading images into a browser
» optimal if all subtasks take the same time

What if subtasks are dependent?

» for instance, a subtask may not begin execution before another
ends

» such as in cooking
Then, having more processors doesn’t always help (example?)

Pipelining (contd.)

Special case of serially dependent subtasks

» a subtask depends only on previous one in execution chain
Can use a pipeline

» think of an assembly line

Pipelining (contd.)

What is the best decomposition?

If sum of times taken by all stages = R
Slowest stage takes time S
Throughput = 1/S

Response time = R

Degree of parallelism = R/S

Maximize parallelism when R/S = N, so that S = R/N => equal
stages

v balanced pipeline

(4) Batching

Group tasks together to amortize overhead

Only works when overhead for N tasks < N time overhead for
one task (i.e. nonlinear)

Also, time taken to accumulate a batch shouldn’t be too long

We're trading off

(5) Exploiting locality

If the system accessed some data at a given time, it is likely that
it will access the same or ‘nearby’ data ‘soon’

Nearby => spatial
Soon => temporal
Both may coexist
Exploit it if you can

» caching
» get the speed of RAM and the capacity of disk

(6) Optimizing the common case

80/20 rule

» 80% of the time is spent in 20% of the code
Optimize the 20% that counts

» need to measure first!

» RISC
How much does it help?

» Amdahl’s law

» Execution time after improvement = (execution affected by
improvement / amount of improvement) + execution unaffected

» beyond a point, speeding up the common case doesn’t help

(7) Using hierarchy

Recursive decomposition of a system into smaller pieces that
depend only on parent for proper execution

No single point of control
Highly scaleable
Leaf-to-leaf communication can be expensive

» shortcuts help

(8) Binding and indirection

Abstraction is good
» allows generality of description
» e.g. mail aliases
Binding: translation from an abstraction to an instance

If translation table is stored in a well known place, we can bind
automatically

» indirection
Examples

» mail alias file
» page table
» telephone numbers in a cellular system

(9) Virtualization

A combination of indirection and multiplexing

Refer to a virtual resource that gets matched to an instance at
run time

Build system as if real resource were available

» virtual memory
» virtual modem
» Santa Claus

(10) Randomization

e A powerful tool

» allows us to break a tie fairly
» immune to systematic failure in any component

e Examples
» resolving contention in a broadcast medium

» choosing multicast timeouts
» gOssip protocols

(11) Soft state

State: memory in the system that influences future behavior

» for instance, VCI translation table
State is created in many different ways

» signaling

» network management

» routing

How to delete it?
Soft state => delete on a timer
If you want to keep it, refresh

» but increases bandwidth requirement

(12) Representing state explicitly

Network elements often need to exchange state
Can do this implicitly or explicitly
Where possible, use explicit state exchange

» makes system easier to debug (reduces time) but can reduce
efficiency

(13) Hysteresis

Suppose system changes state depending on whether a
variable is above or below a threshold

Problem if variable fluctuates near threshold

» rapid fluctuations in system state
Use state-dependent threshold, or hysteresis

» reduces efficiency but improves stability

(14) Separating data and control

Divide actions that happen once per data transfer from actions
that happen once per packet

» Data path and control path
Can increase throughput by minimizing actions in data path
Example

» connection-oriented networks

On the other hand, keeping control information in data element
has its advantages

» per-packet QoS

(15) Allowing extensibility

Always a good idea to leave hooks that allow for future growth

Design for the future because it will be here sooner than you
think

Examples

» Version field in header
» Modem negotiation

Reduces performance

(16) Hashing and Bloom filters

Hashes allow for rapid testing of membership of a string in a set

» hash function H defined over an arbitrary string maps to array index
h

» H(String) =h
» if(hash_table[h] ==1) then member else not
» problem with collisions, i.e., H(S1) = H(S2) = h
Bloom filter defines multiple hash functions H1, H2,...Hk
S is a member iff H1(S) = H2(S) = ...= HK(S) =1
Reduces possibility of collisions even with small hash tables
False positives remain a problem

(17) Tries

RO
0 NULLSIRING
T— - \
o = 12
(o) l\':'.-‘)
225 3
/ ' (I283225°) (1255444
10 100
¢128.32.1.1200 (125.32.1, 1000

Two ways to improve performance

» cache recently used addresses in a CAM
» move common entries up to a higher level (match longer strings)

