Giving Research Talks

S. Keshav
University of Waterloo
February 2009

Outline

- Rules on preparation
- Rules on delivery
- Examples to make it concrete

1. Preparation

Rule 1: Tell a story

- Context
 - → "Once upon a time, …"
- Problem
 - "The ogre ate all the apples, so the children went without..."
- Solution
 - "The anti-ogre fence..."
- Evaluation
 - "Ogre infestations declined 58% over 5 years..."
- Conclusions
 - "We recommend anti-ogre fences"

Rule 2: 1-2-3 rule

• One idea per slide

Microbenchmarks

Rule 2: 1-2-3 rule

- Two minutes per slide
- 30 minute talk: no more than 15 body slides
 - unless very sparse
 - like this talk!

Rule 2: 1-2-3 rule

- At most three topics
 - figure them out beforehand
 - depends on the nature of the audience
 - work backwards from them
- What are the topics for this talk?

Rule 3: Use outlines

- Outlines show connections
 - as important as the details
- Start with an outline
- Repeat the outline or section title for each section
 - 'roadmap'

Rule 4: Impact is inversely proportional to word count

- "Words on presentation slides are a very good idea, but only when the audience is deaf."
 - Prof. W. Cowan, University of Waterloo

Imprecise schedules

- Consider a precise schedule
 - time series of arrival times
- To create imprecise schedules, we jitter each arrival time by a Gaussian random variable
- 'Beta' parameter is the ratio of the standard deviation of the r.v. to its mean
 - Increasing beta increases imprecision

Imprecise schedules

Rule 5: Use friendly fonts and colours

- KIOSKNET ARCHITECTURE
- Downlink Scheduling
 - Problem Definition
 - Existing Approaches
 - Our Solution
 - Simulation
- Implementing the KioskNet System
- CONCLUSIONS AND FUTURE WORK

Rule 6: Never show tables when you can show graphs

Table 4. Cases of meningococcal disease in Dublin 1998 by area of residence

Area	Cases	
	n	%
1	2	5
2	1	3
3	2	5
4	2	5
5	8	22
6	7	19
7	10	27
8	2	5
9	2	5
10	1	3
Total	37	100

The area map

Rewl 7: Typoos relfect porely on ur comptence

Rule 8: Use compelling examples

• Use running examples if possible

Rule 9: Avoid colloquialisms

• It's like, duh

Rule 10: Describe related and past work

"If I have seen further it is only by standing on the shoulders of Giants."

Isaac Newton

Rule 11: Showcase your contributions

- Tell the audience exactly what your contribution is
 - don't make them guess
- My contributions
 - succinct summary of rules for giving talks
 - illustrated with examples
 - based on my experience and that of others

Rule 12: Highlight insights

- The story behind the work is what audiences come to talks for
 - that's what is missing in a paper!

2. Delivery

Rule 1: Talk to the audience, not the screen

Scan the audience, gauge understanding

Rule 2: Never read from notes

Its depressing

Rule 3: Walk audiences through formulae

$$\log N^*(t) = \log \left(\prod_{i=1}^n N^i \left(\frac{t}{\sigma} \right) \right) = \sum_{i=1}^n \log \left(N^i \left(\frac{t}{\sigma} \right) \right) \approx \sum_{i=1}^n \log \left(1 + \frac{(\sigma^i)^2}{2} \left(\frac{t}{\sigma} \right)^2 \right)$$
 (EQ 14)

It is easily shown by the Taylor series expansion that when h is small (so that h^2 and higher powers of h can be ignored) $\log(1+h)$ can be approximated by h. So, when n is large, and σ is large, we can further approximate

$$\sum_{i=1}^{n} \log \left(1 + \frac{(\sigma^{i})^{2}}{2} \left(\frac{t}{\sigma} \right)^{2} \right) \approx \sum_{i=1}^{n} \frac{(\sigma^{i})^{2}}{2} \left(\frac{t}{\sigma} \right)^{2} = \frac{1}{2} \left(\frac{t}{\sigma} \right)^{2} \sum_{i=1}^{n} (\sigma^{i})^{2} = \frac{1}{2} t^{2}$$
(EQ 15)

where, for the last simplification, we used Equation 10. Thus, $\log N^*(t)$ is approximately $1/2 t^2$, which means that

$$N^*(t) \approx e^{\frac{t^2}{2}}$$
 (EQ 16)

Rule 4: Speak slowly and clearly

Rule 5: Respect questioners

- Hear questions fully
- Defer them if needed

Rule 6: Practice your talk

- Practice
- ...

Rule 7: Arrive early

- Test your laptop
- Bring a memory stick
- Do the talk on a white/black board if necessary

Rule 8: Bring a pointer

Laser, stick, or pen

Rule 9: A little humour goes a long way

$$\begin{bmatrix} \cos 90^{\circ} & \sin 90^{\circ} \\ -\sin 90^{\circ} & \cos 90^{\circ} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \begin{bmatrix} \Omega & \Omega \\ \Omega_{2} \end{bmatrix}$$

Rule 10: End on time

Keep track of the time