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ABSTRACT

Network congestion can be triggered by transient phenomena that are hard to study using classical

stochastic approaches. We show that a deterministic analysis of virtual circuits (VC) allows us to precisely

quantify these transients. We analyze some existing window and rate based flow control schemes, and pro-

pose a new protocol, 2P, that exploits the deterministic nature of a VC to provide optimal performance.

Our analysis focuses on two issues: utilization of available bandwidth and congestion avoidance. We

study the transient behavior of the system when a sudden change occurs, such as loss of a packet or a

reduction in the available bandwidth, and give precise expressions for the performance of these schemes.

We show that 2P performs better than existing schemes since it adapts to changes in the state of the VC by

keeping track of the effective transmission rate as well as the round-trip delay. This is done using a novel

rate probing technique based on short bursts.
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1. Introduction

Recently there has been much interest in congestion avoidance and control in the Internet [Jaco88,

KaPa87, Zhan86], as well as in other proprietary networks [Jain86]. A solution to this problem involves

issues such as flow-control, packet retransmission, fair resource allocation and routing. Protocol

specifications typically do not specify such issues and they are left open to the implementor. The focus of

this paper is on flow and congestion control policies at the transport layer of the protocol hierarchy.

Many congestion control schemes have implicit models based on control theory [Jain88], hydro-

dynamics [Jaco88], queueing theory models [GeKl80] etc. Typically, the solutions obtained are for the

steady-state case, and that too after making strong assumptions such as Poisson arrivals and the indepen-

dence of sources. However, these models appear to be intractable when applied directly to congestion con-

trol. Congestion depends on the transient behavior of the network, and stochastic models do not deal ade-

quately with transients. Therefore, schemes proposed in the literature are finally evaluated using simula-

tion [Jain88, Jain89, DeKe89, Zhan89] or implementation [Jaco88]. The lack of a better theoretical

approach to this problem is discussed in [BoPl88], which describes a model that does not give closed form

solutions, but can be numerically evaluated.

Recent work has shown that networks of round-robin or fair queueing servers isolate VCs from one

another, so that the service provided to one VC is partially decoupled from the service provided to any

other VC [Hahn86, DeKe89, Morg89]. This suggests a deterministic modeling of the VC. Waclawsky and

Agrawala have developed and analyzed such a deterministic model for studying the behavior of window

protocols on a virtual circuit [WaAg89]. Other authors have also implicitly or explicitly used some deter-

ministic analysis when discussing the performance of transport protocols [Nagl84, Clar82] (for example,

[Jain89] explicitly models the virtual circuit as a series of D/D/1 queues). Thus, a deterministic approach

seems well-suited to studying these issues and we use it here to study the behavior of protocols when sud-

den changes occur in the virtual circuit.

We precisely analyze several transmission policies proposed in the literature. Since we are concerned

with congestion, we naturally restrict our attention to situations of high throughput; i.e. the sender wants to

send data as fast as it possibly can. Our analysis indicates several deficiencies of present flow control poli-

cies. As an alternative, we propose 2P, a transmission control scheme that adapts its behavior by measuring
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both the round-trip delay and the inter-arrival time of packets. We show that this scheme performs better

than others we have analyzed. Although we still need to verify just how well this scheme performs under

appropriate stochastic assumptions and further generalizations, we believe that the directions indicated by

these analyses are significant. It also appears that our model can capture much of the reasoning implicit in

the schemes in the literature.

The rest of this paper is divided into five sections. In the first, we set up the model and derive some

basic results which help us simplify further analysis. In the second, we consider packet loss and retransmis-

sion. Next, we describe flow and congestion control schemes for some well known transport protocols, and

present our own scheme, 2P. In the fourth section we use our model to analyze and compare the behavior

and performance of the chosen schemes. The final section summarizes our results and shows directions for

future work.

2. The basic model

We model a virtual circuit (VC) as a series of servers (routers or switches) connected by links. A

packet is a point object that starts out from the source and traverses the links and servers until it reaches the

destination. The time taken to traverse a link is zero, while the time taken to get service (at each server) is

finite but deterministic. If the i th server is idle when a packet arrives, the time taken for service is si . If

there are other packets from that VC at the server, the packet waits for its turn to get service (we assume a

FCFS queueing discipline per VC). We assume a work-conserving discipline, which implies that a server

will never be idle whenever it has a packet ready to be served.

To complete the picture, we assume another set of links and servers that constitute a return path from

the destination back to the server. This is the path taken by acknowledgment packets (acks). We assume

that every packet is acknowledged, so the destination is just another server, and the returning ack is

modeled as the same packet looping back to the source. In the sequel, we will use this model of a VC and

ignore acks unless specifically required.

This model is similar to the one described in [WaAg89], but it is more general and mathematically

simpler.
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Remark 1

Differences in the size of the packet and the ack can be ignored, since these are accounted for in the

service times of the servers, which includes transmission time and processing time. The important

point is that service time at any server is the same for all packets in the VC.

Remark 2

In this paper, we ignore protocols where not every packet is acknowledged (such as SNA ). We will

consider extensions of our models and results to cover this case in a subsequent paper.

We now describe the formal model, and then restate or derive some elementary results. For a more detailed

analysis, the reader is referred to [WaAg89].

Notation

We use subscripts for the server number and superscripts for the packet number. Servers and packets

are numbered from 1 onwards, while the sender is server 0.

ai
j = arrival time of the j th packet at the i th server

si = service time of a packet at the i th server

qi
j = waiting time of the j th packet at the i th server before getting service

di
j = departure time of the j th packet from the i th server

In our model, we assume zero delay on the links so di−i
j = ai

j. We will work mostly with the departure times.

The basic relation governing the system is:

qi
j = 0 if ai

j ≥ di
j−1 and,

= di
j−1 − ai

j otherwise,

which is better expressed as

qi
j = max(0, di

j−1 − ai
j)

= max(0, di
j−1 − di−1

j ) (2.1)

This combines with the relation below to describe the system completely.

di
j = di−1

j + qi
j + si (2.2)
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We now derive some simple relationships about inter-packet arrival and departure times that are fundamen-

tal to the analysis. While stating results and proofs, we will neglect to make proper use of rounding and

truncation to integers, unless we that adds some insight.