(18) Ternary CAMs

Allows strings with elements 0, 1, X
Each TCAM entry can be wildcard

» allows aggregation
Fast lookup of maps from contiguous name sub-spaces

» €e.g., for routing

(19) Name-space encapsulation

Clever trick to deal with legacy systems

Pre-pend existing namespaces with an encapsulating string
v ftp://
» postal://

(20) Tolerating server and device failure

All state stored in stable storage and updated when state
changes

To improve performance

» keep a copy in RAM
» reads are from RAM
» writes are to RAM as well as stable store

On reboot, in-memory state recreated from stable store

(21) Timing wheels

Timers support four operations:

» start timer

» stop timer

» timeout operations

» per time-tick operations

Using hashed and hashed hierarchical (or a
variant called), these operations can be O(1)

expected case

Essentially, associate events with an array of time values rather
than associating times with an array of events

More rules of thumb

Design for simplicity, adding complexity only when you must
Use ASCII instead of integers: clarity is better than cleverness
Fine tune inner loops

Choose good data structures

Beware of data and non-data touching touching overheads
Minimize number of packets sent

Send the largest packets possible

Use hardware if possible

Exploit (persistent) application properties

Module 5: Testing

Overview

Some techniques for protocol testing

» formal verification

» queueing analysis

» emulation

» Simulation

» use of the the 'live Internet'

(1) Formal verification

Each peer is represented by a

Message transmission and receipt lead to state transitions at
communicating peers

Goal is to discover if some set of message exchanges, including
losses, duplications, and re-orderings leads to (i.e., no
progress possible) or entry into a bad state

Problem is
Many clever techniques to mitigate this problem
Bottom line: useful but of limited use in practice

» too hard for the average practitioner

(2) Queueing analysis

Model arrivals to a server and departures from a server as a
stochastic process

If these processes are well-behaved (typically Poisson) we can
compute the distribution of queuing delays

Provides excellent insights into a system
But makes too many assumptions to be useful in practice

(3) Emulation

Exactly reproduces protocol behavior

» by implementing the protocol in a controlled testbed and testing its
behavior

Tests the actual protocol and workload
But difficult to set up and scale
Realistic workload emulation is nearly impossible!

(4) Simulation

Studies a software model of the protocol

» iIn some cases, the protocol is emulated, but the rest of the system
IS simulated

The most popular technique

» complete control over environment
» several standard simulator packages widely available

Pitfalls

» lack of validation

» cold start

» not running the simulation long enough for metric to achieve
stability

» statistical significance of results

(5) Testing in the live Internet

‘Just do it’ approach
Completely uncontrolled environment
Can lead to ‘success disasters’

Module 6: Pitfalls

Overview

Things to watch out for

» debuggability

» race conditions

» failing unsafely

» corner cases

» implementations that lie
» performance problems

(1) Debuggability

Bugs are inevitable

Often the only way to debug a distributed system is by printing
out events
Invest in building a good logging system

» standard event formats that can be post-processed

» debugging levels
» debugging node that collects events from all nodes

(2) Race conditions

Protect all critical sections

Multiple actions that stem from the same event should
coordinate with each other

» example: reader-writer should use a synchronized list

(3) Failing unsafely

Consider the consequences of each failure

|deally, failures should only reduce performance without
compromising correctness

Examples

» storing state in stable storage
» link failure in OSPF

(4) Corner cases

Always consider extremal values of input parameters (‘corner
cases’)

» as well as roll over of finite counters
A quick way to test for protocol correctness

Examples:

» does the system work for zero-length packets as well as maximum
size-packets?

» what happens when sequence numbers reach the largest possible
size?

(5) Implementations that lie

Sometimes, values received from a peer may not be correct

» buggy implementation
» undetected data corruption
» malicious nodes

Two maxims apply

» ‘trust but verify’

» ‘be liberal in what you accept and conservative in what you send’
Examples

» TCP RST (‘I am confused’)
» Byzantine agreement

(6) Performance problems

Performance relevant only after correctness
Collect good metrics
Use the techniques described earlier

In my experience, getting 10x improvements in any metric can
be achieved with moderate effort

Conclusions

Protocol design and implementation is a complex problem
Many inherent challenges and incompatible requirements

We have a number of tools at our disposal and many working
systems that scale to hundreds of millions of users

By studying these systems and some care, it is possible to build
robust systems that scale well

The great aim of education is not knowledge but action.

Herbert Spencer

