

Smart Grid: Status and Challenges

S. Keshav School of Computer science University of Waterloo

CCSES Workshop April 28, 2014

Outline

- The grid has real problems
 - that smart grids can solve
- These problems are intrinsic and difficult
 - so progress has been slow
- Three areas where changes are imminent are solar, storage, and sensing
 - I'll give some examples of my work in these areas

The grid has some real problems

1. Overprovisioned

2. Inefficient

5% better efficiency of US grid

= zero emission from 53 million cars

3. Aging

4. Uneven

TWh generated Daily W/capita (2012 est.)

■ China 4,938 395

■ US 4,256 1402

5. Poorly measured

6. Poorly controlled

■ Electrons are not addressible

7. Huge carbon footprint

Smart grid vision

Current grid "Smart" grid

- High carbon footprint Renewables/low carbon
 - Little to no storage Storage rich
 - Poorly measured Sensing rich
 - Poorly controlled Control rich
 - Ossified Flexible
 - Inefficient Energy frugal
- Centralized generation Decentralized generation

Source: European technology platform: Smart Grids

Intrinsic challenges

1. Matching demand and supply

2. Controlling distributed generators

Number of residential net metered customers

3. Control over many time scales

4. Complex control architecture

Connected Grid Architecture
Reference Model

5. Consumers lack incentives

- Energy savings of 10%
 - \$10/month

6. Utilities also lack incentives!

7. Huge legacy infrastructure

8. Storage is complex and expensive

- No clear winner in terms of technology
- Need to balance energy and power

Depressing...

- A. Demand response only time of use pricing
- B. Storage tiny
- C. Smart buildings and homes demo stage
- D. Microgrids rare
- E. Electric vehicles early stage
- F. Security and privacy mostly missing

Three inflection points

- Solar
- Storage
- Sensing

Table showing average cost in cents/kWh over 20 years for solar power panels

	Insolation								
Cost	2400 kWh/ kWp·y	2200 kWh/ kWp·y	2000 kWh/ kWp·y	1800 kWh/ kWp·y	1600 kWh/ kWp·y	1400 kWh/kWp·y	1200 kWh/kWp·y	1000 kWh/kWp·y	800 kWh/kWp·y
200 \$/kWp	8.0	0.9	1.0	1.1	1.3	1.4	1.7	2.0	2.5
600 \$/kWp	2.5	2.7	3.0	3.3	3.8	4.3	5.0	6.0	7.5
1000 \$/kWp	4.2	4.5	5.0	5.6	6.3	7.1	8.3	10.0	12.5
1400 \$/kWp	5.8	6.4	7.0	7.8	8.8	10.0	11.7	14.0	17.5
1800 \$/kWp	7.5	8.2	9.0	10.0	11.3	12.9	15.0	18.0	22.5
2200 \$/kWp	9.2	10.0	11.0	12.2	13.8	15.7	18.3	22.0	27.5
2600 \$/kWp	10.8	11.8	13.0	14.4	16.3	18.6	21.7	26.0	32.5
3000 \$/kWp	12.5	13.6	15.0	16.7	18.8	21.4	25.0	30.0	37.5
3400 \$/kWp	14.2	15.5	17.0	18.9	21.3	24.3	28.3	34.0	42.5
3800 \$/kWp	15.8	17.3	19.0	21.1	23.8	27.1	31.7	38.0	47.5
4200 \$/kWp	17.5	19.1	21.0	23.3	26.3	30.0	35.0	42.0	52.5
4600 \$/kWp	19.2	20.9	23.0	25.6	28.8	32.9	38.3	46.0	57.5
5000 \$/kWp	20.8	22.7	25.0	27.8	31.3	35.7	41.7	50.0	62.5

Storage

■ Global investment to reach \$122 Billion by 2021

Storage alternatives

Graphs adapted from: A. Oudalov, C. Yuen and M. Holmberg, "Energy Storage is a Key Smart Grid Element" | Cigré Symposium The Electric Power System of the Future, Sept. 13-15, 2011, Bologna, Italy

Process storage

Thermal storage

Sensing

So what?

Grid Internet

Solar = Variable bit-rate source

Electrons = Bits

Storage = Buffer

Transmission line = Communication link

Transmission network = Tier 1 ISP

Distribution network = Tier 2/3 ISP

Demand response = Congestion control

Equivalence theorem

Every trajectory on the LHS has an equivalent on the RHS

can use teletraffic theory to study transformer sizing

Guidelines for transformer sizing

- 1 EV = 5 homes
 - Creates hotspots
- Real-time AIMD control of EV charging rate
- Solution is both fair and efficient

Stochastic network calculus

Envelope idea

lower envelope $\leq \Sigma$ input \leq upper envelope

lower envelope $\leq \Sigma$ output \leq upper envelope

Stochastic envelopes

Stochastic network calculus

Wang, Kai, et al. "A stochastic power network calculus for integrating renewable energy sources into the power grid." Selected Areas in Communications, IEEE Journal on 30.6 (2012): 1037-1048.

Analytic results

- Minimizing storage size to smooth solar/wind sources
- Optimal participation of a solar farm in day-ahead energy markets
- Modeling of imperfect storage devices
- Optimal operation of diesel generators to deal with power cuts in developing countries

Smart Personal Thermal Comfort

Fine-grained thermal control of individual offices

In a nutshell

- Mathematical comfort model
- When occupied, reduce comfort to the minimum acceptable level
- When vacant, turn heating off
- Pre-heat
- Optimal model-predictive control

Extreme sensing

Comparision of schemes

Energy research

Pros

- Rapidly growing area
- Many open problems
- Industry interest and support
- Motivated students
- Potential for impact

Cons

- Requires learning new concepts and ideas
- Entrenched interests
- Difficult to obtain data
- Field trials nearly impossible

Many open research problems

- Renewables integration
- Multi-level control
- Non-cash incentive design for consumers
- Energy efficiency policies for utilities
- Storage size minimization in energy systems
- Incentives for EV adoption
- Data mining of energy data sets
- Peak load reduction
- HCI for energy applications
- Data center energy minimization
- Microgrid/nanogrid design
- Building energy use monitoring and reduction

Many publication venues

Conferences/workshops

- ACM eEnergy
- IEEE SmartGridComm
- ACM Buildsys
- ACM GreenMetrics
- IEEE CCSES
- ACM Sustainability
- AAAI AAMAS

Journals

- IEEE Trans. Smart Grid
- IEEE PES magazine
- Energy and Buildings
- J. Solar Power
- J. Power Sources
- Transportation

ACM e-Energy 2014

- Premier conference at the intersection of Internet technologies and energy systems
- Sponsored by ACM SIGCOMM
- June 11-13, 2014 in Cambridge, UK
- Early registration deadline is Wednesday!

Conclusions

- The grid has some real problems
- Smart grid offers solutions, but it is still early days
- Three areas to watch out for
 - Solar
 - Storage
 - Sensing

Acknowledgements

ISS4E

Co-Director

Affiliated faculty

http://iss4e.ca

ISS4E students