Proposition 1

Suppose packets j−1 and j arrive at a server i with inter-arrival time s , and the ( j−1)th packet finds

the server free. Then, the inter-departure times of these packets is max(s , si ).

Proof:

Refer to Figure 1. From (2.2) di
j = ai

j + qi
j + si , which with (2.1) becomes

= ai
j + max(0, (di

j−1 − ai
j)) + si so that

di
j − di

j−1 = ai
j − di

j−1 + max (0, di
j−1 − ai

j) + si (2.3)

Now, since di
j−1 = ai

j−1 + si , di
j−1 > ai

j implies that ai
j−1 + si > ai

j−1 + s or si > s and we get si on the

rhs of (2.3). On the other hand, di
j−1 < ai

j−1 implies s > si and we get s on the rhs of (2.3).

ai
j−1 ai

j di
j−1 di

j

t

qi
j

Figure 1
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This result can be directly extended by repeated application to give the next two propositions that we state

without proof. Detailed proofs of these and similar results can be found in [WaAg89].

Notation

Suppose packets are sent from the source at intervals of s 0 time units. Let

sb = max(si | 0 ≤ i ≤ n ) (2.4)

be the ‘bottleneck’ service time in the circuit.

Proposition 2

If a source sends packets spaced s 0 time units apart, the acks will return to the source at intervals of

sb time units.

Proposition 3

Under the same conditions, every packet will find server k idle, for all k > b ( i.e. there will never be

a queue at any of the servers downstream of the bottleneck ).

Remark 3

Notice that the conditions (2.4) above imply that packets are being put into the VC at a rate faster

than the bottleneck can service them. Thus queues at the bottleneck and, possibly at the servers

upstream of the bottleneck, will grow indefinitely. Therefore this result does not make any steady-

state assumptions about the system. This is also true of our next result, which assumes the same con-

ditions as in Propositions 2 and 3.

Proposition 4

If at time d 0
j (departure of the j th packet from the source), there are w packets in the path, and

packet j−w−1 has returned to the source, then the round-trip time for this packet, rj , is bounded by

w.sb < rj ≤ (w+1).sb (2.5)

Proof:

By Proposition 2, packets return to the source at intervals of sb. Thus,

dn
j−w −1 + (w+1).sb = dj

n (2.6)

and subtracting d 0
j from both sides of (2.6) we get the upper and the lower bound depending on

whether dn
j−w −1 − d 0

j is less than or equal to zero.
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Remark 4

Notice that no packet can take less time than

R =
i
Σsi

to return to the source. Thus, if the packet ( j−w−1) has returned to the source, at least that much

time has passed since the packet was sent. This implies that w ≥ R /s 0 ≥ R /sb . Thus, for all values of

w , we can write

rj ≥ max (R , w.sb ) (2.7)

Remark 5

When these results are applied to a sliding window protocol with window size w , we get the two

curves described in [Jain88] for a sequence of D/D/1 queues (Figure 2). The window size

corresponds to the offered load. It is easy to include a ‘cliff’ in these figures, by postulating a max-

imum buffer-size for the queue at the bottleneck, b 0. Then, a window size larger than R /sb+b 0 will

lead to loss of a packet in every window that is transmitted and therefore loss of throughput.

Load Load

Throughput Delay

R
sb

1���

Figure 2
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3. Effect of packet loss

We now consider the transient behavior of some protocols when a packet is lost. We wish to measure

the time that the bottleneck server remains idle, since this measures the loss of bandwidth.

To concentrate attention on the bottleneck, we make a simplifying assumption. This is a ‘worst-case’

assumption in the sense that under this assumption a queue will form only at the bottleneck, and therefore

this queue will be the largest possible.

Assumption

The fastest possible transmission from the source sends packets at intervals of s 0 where,

s 0 > s 1, s 2, . . . sb −1.

We have already seen in Proposition 3 that no queue forms downstream of the bottleneck. This assumption

guarantees that no queue forms upstream of the bottleneck, and we can replace these segments of the VC

by delay-boxes (Figure 3). In queueing terminology, these boxes are a large number of parallel servers with

service time equal to the delay. The first box has a delay,

D 1 =
i =0
Σ
b−1

si and the second D 2 =
i =b+1
Σ
n

si .

We now consider a sliding window protocol with w ≥ R /sb . Proposition 5 describes the steady state.

Proposition 5

For any w ≥ R /sb , w − R /sb packets require buffering at the bottleneck in the steady state.

Proof:

The source transmits w packets at start-up, and then waits for the first ack to return. Subsequently, it

transmits one packet for every ack that returns, and since these return at regular intervals of sb time

units (Proposition 2), packets are transmitted only at those time intervals. The system soon reaches a

steady-state queue length at the bottleneck. But there are always w packets in the system. Of these,

some are in the delay-boxes at equal intervals of sb , and the rest are in the queue at the bottleneck or

in service there. A simple computation shows that the delay boxes and the bottleneck server can only

contain R /sb packets, so the rest must be queued at the bottleneck. A detailed analysis can be found

in [WaAg89].
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s 0 sb

D 1

D 2

Delay Box

Source Bottleneck

Figure 3

Notation:

Because of the crucial nature of the ratio R /sb , we will henceforth denote it by V . This is the pipe-

line depth when the service rate is 1/sb .

Remark 6

In this steady state, the bottleneck will be continuously busy. Thus, any loss of throughput because

of packet retransmission can be measured as the idle time at the bottleneck. Second, note that the

bottleneck queueing delay leads to an increase in the round-trip delay and hence a possible slack in

the setting of the VC retransmission timer. Finally, when the window size is at the knee the

bottleneck is continuously busy but the queue is zero. The ‘slow-start’ window-adjustment strategy

[Jaco88] can lead to a final window size that is much larger than this value, being limited only by the

largest possible size of the bottleneck queue.

