ENERGY EFFICIENT RPL ROUTING PROTOCOL IN SMART BUILDINGS

Master's Seminar Elnaz Rezaei

OUTLINE

- Introduction
- Problem statement
- Es metric
- Transmission power control
- Evaluation
- Summary

SMART OBJECT NETWORKS

- Billions of smart objects over the next ten years (Cisco and Ericsson)
- Low-power and Lossy Networks (LLNs)
 » Restricted processing power, memory and energy
 - » Interconnected by lossy, low data rate and instable links

SMART OBJECT NETWORKS

SMART OBJECT NETWORKS

- Different application requirements
 - » Smart homes: mainly main-powered, less interference and mobility
 - » Smart industry: mainly battery-powered, large number of nodes, more interference
- => different routing requirements

- Routing Protocol for Low power and lossy networks (RPL)
 - » IPv6 Routing Protocol for LLNs
 - » Distance vector protocol
 - » Logical DAG routing topology

RPL

RPL supports different traffic types.

- RPL defines how to build a DAG
- Characteristics of the DAG are specified by an objective function.

ROUTING METRIC

- More routing metrics strategies are required for LLNs
 - » Objective function (OF)
 - » Routing metric/constraint
 - » Rank
- Example
 - » OF: Find the path where minimum link quality is maximized
 - » Routing metric: link quality
 - » Rank: nodes are ranked based on their link quality towards the root.

OBJECTIVE FUNCTION

- Existing OFs
 - » Hop-count
 - » ETX (Expected number of transmission)

- Primary constraint is energy
 » Radio transceiver is the main energy consumer
- OF: find the best path that required transmission energy is minimized
 - » Routing metric: estimate the required energy to successfully send a packet on a link

ES METRIC

- Energy consumption for a successful transmission
 - » P: transmission power
 - » λ : link transmission rate
 - » L: packet size

$$E_{s} = ETX * P * \frac{L}{\lambda}$$
$$E_{s} = ETX * P$$

ES METRIC

Metric

 $E_s(4,2) = ETX(4,2) * P(4)$

Path cost

$$E_s(4,1) = E_s(4,2) + E_s(2,1)$$

Transmission power affects

- » Link quality
- » Interference
- » Connectivity
- » Parent selection

- Choose transmission power such that transmission energy consumption is minimized
 - » Initialization phase
 - » Environment change phase

Find potential preferred parent set (P_t)

Probe P_t set with different Tx

Find node and transmission power that has minimum path cost

Set transmission power and preferred parent

Potential preferred parent set
 » Up to three parents

 $RSS\hat{I}(p) > -90$ age(p) < 10

Send N probes to node p

Receive number of transmissions by MAC layer

Compute PDR by EWMA

Return ETX=1/PDR

EVALUATION

- Design choices
 - » Cooja simulator and Contiki OS
 - » Zolertia Z1
 - » MRM propagation model

Traffic: one hello message per minute for anhour

NETWORK ENERGY CONSUMPTION

 Standard RPL energy consumption was 3.41mJ

• 26% improvement

• The total energy consumption of standard RPL is 9.87mJ.

=> 36% improvement

• 12% energy consumption improvement.

IMPLEMENTATION

CONCLUSION

- Designing an energy-aware objective function for smart buildings
- Designing energy-aware transmission power control in RPL

FUTURE WORK

- Including the energy balanced property in Es metric (energy efficiency)
- Modeling ETX probing

