

ISS4E

S. Keshav and Catherine Rosenberg University of Waterloo November 2012

ISS4E vision

To apply our expertise in Information Systems and Sciences to find innovative solutions to problems in energy systems

http://iss4e.ca

Team

Directors

Prof. S. Keshav (CS)
Prof. Catherine Rosenberg (ECE)

Affiliated Faculty

Prof. Tim Brecht (CS)
Prof. Lukasz Golab (Management
Sciences)
Prof. Alex Lopez-Ortiz (CS)
Prof. Bernard Wong (CS)

Postdocs

Yashar Ghiassi Kirill Kogan Negar Koochakzadeh Hanan Shpungin

Ph.D. Students

Adedamola Adepetu Omid Ardakanian Tommy Carpenter Rayman Preet Singh Matharu

Masters Students

Peter Xiang Gao Elnaz Rezaei Sahil Singla

Research Associates

Bo Hu Pirathayini Srikantha Hadi Zarkoob

Current and Recent Projects

Electric vehicles

- Car pools to reduce range anxiety (Carpenter)
- Optimal charging of vehicle fleets (Zarkoob)
- Distributed optimal charging (Ardakanian)
- App-based telemetry (Carpenter)

Smart homes and buildings

- Temperature setpoint market (Singla)
- Smart appliances (Srikantha)
- Home peak load prediction (Matharu/Gao)
- Analysis of home load seasonality (Rezaei/Adepetu)
- Automatic clustering of home loads (Matharu/Ardakanian)
- Optimal scheduling of home storage (Carpenter/Singla)

Smart homes and buildings (contd.)

- Personal thermal comfort (Gao)
- Regression models for building loads (Case)
- Per-panel solar load monitoring and anomaly detection (Hu)
- Private storage and analysis of home meter data (Matharu)
- Optimal battery sizing to deal with outages
 (Singla/Ghiassi)

Distribution network

- Optimal storage location (Shpungin)
- Optimal load scheduling in microgrids (Kogan)

Generation

Firming up solar power (Ghiassi)

SAMPLE PROJECTS

Demand Response through a Temperature Setpoint Market in Ontario

- Ontario has peak load for a few hours in summers
- Peak load reduction possible by increasing thermostat during peak hours
- Payment of \$2 per hour of setback can reduce operating costs by \$688 million over 20 years

Ref: S. Singla, S. Keshav: Demand Response through a Temperature Setpoint Market in Ontario, IEEE SmartGridComm, 2012

Firming up Intermittent Energy Sources

Personal Thermal Control System

Objectives:

- Measuring human thermal comfort automatically
- Saving electricity bill without affecting comfort

We use Kinect to detect activity and clothing

The system learns the user prefers warmer condition

- Senses environmental conditions
- Detects human activity and clothing
- Learns personal thermal preference

Personal Thermal Control System

The system can learn the insulation factor of a house, and hence make the optimal thermal control sequence accordingly

It gives energy saving tips to human:

wear your coat to save \$15 per month

- Learning based home modeling
- Human in the loop control

Real Time Distributed Congestion Control for Electrical Vehicle Charging

Smart Grid Architecture

Area summary

Consumer-centric Smart Grid