We now consider three retransmission schemes, and analyze the loss of bandwidth on packet loss in

each case. These are sliding window flow control with go-back-n and selective retransmission, and a rate

based flow control scheme with selective repeat. We assume that the time-out is set for

T 0 ≥ rt = w.sb ≥ R (3.1)
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and further that the j th packet is dropped sometime after being serviced at the bottleneck. The more realis-

tic case, when the packet arrives at the bottleneck and is then discarded, can be similarly analyzed.

Case I: Sliding window with go-back-n Scheme

Proposition 6

The idle time at the bottleneck, L , is given by,

L = rt + max(0, T 0 + R − 2rt )

Proof:

Note that when the ( j−w )th packet returned to the source, the j th packet was transmitted. i.e.

d 0
j = dn

j−w (3.2)

Thus, at time d 0
j + (w−1)sb , the packet j−1 returns to the source and packet number ( j+w−1) is

transmitted. After this, since the j th packet does not return to the source, no further transmissions

will take place. This last packet, ( j+w−1), returns to the source at time

d 0
j + (w−1)sb + w.sb

and it finishes service at

d 0
j + (w−1)sb + w.sb − D 2 (3.3)

(We work backwards to avoid the queuing delay at the bottleneck). On the other hand, retransmis-

sion will start at d 0
j + T 0. The first retransmitted packet will reach the bottleneck at

d 0
j + T 0 + D 1 (3.4)

and after that the bottleneck will be continuously busy again. Thus, the time lost on the bottleneck

will consist of any idle time after the instant given in (3.3) plus the time wasted in servicing the pack-

ets j , j+1, . . . j+(w−1), since all of them have to be re-transmitted. The second term is easily seen

to be exactly w.sb=rt . To find out the idle time, if any, we only need to check whether the time given

in (3.3) less than that in (3.4). i.e.

idle time = max(0, [d 0
j +T 0+D 1] − [d 0

j +(w−1)sb + w.sb − D 2])

= max(0, T 0+R−2rt ) and, total loss of bandwidth becomes

L = rt + max(0, T 0 + R − 2rt ) (3.5)
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Case II: Sliding window with selective retransmission

Here, the packets transmitted after the j th one are not wasted. Thus the loss of bandwidth consists

almost entirely of actual idle time of the bottleneck. As in the earlier case, (3.3) and (3.4) are valid. But

here, the maximum in (3.5) is added to the minimum idle time of the bottleneck, which occurs while the

retransmitted packet is being serviced and then returned to the source, = sb+D 2. Further, even though the

transmission of the next window starts at that point in time, it takes the first packet an additional time of D 1

to reach the bottleneck. Thus, we have

Proposition 7

L = R + max(0, T 0 + R − 2rt ) (3.6).

Remark 7

In both the above schemes, we can avoid any extra loss of bandwidth because of the second term, as

long as we set

T 0 ≤ 2rt − R = rt + (rt −R ) (3.7),

but the selective retransmission scheme always performs slightly better than Go-Back-N (as one

would expect). Indeed, with a large window (compared to the ‘knee’, R /sb = V ) we have rt >>R and

it should be the preferred method. However, it is important to note that a large timeout value for rul-

ing out spurious timeouts has a penalty.

Case III: Rate-based flow control with selective retransmission

The two earlier cases considered a traditional sliding window flow control scheme. Recently there

has been interest in rate based flow control schemes. We present one such scheme that is based on

NETBLT [ClLa87]. We call it Netblt to acknowledge our inspiration, while denoting that our analysis is

for a slightly different subset of NETBLT. In this scheme, a source transmits packets at regular intervals

s 0, where the time s 0 is estimated by measuring the time between arriving acks and therefore estimates sb

[WaAg89]. We shall assume that s 0 = sb .

Estimation of sb is done only for consecutively numbered packets. Thus a missing packet will not

disturb the scheme. We set a retransmission timer to any value T 0 ≥ rt=R . As soon as the timer goes off,
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we retransmit the timed out packet at the next available time slot. In practice, we may not need to wait for

the next time slot, since the effect on performance is likely to be small. In this scheme, the sequence

number of an ack acknowledges a single packet (and not all lower-numbered packets as well).

We believe that this rate-based scheme captures the essence of many similar schemes. We will add

details regarding rate estimation to Netblt in a later section.

Proposition 8

In this scheme, the idle time when a packet is lost is sb , which is the time wasted in retransmission.

Remark 8

One objection that may be raised is that selective retransmission requires the receiver to buffer the

packets that come after the lost packet. The packets to be buffered are precisely those that lie

between the two transmissions of the lost packet. The number of such packets is easily seen to be

T 0/sb . Since T 0≥rt , this number can be as low as that required by the sliding window scheme operat-

ing at the knee. On the other hand, there is no loss of bandwidth incurred by setting the timer to a

much larger value.

To make this scheme robust against possible buffer overflow at the receiver, a window should indeed

be negotiated. However, the window need not be adjusted during the operation of the protocol from

congestion control and avoidance considerations. This clearly separates the function of flow control

between sender and receiver, and flow control between sender and bottleneck. (However, the window

should be larger than V , so that it does not interfere with the rate-based scheme.)

Remark 9

On a packet loss, both the window protocols disturb the steady-state flow rate by the rapid transmis-

sion of an entire window of packets. This requires increased buffer capacity at the bottleneck.

Specifically, the bottleneck queue increases to a maximum size Q before settling down to the

steady-state value. This is similar to what happens at start-up, and a detailed analysis can be found in

[WaAg89]. The scheme proposed by Jacobson and Karels [Jaco88] (JK) and CUTE [Jain86] avoid

this by doing a slow-start after every packet loss, However, these schemes cause considerable loss of

bandwidth, as we will show later, and they are only justified on the assumption that the packet was
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lost because of congestion, which in turn, will take some time to clear. Proposition 9 computes the

maximum size of the queue.

Proposition 9

Let V≤w≤R /s 0 and assume that the VC is empty when w packets are transmitted by the sender as

fast as possible (i.e at intervals of s 0). Then, the queue at the bottleneck will grow to a maximum size

Q = w − sb

(w−1)s 0�������� (3.6)

Proof:

Call the instant at which the first packet arrives at the server time zero. Subsequently, packets arrive

at the server every s 0 time units, while one packet leaves every sb time units. Since, by definition,

sb ≥s 0 , the queue reaches its maximum size when the w th packet arrives at the server. This occurs at

time (w−1).s 0. During this time, the number of packets that have left the server is

(w−1)s 0/sb , and hence the proposition.

