

Smart Grid Forum

S. Keshav November 12, 2014

Agenda

- Overview
- Deep(er) dives
 - Energy-optimal routing in RPL
 - Smart home data management
 - Telemetry for e-bikes
 - Personal thermal comfort

Today's Energy Infrastructure

Mostly dirty...

Overprovisioned by design

Inefficient

Wasteful...

5% better efficiency of US grid

= zero emission from 53 million cars

Aging

Poorly measured

Poorly controlled

Times are changing...

Three technology inflection points

- Solar and wind renewable generation
- Storage and EVs
- Pervasive sensing and control

Source: Bloomberg, New Energy Finance & pv.energytrend.com

http://www.epia.org/fileadmin/user_upload/Publications/EPIA_Global_Market_Outlook_for_Photovoltaics_2014-2018_-_Medium_Res.pdf

Storage

Global investment to reach \$122 Billion by 2021 – Pike Research

LiON Declining. \$600 down to <\$200

Electric vehicles

Spur research on lower-cost storage

Pervasive sensing

+ pervasive computation

allows pervasive control

Current energy systems Smart energy systems

- Fossil-fuel based Renewables-based
 - High carbon Low carbon
- Little to no storage Storage rich
 - Poorly measured Sensing rich
 - Poorly controlled Control rich
 - Inefficient Energy frugal

OK, we're done, right?

Maybe not...

1. Need storage...

... but it is expensive!

- Buying 1 KWh = 10c
- Storing 1 KWh = ~\$450!

2. Need control over many time scales

3. Consumers have no incentive to save

- Energy savings of 10%
 - \$10/month

4. Utilities have no incentive to be efficient!

6. Sensors are energy-limited

7. EV sales are tiny

EV fraction of vehicle fleet in 2014: 0.1%

ISS4E

Mission

To use information systems and science to

- increase the efficiency
- reduce the carbon footprint

of energy systems

3 Approaches

- 1. Exploiting equivalency of grid and Internet
- 2. Designing and building prototype energy systems
- 3. Mining big data

Grid Internet

Electrons = Bits

Load = Source

Transmission line = Communication link

Battery/energy store = Buffer

Demand response = Congestion control

Transmission network= Tier 1 ISP

Distribution network= Tier 2/3 ISP

Stochastic generator = Variable bit rate source

Analytic results

- Transformer sizing
- Optimal control for EV charging
- Minimizing storage size to smooth solar/wind sources
- Optimal participation of a solar or wind farm in dayahead energy markets
- Modeling of imperfect storage devices and solar power
- Optimal operation of diesel generators to deal with power cuts in developing countries

Mining big data

- Analysis of
 - hourly electricity data from ~26,000 meters (>100 GB)
 - hourly water data from ~27,000 meters (> 100GB)
 - PV and load data every second for 3 months
 - 7 years of carshare rental data
 - 10s of thousands of opinions on EV forums
 - 25+ GB of transportation data
 - **...**

Conclusions

- Technology is changing the energy infrastructure
- Computer Science has a role to play
- Opportunity for interesting, impactful research

- 1. Y. Ghiassi-Farrokhfal, S. Keshav, C. Rosenberg, and F. Ciucu. Solar Power Shaping: An Analytical Approach, accepted *in IEEE Transactions on Sustainable Energy*, 2014.
- 2. S. Singla, Y. Ghiassi-Farrokhfal, and S. Keshav. Using Storage to Minimize Carbon Footprint of Diesel Generators for Unreliable Grids, accepted in *IEEE Transactions on Sustainable Energy*, 2014.
- 3. O. Ardakanian, C. Rosenberg and, S. Keshav. Quantifying the Benefits of Extending Electric Vehicle Charging Deadlines withGeneration, *IEEE Smart Grid Communications*, November 2014.
- **4.** D. Fooladivanda, C. Rosenberg, and S. Garg. An Analysis of Energy Storage and Regulation, *IEEE Smart Grid Communications*, November 2014.
- 5. M. Maasoumy, C. Rosenberg, A. Sangiovanni-Vincentelli, and D. Callaway. Model Predictive Control Approach to Online Computation of Demand-Side Flexibility of Commercial Buildings HVAC Systems for Supply Following, *American Control Conference*, Portland, June 2014. **Runner up for Student Best Paper Award**
- **6.** O. Ardakanian, S. Keshav, C. Rosenberg. Real-Time Distributed Control for Smart Electric Vehicle Chargers: From a Static to a Dynamic Study, *IEEE Transactions on Smart Grid*, vol.5, no.5, pp. 2295-2305, Sept. 2014.
- 7. Y. Ghiassi-Farrokhfal, S. Keshav, and C. Rosenberg. Towards a Realistic Storage Modelling and Performance Analysis in Smart Grids, accepted in *IEEE Transactions on Smart Grid*, 2014.
- **8**. T. Carpenter, L. Golab, S. J. Syed. Is The Grass Greener? Mining Electric Vehicle Opinions. *Proc. ACM e-Energy*, June 2014.
- 9. Y. Ghiassi-Farrokhfal, S. Keshav and C. Rosenberg. An EROI-Based Analysis of Renewable Energy Farms with Storage, *Proc. ACM e-Energy*, June 2014.
- **10**. T. Carpenter, S. Keshav, and J.W. Wong. Sizing Finite Population Vehicle Pools, *IEEE Transactions on Intelligent Transportation Systems*, Volume 15, issue 3, pp. 1134-1144, June 2014.