4. Adaptive schemes for congestion avoidance and control

Earlier authors have described some mechanisms that lead to congestion in a virtual circuit and, on

this basis, have suggested modifications to transport layer protocols. In these schemes, a source tries to

detect the state of the VC and uses this information to adapt its sending rate or flow control window. The

schemes differ in the choice of the state probing mechanism, and how they react to changes in the state.

For example, Jain has proposed that the round-trip delay, rt , be measured regularly and used to probe the

state of the virtual circuit [Jain89]. The JK scheme [Jaco88] uses packet loss as an indication of congestion.

NETBLT, a rate-based scheme, measures packet inter-arrival times to adapt to state changes [ClLa87].

We will describe and analyze four such adaptive schemes. These are

(1) The delay-based scheme mentioned above [Jain89]

(2) The dynamic window adjustment scheme proposed by Jacobson and Karels [Jaco88]

(3) The variant of NETBLT, Netblt, described earlier, with some additions [ClLa87].

(4) A new rate-based flow control scheme, 2P
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Schemes 1 and 2 are both window based, and we will refer to them as W-schemes. We do not consider

adaptive schemes that depend on explicit control signals sent to the source by the network, such as the

DECBIT scheme [Jain88].

Remark 10

We distinguish between congestion avoidance and congestion control [Jain88]. Schemes that inter-

pret the loss of a packet to signal congestion and then react to this event, are really congestion con-

trol schemes. To avoid congestion, a scheme must have a more detailed model of the VC. For exam-

ple, in our VC model, we can avoid congestion by operating at the knee (w = V ) rather than near the

cliff (w − V=b 0). The JK scheme and CUTE [Jain86] operate near the cliff and do not even recog-

nize the existence of the knee. The delay scheme, Netblt and 2P attempt to stay at the knee and thus

avoid congestion.

Remark 11

We do not propose to discuss how a transmission control policy can achieve fair-allocation of the

available bandwidth amongst different virtual circuits. Further, it simplifies analysis and indeed the

operation of transmission control schemes, if we assume for the moment some form of fair-queueing

at the servers [Hahn86, Nagl84, WoMa89, DeKe89]. Specifically, we will assume that the server is

able to recognize the packets of each VC and place them in a separate queue. Service is given to each

queue in a round- robin fashion i.e. one packet is serviced from each queue in turn. A queue is

skipped only if it is empty. Thus, if one other VC is sharing the bottleneck with ours, when the ser-

vice time for our packets is sb , we would expect the service time to drop to sb /2 when that VC

stopped transmitting. The assumption here is that both VCs desired to use as much of the bandwidth

as possible and that they were therefore each given half of what was available. This way, the results

on packet loss are more meaningful, since the packet losses from different VCs are decoupled.

4.1. Delay based scheme

Here, the round-trip delay, rt , is measured once every round-trip-time [Jain89]. An increase in rt is

interpreted as a signal of impending congestion (W ≥ V ) and triggers a multiplicative decrease in the win-

dow size, while no increase in rt additively increases the window size. Packet loss is taken as a definite
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sign of congestion and the window is set to 1. The decision variable is actually the dimensionless quantity

NDG= (r+rold )(W −Wold )
(r−rold )(W +Wold )��������������� (4.1)

where r , rold , W , Wold are the round trip delays and window sizes respectively. The decision rule is:

if NDG > 0 then decrease(W ) else increase(W ). The window changes once in each cycle of length rt . The

increase and decrease policies are:

W ← Wold + δW ; W ← cWold , c <1 (4.2)

Since we are in a deterministic framework, we assume that rt can be measured accurately by timing a sin-

gle packet, and further, that this is done once every cycle. Note that such a control policy operating in our

model of the VC achieves a steady-state cyclic behavior that agrees with the simulation studies in [Jain88].

The window increases linearly until it is just above the knee. At this point there is a multiplicative decrease

in the window size and the cycle repeats.

If c is small, or W is large at the knee, then the scheme would constantly lose available bandwidth

except during the one cycle that it operates at the knee. Clearly, the effective rate of transmission is the

mean of the two extremes, so we state the following proposition without proof.

Proposition 10

The delay scheme underutilises the available bandwidth. Asymptotically, over a long conversation,

only a fraction (1+c )/2 of the bandwidth is used.

4.2. JK

Jacobson and Karels [Jaco88] propose that the flow control window size be dynamically adjusted

according to the network state. Initially, a source sets its window size to 1. As it receives acks, this is

slowly increased (‘slow-start’) to the maximum allowed window size, until a timeout occurs, indicating a

packet loss from congestion. At this point, the window is shut down to one, and the process repeats. The

window increases exponentially upto a threshold, and then linearly. In the JK scheme, regular measure-

ments of rt are made, but only with the objective of properly setting the timer.
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4.3. NETBLT

In the NETBLT scheme [ClLa87] the receiver controls the source’s sending rate based on its estima-

tion of the VC state. The receiver regularly compares the inter-arrival time of the packets to the source

sending rate it had specified. An arrival rate below 95% of the transmission rate indicates ‘congestion’ (as

it is called in RFC-998) and the rate is reduced to the previous rate. The rate is increased if the achieved

transmission rate is over 95% of the specified rate. This can be considered to be a rate probe that tests

whether more bandwidth is available.

In terms of our model, the knee is detected when an increase in the transmission rate does not lead to

an increase in throughput. Packet loss would occur later, when the queue grows beyond b 0.

For our analysis, we adapt these features of NETBLT into Netblt. First, with no loss of generality,

we shift the rate control to the source. Second, we add the rate probing scheme to Netblt. The amount of

increase is a small constant, which we express as the number of extra packets that will be transmitted in

one round-trip time, δW . Netblt reduces the sending rate if there is a significant increase in the inter-arrival

times compared to the specified inter-transmission times. In terms of our model, we increase the transmis-

sion time-interval whenever a returning packet gives us a larger estimate of sb . In our analysis of Netblt,

we assume a steady state at the knee, since the protocol is designed to stay (around) there. Note that no

measurement of round-trip time is made with the objective of flow control. This has several interesting

consequences.

Netblt ignores some important aspects of NETBLT. Since we are not concerned with fair allocation

of bandwidth, we will not analyze the algorithm that attempts to achieve such an allocation, although it

does determine the rate-increases for probing the VC. We have also neglected the burst-transmission

scheme and multiple-buffering (a consequence) that appear to have been introduced because of the practi-

cal difficulty of maintaining timers on a per-packet basis.

Remark 12

We note that the burst-transmission policy of NETBLT is close, in practice, to the 2P scheme

(described below). Thus it could easily serve the twin purposes of measuring R and sb . However, as

this was not the stated purpose of burst-transmission, we have preferred to analyze the straightfor-

ward rate-based scheme incorporated into Netblt. This will bring into focus the advantages to be
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gained by using the round-trip measurement in addition to the rate-measurement.

4.4. 2P

Theory

In a deterministic model, a source performs best when it is exactly at the knee, and thus has V pack-

ets outstanding. At the knee, there is no queueing at any node, and the maximum possible throughput is

achieved. Since V = R /sb , and R and sb could change with time, it is necessary to periodically measure

these quantities. We measure sb as a direct consequence of Proposition 2, that is, sb is the inter-arrival time

of acks for packets that are sent out as fast as possible. R is the time between sending out a packet and

receiving an ack when all the queues in the VC are empty. This can be approximated by measuring rt after

deliberately reducing the queue(s) in the VC.

We claim that measurement of both these fundamental quantities gives us much finer control over

the transmission than could be achieved by measuring either one alone. Our scheme can be adapted to any

transport layer transmission protocol by suitable specialization.

Algorithm

2P is a rate based flow control scheme that occasionally skips transmissions to adjust for changes in

the network state. It has two parts: start-up and normal transmission.

At start-up, we do not know the value of sb . Since we do not want to overload the bottleneck with

packets, some sort of ‘slow-start’ is desirable. We combine this with an initial measurement of the VC

parameters. At start-up we send a packet-pair consisting of two packets sent as fast as possible (back-to-

back). The round-trip time of the first packet measures R , and the inter-arrival time of the two packets

measures sb . The current estimate of sb is denoted by se .

During normal transmission we transmit packet-pairs every 2se time units and se is updated to the

inter-arrival time between paired acks. We would like to decrease the queue length (to zero, if possible)

before measuring R . To do so, we skip one transmission slot periodically, and then send out two packet-

pairs back-to-back. The first of these is called a special pair. The round trip time for the special pair gives

us Re , our estimate of R . We skip a slot and generate another special pair whenever the previous special-
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pair returns. The first pair transmitted at start-up is considered to be a special pair.

We would like our scheme to react immediately to changes in V . To do so, we recompute Re /se on

the arrival of every normal or special pair. If there is a decrease in this value, we skip transmission for

some number of slots so that the number of outstanding packets decreases to the latest value of Re /se . This

simultaneously ensures that the measurement of R is more accurate (since we are really measuring rt ). A

decrease in V automatically triggers a new special pair. These two adjustment mechanisms are more com-

pletely specified below.

If we have estimates Re and se for the values of R and sb respectively, denote the ratio Re /se by Ve .

Let Vnew , Vold be the old and new values of Ve using the old and new estimates respectively. Then, we cal-

culate the quantity

nskip = max(� (Vold −Vnew )/2 �, x ),

where � z � computes the smallest integer greater than or equal to z . x is zero for a normal pair and one for

a special pair. If the value of nskip is zero, (which can happen only on receipt of an ordinary pair) we simply

carry on. Otherwise, we skip nskip transmission slots at regular intervals of 2se and send a special-pair, fol-

lowed immediately by another ordinary pair. After that, we continue to send pairs of packets at regular

intervals of 2se ,until the next special measurement is to be made and so on. Thus, we always skip one time

period before sending a special-pair. We compensate for that drop in rate by sending two pairs together at

the next slot.

Notice that if any of the ordinary pairs gives us a new value for V , we get a non-zero nskip , so the

immediately following pair is a special pair. Any outstanding special pair is then ignored when it comes in.

This is a fast-response feature that allows a quick reaction to one of the main causes of congestion: a sud-

den increase in sb .

Remark 13

In practice, intermittent bursts of more than two packets may be useful to account for statistical vari-

ations in sb . In our deterministic framework, a pair of packets suffices to illuminate the basic princi-

ple.

Remark 14

It is possible to move the rate control to the receiver, as in NETBLT. The receiver looks at the inter-
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ack spacing and informs the source whenever it should change its sending rate. This will avoid the

need for every packet to be acked. To allow special pairs to measure rt correctly, we require that the

receiver send acks for at least the first packet of a special pair. No other change in the protocol is

necessary.

We will see that this simple strategy is enough for adapting to many of the changes that can take

place in the VC. Also, by sending all the packets in pairs, we can monitor the VC as often as desired. If this

is too frequent and leads to timer overheads, the measurement can be carried out periodically, with some

resultant degradation in the performance. In the analysis below we will assume that the measurement is

carried out by every pair i.e. we always use the most up-to-date information and get the fastest response to

changes possible. Further, with no loss of generality, we will assume that at any time there is only one

special-pair in existence.

5. Analysis of Policies

Having described some adaptive flow control schemes, we now turn to a deterministic analysis of

their performance. In Section 5.1, we compare the bandwidth utilization on start-up for 2P and JK. Section

5.2 analyzes the reaction of Netblt, W-schemes and 2P to transient changes in the VC state.

5.1. Loss of bandwidth on start-up

5.1.1. JK

JK slow start has two parts: an exponential increase phase, where the window size doubles every

round trip time, and then a linear increase where the window size increases by one every round trip time.

We study the bandwidth lost until the time the bottleneck reaches full utilization, measured as the idle-time,

L , of the bottleneck. We bound the loss due to this scheme from below and above, by schemes that do a

strict exponential and a strict linear increase.