Acknowledgements

ISS4E Faculty

Co-Director

Affiliated faculty

ISS4E students

Funding agencies

Chaires de recherche du Canada

Corporate sponsors

Agenda

- Overview
- Deep(er) dives
 - Energy-optimal routing in RPL
 - Smart home data management
 - Telemetry for e-bikes
 - Personal thermal comfort

Backup slides

Renewable energy

FOSSIL FUELS ARE EXPRESSED WITH REGARD TO THEIR TOTAL RESERVES WHILE RENEWABLE ENERGIES TO THEIR YEARLY POTENTIAL.

source: DLR, IEA WEO, EPIA's own calculations.

Table showing average cost in cents/kWh over 20 years for solar power panels

	Insolation								
Cost	2400 kWh/ kWp·y	2200 kWh/ kWp·y	2000 kWh/ kWp·y	1800 kWh/ kWp·y	1600 kWh/ kWp·y	1400 kWh/kWp·y	1200 kWh/kWp·y	1000 kWh/kWp·y	800 kWh/kWp·y
200 \$/kWp	0.8	0.9	1.0	1.1	1.3	1.4	1.7	2.0	2.5
600 \$/kWp	2.5	2.7	3.0	3.3	3.8	4.3	5.0	6.0	7.5
1000 \$/kWp	4.2	4.5	5.0	5.6	6.3	7.1	8.3	10.0	12.5
1400 \$/kWp	5.8	6.4	7.0	7.8	8.8	10.0	11.7	14.0	17.5
1800 \$/kWp	7.5	8.2	9.0	10.0	11.3	12.9	15.0	18.0	22.5
2200 \$/kWp	9.2	10.0	11.0	12.2	13.8	15.7	18.3	22.0	27.5
2600 \$/kWp	10.8	11.8	13.0	14.4	16.3	18.6	21.7	26.0	32.5
3000 \$/kWp	12.5	13.6	15.0	16.7	18.8	21.4	25.0	30.0	37.5
3400 \$/kWp	14.2	15.5	17.0	18.9	21.3	24.3	28.3	34.0	42.5
3800 \$/kWp	15.8	17.3	19.0	21.1	23.8	27.1	31.7	38.0	47.5
4200 \$/kWp	17.5	19.1	21.0	23.3	26.3	30.0	35.0	42.0	52.5
4600 \$/kWp	19.2	20.9	23.0	25.6	28.8	32.9	38.3	46.0	57.5
5000 \$/kWp	20.8	22.7	25.0	27.8	31.3	35.7	41.7	50.0	62.5

Storage

"Bytes" **Energy density** Power density "Bits/s" Electrochemical Electro-Mechanical Thermomagnetic dynamic Gravitation Heat Batteries Flow cells Hydrogen Electric Pumped Lead acid Vanadium Electro-Capacitors Molten salt NiCd ZnBr hydro lyser & Supercaps Thermo-NaS **PSBr** Fuel Cell electric NaNiCI Kinetic Magnetic Lithium Flywheel Super-Ni-MH Pressure Metal air conducting Heat (SMES) Compr. air (CAES) (A-CAES)

Graphs adapted from: A. Oudalov, C. Yuen and M. Holmberg, "Energy Storage is a Key Smart Grid Element" | Cigré Symposium The Electric Power System of the Future, Sept. 13-15, 2011, Bologna, Italy