Proposition 10

(a) A linear window increase results in an idle time of

L = sb

D 1��� + 2
(V−1)(V )���������

(b) An exponential window increase results in an idle time of
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sb

D 1��� + kV + (2k −1)

where k = � log2(V ) �.

(c) The loss of bandwidth from the slow start scheme is bounded from above and below by the

expressions in (a) and (b) respectively.

Proof:

First, note that events at the bottleneck are time shifted by a time of D 1 or D 1/sb packet service times.

Thus, if the window attains a size of V at the source, this is reflected at the bottleneck only D 1/sb

packet times later. For convenience, we will work with the window size at the source, and adding a

correction of D 1/sb gives us the exact value for L . L is then the time at which the source increases

its window to V , corrected by D 1/sb .

(a) The window starts at one, and increases by one each round trip time, so that in the i th period, i

packets are serviced. The window reaches V at the end of the V−1th period. In the i th period, the

idle time is V − i , so that the net idle time is

sb

D 1��� +
i =1
Σ

V−1
i = sb

D 1��� + 2
(V−1)(V )��������� .

(b) The window starts at 1 and doubles each round trip time, so that in period i , the idle time is

(V − 2i ). The window reaches V after the k −1th time period, where k = � logV �. The idle time is

sb

D 1��� +
i =0
Σ
k−1

(V−2i )

= sb

D 1��� + kV + (2k −1)

(c) Since the slow start algorithm does a exponential increase followed by linear increase, the bounds

are clearly those in (a) and (b).

Remark 15

On a high bandwidth long delay channel (e.g. satellite), this loss can be substantial. For example,

with R = 300 msec, D 1 = 150 msec and sb = 1 msec, we find that L , the bandwidth loss in packets is

bounded by

2339 ≤ L ≤ 45000.
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The DECbit scheme [Jain88] has only a linear increase, and our analysis shows that this could cause

a considerable loss of bandwidth. Obviously, such a scheme performs much worse than JK slow start.

On the other hand, the loss for 2P is always the same:

L = sb

D 1��� + R−2sb .

We believe that this is unavoidable, since R is the minimum time needed to find out anything about the vir-

tual circuit. In an operating environment, this loss can also be reduced by starting with a flow-rate that is

known to be ‘safe’. Alternately, this initial measurement can be piggy-backed onto the connection estab-

lishment phase of the transport protocol, which necessarily sends just a few packets back and forth. Once

we have measured the correct parameters, there can be no loss of bandwidth at all (on a deterministic VC).

5.2. Analysis of adaptation to changes in the VC

We now analyze some transients that arise from abrupt changes in the state of the VC. These

changes could be because of a change in the routing tables in the lower layer of the network. A greater

concern is when two or more VCs share a server. The start-up or shut-down of transmission on one circuit

could cause the others to experience a sudden state change. Thus, such transient analysis lays the founda-

tion for a deeper investigation of the interaction between two or more VCs sharing a server. The behavior

of the system depends on the control strategy or transmission policy being used. Therefore we study and

compare the behavior for four control schemes

(a) Delay scheme

(b) JK scheme

(c) Netblt

(d) 2P

5.2.1. Increase in D 1 to D 1new

When the pipeline delay D = D 1+D 2 increases, with no change in sb , the correct response is to con-

tinue sending at sb , while increasing the window size. In the model of the VC implicit in the delay scheme,

this increase in delay is assumed to be indicate an increase in the bottleneck queue length, and thus the

onset of congestion. Thus, the scheme will do a shutdown of the window, which is precisely the wrong

thing to do. In this analysis, unless otherwise stated, we assume that no timers go off.
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5.2.1.1. Delay scheme

Here there are two cases, depending on the previous change to the window.

Case 1:

Assume that the window has just undergone a multiplicative decrease so that W = cWold = cV .

Clearly, W < R /sb < Rnew /sb . Applying the formula for NDG (4.1) we see that, although the delay

increases, there are no further multiplicative decreases, and the system reaches equilibrium through a

sequence of additive increases. Depending on the value of c used there will be a loss of bandwidth

during this period.

Proposition 11

The loss of bandwidth (in excess of normal loss) will be at least

i =V−V
old

Σ
V

i + sb

D 1new −D 1��������

Proof:

Earlier, the window would have increased additively to V, with some loss of bandwidth. The excess

loss occurs while the window additively increases to V from Vold . The second term is the change in

Time

Window size

V

Vnew

Case 1 Case 2

Figure 4
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the adjustment factor due to an increase in D 1.

Case2:

Assume that the window has just undergone an additive increase and W and Wold are both ≤V . At the

instant that the new W comes into effect, D 1 changes to D 1new so that R changes to Rnew >R . Since

the new window is less than R /sb <Rnew /sb , each packet will show a new delay of Rnew (no packet will

encounter a queue at the bottleneck). Since Rnew represents an increase over R , the previous value

that had been measured, this is interpreted as an indication of queue build-up at the bottleneck. Thus

at the next decision point, W will be multiplicatively reduced to cW , a value considerably below the

‘knee’ which is now Rnew /sb . Then, a full cycle of additive increases will be required before the

equilibrium point is reached leading to a loss of bandwidth. In the worst case, this will happen just

after the multiplicative decrease, and we have the following proposition:

Proposition 12

The loss in bandwidth can be as large as

i =V−c 2V
old

Σ
V

i + sb

D 1new −D 1��������

Proof:

The window has to increase to V from the value of c 2Vold that it reaches after the second multiplica-

tive decrease, leading to the expression above.

5.2.1.2. JK

The increase in delay causes a delay in the return of acks, and the retransmission timer might go off.

If the timer goes off, the source will have to do a slow start from a window size of 1, leading to the loss of

bandwidth computed in Section 5.1. If the timer doesn’t go off, the exact behavior depends on whether or

not slow-start is in progress. If it is, the analysis is similar to that in Section 5.1. If not, and the maximum

window size is sufficiently large, the window will just increase till the pipeline is filled, and there is no loss

of bandwidth. If the maximum window size is not large enough, the source will be window-limited in the

bandwidth that it can use, to a fraction Wmax/V of the available bandwidth.
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5.2.1.3. Netblt

The increase in the delay causes a bubble in the pipeline, and this reduces the computed value of the

arrival rate at the receiver. If the reduced arrival rate is less than 95% of the specified sending rate, then

Netblt will reduce its sending rate to its earlier rate, leading to a possible small loss of bandwidth.

5.2.1.4. 2P

2P will simply keep on transmitting pairs at every 2sb time units with nskip = 0. Adjustment to this

change is automatic, because the rate of transmission depends only on sb . There will be a small loss of

bandwidth because the bottleneck will be idle for a short while. There is another subtle possibility of loss of

bandwidth that needs to be mentioned. That is the case when the first packet of a special-pair reaches the

bottleneck after time delay D 1 while the second one reaches there after a delay D 1new . The inter-arrival time

of these two at the bottleneck is then ξ = D 1new −D 1. If this is larger than sb , the protocol will react by skip-

ping some pairs of packets. However, 2P will recover as soon as the next pair of acks arrive.

Proposition 13

The loss of bandwidth will be 2n + ξ/sb packets, where

n = max(1/2� sb

Rold����− ξ
Rnew���� �,1)

Proof:

The second term is just the bubble size in the pipeline. Since 2P mistakenly estimates that the pipe-

line depth is Rnew /ξ, instead of Rnew /sb , it skips n slots, and in each slot it loses 2 packets, leading to a

net loss of 2n packets.

5.2.2. Decrease in delay

From the point of view of congestion, this is the more interesting case. The appropriate response to

this event should be to try to reduce the number of packets in the system and therefore the queue length at

the bottleneck.
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5.2.2.1. Delay scheme

There are two cases. First, assume that this event occurs immediately after there has been an addi-

tive increase in the window size and it has reached some value W ≥Rnew /sb . In that case, the decreased delay

causes the window to be further increased, leading to a build-up of the queue at the bottleneck. This is pre-

cisely the wrong response, and the window decrease happens only at the next decision point, when a

further increase in the window-size gives an increase in the measured rt . To get an exact expression for the

maximum queue that occurs at the bottleneck, we note that an increase in window size to W +2δW occurs

before it decreases again. The maximum queue-length, from Proposition 5, is

W +2δW −Rnew /sb .

If the current window is smaller than V , the new value of V is properly detected, and the system responds

correctly to the change.

5.2.2.2. JK

The decrease in the delay causes the queue in the bottleneck to increase. If this causes a packet loss,

there is a timeout and a slow-start leading to a loss of bandwidth as computed in Section 5.1. If there is no

timeout, the only change is that the window increase cycle that leads to a timeout peaks earlier.

5.2.2.3. Netblt

Since this is a rate-based scheme, with rate being measured by inter-arrival time of the packets, there

is no change in the transmission rate. Thus, the Vold packets that were in the VC before the change remain

in the system causing a queue of size R /sb −Rnew /sb to build up at the bottleneck. i.e. the VC now operates

above the knee. This queue will persist, since it is not detected or corrected for.

5.2.2.4. 2P

This behaves just like Netblt and operates above the knee, until a special pair is sent. At that point, an

extra delay of 2sb before sending the next pair reduces the queue at the bottleneck and the special pair

returns with a reduced value of R , ensuring a sequence of adjustments that finally brings the system back to

the knee. If one pair somehow overtakes another, it will have a smaller round-trip time, and will immedi-

ately lead to skipping of pairs on its return. This hastens the return of the system to the knee.
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5.2.3. Sudden increase in service time

This is the main concern of any flow control policy since it calls for an immediate reduction in the

sending rate to avoid congestion. In addition, this will cause an unavoidable extra delay in some packets

and thus may affect the the retransmission timers. Increase in sb can be caused simply by the start-up of

transmission by another virtual circuit at the bottleneck, so it is important to correctly respond to this

change.

5.2.3.1. Delay scheme

Let us consider the worst case scenario in which the window has just reached its maximum value,

R /sb+δW . Let the time instant at which the value of sb changes also be the instant at which the window

size has also been increased. Then, δW packets will be immediately injected into the VC by the sender,

and after that one packet will be sent every sb units, as each ack returns. During this entire period, the

number of packets in the VC stays at R /sb+δW . The first of the extra δW packets will return after an

increased round-trip time and signal the sender to decrease its window-size. At the time the first of these

acks return, only D 2/snew packets are downstream of the bottleneck. Thus, the upstream portion must con-

tain the rest: R /sb+δW −D 2/snew . We assume that at this instant the sender stops transmitting because it has

reduced the window size. The last packet just transmitted takes time D 1 to reach the bottleneck and from

that point on the queue will stop growing. Now, in time D 1 the number of packets serviced is D 1/snew , so the

maximum length achieved by the queue at the bottleneck is:

R /sb+δW −(D 1+D 2)/snew ,

which is essentially the difference between the old window and the ideal new window.

5.2.3.2. JK

A decrease in sb is treated exactly the same as an increase in delay. The bottleneck queue builds up

and the analysis of the situation in identical to that in Section 5.2.2.1.

5.2.3.3. Netblt

Netblt will detect the change at time snew +D 2 after it occurs. However, a queue of size

(R /sb −Rnew /snew ) builds up at the bottleneck. Unlike the delay scheme above, this queue does not dissipate
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and the transmission continues to run considerably above the knee. The consequence of this queue build up

is a sudden increase in the round-trip time rt , of the packet, to a value R (snew /sb ). Given that the service

time at the bottleneck could easily double, this suggests a value of at least 2R for the timers to avoid a

spurious time-out(cf. RFC-793).

5.2.3.4. 2P

In this case there will be a queue buildup until the first pair comes in with the new value snew . Since

the round-trip time of this pair would not have changed at all, the value of nskip is positive and some pack-

ets will be skipped as required. The queue at the bottleneck should dissipate before a special pair is sent to

confirm the new parameters. However, the time taken for the queue to start dissipating will be D 2, the

minimum possible. The maximum size reached by the queue is D 2/sb −D 2/snew .

5.2.4. Sudden decrease in service time

This could happen if a VC that was sharing the bottleneck shuts off. The flow control policy should

try to use as much of the extra available bandwidth as possible. Notice that only 2P can immediately detect

this situation. While a simple rate-based source operating at the knee can probe for such a change by

periodically increasing the sending rate it will risk congestion. Similarly, the delay scheme will only

achieve the proper rate after a large number of additive increases to the window size.

Our analysis indicates that there is some advantage in operating above the knee. This allows detec-

tion and use of the increase in available bandwidth, so that the loss is minimized. This feature can be incor-

porated into 2P by adjusting nskip so that some fixed number of packets are always present in the bottleneck

queue (at the expense of greater delay for each packet but no loss of throughput).

5.2.4.1. Delay scheme

Since such a scheme operates at or near the knee, it can potentially take advantage of the increased

bandwidth available only through the additive increase policy. In the worst case, consider the instant where

the window has dropped to cW , where W =R /sb , and let sb change to snew at this instant. The delay scheme

will have to increase W by δW until it reaches R /snew . The loss in bandwidth will be R /snew −cR /sb in the

first time period, and will successively reduce by δW each time. Let
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N=(R /snew −cR /sb )/δW.

Then, the total loss can be written as

δW (
i =1
Σ
N

i ) = δWN (N+1)/2

packets, which translates into time by multiplying the expression by snew .

5.2.4.2. JK

The analysis for JK is identical to the case of decreased delay, and the conclusions in Section 5.2.2.2

hold.

5.2.4.3. Netblt

If this scheme is in a steady-state and is transmitting a single packet every sb time units, it will never

detect the changed parameter, since by Proposition 1, the inter-arrival time of the packets will not change at

all! The extra bandwidth can be detected only by the probing action rate increases until there is no further

improvement. Depending on the rate increase policy, there will be a loss of available bandwidth while the

scheme moves upwards to the correct rate. (In all fairness to NETBLT, the burst operation could easily be

modified to detect this situation.)

5.2.4.4. 2P

Assume that a pair of packets has just finished service at the bottleneck when the change occurs. The

next pair will arrive after 2sb -2snew time, will take 2snew time to get service and will return to the sender after

a delay D 2. The source will start sending at the new rate at this time. Let T = 2(sb −snew ) + 2snew + D 2.

Then during this time, T /sb packets will be transmitted, when the number sent should have been T /snew .

Thus the loss of bandwidth is

L=T (1/sb −1/snew ) packets.

6. Summary and Conclusions

We have modeled a virtual circuit in a computer network as a closed loop of D/D/1 queues, and then

simplified it further to one D/D/1 queue and delay-boxes in a loop. Because the model is purely determinis-

tic, we have been able to analyze the transient behavior of the system, which is what determines perfor-
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mance in situations such as start-up, packet-loss etc. In this paper we have analyzed three schemes for deal-

ing with packet loss and given exact analyses of their performance, where loss of throughput is considered

to be the idle time at the bottleneck. In addition, we have looked at the buffering requirements of the

schemes. Our analysis shows that a rate-based transmission scheme, with selective retransmission, per-

forms better than the traditional window-based schemes.

We analyze some congestion-avoidance schemes that adapt to changes in the state of the VC. We

present a scheme, 2P, which is an enhancement of the rate-based scheme. The scheme monitors both R and

sb . It also uses a pulsed or burst mode of transmission to probe the state of the VC, rather than a systematic

increase in rate.

We develop an approach to transient analysis by considering a VC and its associated flow control

scheme in their steady state of operation at the time a sudden change in some parameter of the VC occurs.

Using the basic criterion that the system must remain close to the ‘knee’ in its operation, we analyse the

performance of various schemes. If they are pushed above the knee, there is a danger of congestion, and if

they are pushed below, some of the available bandwidth is lost. Thus the extent to which they deviate from

the desired operating point, and the speed with which they recover are important qualities. We again find

that our scheme, which uses both, R and sb , performs better than schemes that use only one or the other of

these parameters.

With the usual caveats regarding the simplicity of the model and the many assumptions made, we

believe a number of important lessons have emerged from this analysis, which should be of help in deter-

mining the transmission control policies at the network and higher layers. First, windows are really ways of

ensuring that buffer space at the sender and receiver are properly matched. As such, they are completely

adequate at the datalink layer of the network, where communication can be considered as point-to-point. At

higher layers, we need other mechanisms to ensure that intermediate switches or nodes, which are often

transparent to the sender as well as the receiver, are not overloaded.

The second lesson is that the entire VC can be characterized by at least two important parameters, R

and sb , and we must attempt to find out both of these if we are to operate efficiently i.e. avoid congestion,

and at the same time utilize as much of the available bandwidth as possible. A scheme that pays proper

attention to both is likely to be better than one that relies entirely on one or the other.
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Third, although the state of the VC can be probed by changing the transmission rate (or the window-

size), many schemes that use such probing either approach the cliff or lose bandwidth. Our model and

results suggest a way to avoid these problems: make changes in rate that last only for a small time com-

pared with R (small bursts), and then compensate for these changes so that the overall rate of transmission

in one round-trip period is relatively undisturbed. Thus, we avoid having to approach the cliff, or to lose

much bandwidth. At the same time, as a bonus, it turns out that such an approach gives us an estimate of

both, R as well as sb .

Fourth, timers are important. A protocol such as NETBLT would work best with the easy availability

of low-cost high-resolution timers [ClLa87]. Because current systems lack these, many complications have

been introduced into the protocol design. For the efficient working and testing of future protocols, it may

be necessary to ensure that good quality timer services are available cheaply and easily.

The approach of using deterministic analysis can be extended in several directions. One way is to

allow the service times at the servers to be probabilistic. We believe that some of our simpler results can be

extended in that direction quite easily. The second extension would be to study the effect of interference

between two virtual circuits that share a common server or node, taking explicitly into account the kinds of

mechanisms that operate within them. This would further illuminate the phenomena that lead to congestion.

Finally, we would like to explore 2P in greater detail. A companion paper describes the implementation

and simulation of 2P [KeAg90].

In conclusion, we claim that our deterministic model of a virtual circuit is both simple and powerful.

Our analysis leads us naturally to a new scheme, 2P that has several desirable features. We hope to carry

out a deeper analysis of 2P on the lines of this work in the future.
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