[5]

S.J. Leffler, M.K. McKusick, M.J. Karels and J.S.
Quarterman, “The Design and Implementation of
the 4.3BSD UNIX Operating System,” Addison-
Wesley, 1989.

R. Pike, D. Presotto, S. Dorward, R. Flandrena, K.
Thompson, H. Trickey, and P. Winterbottom, In
“Plan 9 - The Documents - Volume Two,” Harcourt
Brace & Company, pp 1-22, July 1995.

R. Sharma and S. Keshav, “Signalling and Oper-
ating System Support for Native-Mode ATM Ap-
plications,” Proc ACM Sigcomm 1994, September
1994.

Throughput Mbps

Transmit side throughput in reliable service
80 .
{ Throughput (FreeBSD) —~—
H Standard deviation (FreeBSD) +—
70 i Throughput (Brazil) -8--
! Standard deviation (Brazil) H<— " " . .
i Least square linear fit (Pkt size 32 - 8000) —-- Receive side throughput in besteffort service
i Least square linear fit (Pkt size 8000 - 100000) -
60 i Throughput <—
! 60 tandard-deviation-++—
/ I SRS Sl e e, e
, I
) e Wgoho/ ’/
50 e B B i—
; B % % % % ?A‘
B RO U A SR =
- BB 3
AT "3 g /
T il
i
/f T a 40
i =)
G -
b =1
/ S 30
{ £
i =
!
20
0 Z
0 20000 40000 60 80000 100000 10
Packet size (bytes)
Figure 3: Throughput of reliable service as a function of 0
. . s . 0 20000 40000 60 80000 100000
message size. The throughput increases with increase in Packet size (bytes)
message size because of a decrease in per-packet overhead.
Figure 4: Throughput of best-effort service as a func-
tion of message size. The sender can send faster than the

receiver can receive data, since the bottleneck is the re-

able free-of-charge to universities and non-commercial
ceiver’s CPU.

institutions. For details, please send email to ke-

shav@research.att.com.

10 Acknowledgments
Ritesh Ahuja did the Brazil implementation of the
native-mode stack and started work on the FreeBSD

port. Without his dedication and hard work, we would
have had IlOthiIlg to Work Wlth 8 Receive side throughput in guaranteed service
60 Mbps <—
References . %?5) ﬁEEg "?’
[1] R. Ahuja, S. Keshav, and H. Saran, “Design, Im- N MEEE o
plementation, and Performance of a Native-Mode 60 10 Mbps <
ATM Transport Layer,” Proc. INFOCOM ’96, B i eGSR S
March 1996. g % //f L e e . *
= 7 e
[2] D.C. Feldmeier, “A Framework of Architecturalé 40 1
Concepts for High Speed Communications Sys-8 {
tems, ” IEEE Journal of Selected Areas in Com-~ %[I = = "
munications, Vol.11 No.4, May 1993
20 Bew—x * * * x * *
[3] K. Keeton, T.E. Anderson, and D.A. Patterson,
“LogP Quantified: The Case for Low-Overhead B SRS ¢ ¢ :
Local Area Networks,” Proc. Hot Interconnects
II: A Symposium on High Performance Intercon- % 20000 40000 sz 80000 100000
nects, Stanford University, Stanford, CA, August
10-12 1995. Figure 5: Throughput of guaranteed service as a function
of message size. As the message size increases, the sender

is better able to achieve the desired rate.

[4] S. Keshav and S.P. Morgan, “SMART: Retrans-
mission: Performance with Random Losses and

Overload,” Submitted to ACM Sigcomm ’96, Jan-
uary 1996.

more the data transmitted in the curent activation,
the larger the bursts emitted by the card. Thus, we
should do more aggressive smoothing (choose a larger
X). To do so, we define a number of thresholds and
corresponding values of X. Whenever the number of
packets transmitted exceeds a particular threshold, we
increase the level of smoothing (upto a value of X=6).
As a result, even at heavy loads, the receive through-
put is stable, and the loss rate is kept low. Our method
works only because the transmitter cannot fully load
the link’s 155 Mbps capacity. If we had a more pow-
erful machine, we would use a more sophisticated cell-
level smoothing algorithm.

8 Performance

We measured the performance of our implementa-
tion on a small testbed of two 66Mhz Intel 80486-
based PCs and a FORE ASX-200 switch. We stress
that the PCs represent two-year old technology, and
at the current time (April 1996) are considered to be
nearly the bottom-of-the-line. One of the PCs acted
as a sender, and the other as a receiver. The PCs were
unloaded except for our measurement software. Qur
measurements are in two parts. In the first part, we
measured the end-to-end latency in exchanging small
messages. The sender sent 5,000 32-byte messages to
the receiver, which read the message, then returned
the message back to the sender. We measured how
long 1t took to complete 5,000 such round-trip ex-
changes, thus measuring the user-to-user latency for
small messages. We measured a mean round-trip time
of around 1.3 milliseconds, corresponding to a one-way
latency of around 650 microseconds. This compares
favorably with the Brazil implementation, for which
the corresponding number is 720 microseconds [1].

We also measured the throughput achievable using
the reliable; best-effort, and guaranteed services as a
function of the message size. With reliable service, a
peak speed of 54 Mbps is achievable with 80 Kbyte
messages (Figure 3). Speeds of nearly 50 Mbps are
achievable with a message size of 8 Kbytes. We did a
simple two-part least-squares fit (shown in the Figure)
to express the throughput as:

throughput (Mbps)

= 0.006239 * pkt_size(bytes) + 4.25;

if(pkt_size < 8Kbytes)
= 4.50399¢ — 05 * pkt_size + 49.51;
if(pkt_size > 8Kbytes)

The half-power point (where the throughput is half
the peak, is around 2200 bytes.

With best-effort service, receive speeds of a peak
speed of 56 Mbps is achievable with 40 Kbyte mes-
sages (Figure 4). With guaranteed service, (Figure 5)

the receive rate matches the requested rate for mes-
sage sizes larger than about 4-8 K (depending on the
required rate). This shows that (a) our leaky-bucket
regulator works as advertised, and (b) applications re-
quiring high throughputs should use larger message
sizes.

All our measurements are shown with the the corre-
sponding measurements with Brazil. In all cases; the
FreeBSD port outperforms the Brazil implementation
on identical hardware. There are two reasons for this.
First, we have had an opportunity to further tune our
implementation, which gives some improvement. Sec-
ond, Brazil supports a client-server distributed com-
puting model, where the client PC must frequently
talk to the compute server over the Ethernet. Since
we could not turn off the Ethernet when doing our
measurements, part of the performance hit with Brazil
is the interrupt and CPU time fielding background
Brazil traffic. It is interesting that the so-call ‘macro-
kernel” approach of FreeBSD outperforms the Brazil
‘microkernel’” approach. We certainly did not expect
that!

Our performance numbers compare very favorably
with speeds reported for much more expensive and
higher-performance hardware [3]. For example, with
dual-processor SparcStation 20 running Solaris 2.4
and Fore’s SBA-200 host adaptor cards (essentially
identical to our cards), the report peak throughput
for reliable (TCP) service is 81.2 Mbps. The re-
ported round-trip delay for 8-byte messages on the
same platform is 1368 microseconds. We are able to
achieve 70 percent of the reported throughput and
lower round-trip delays on a platform that costs about
a tenth as much! We know from previous work that
our bottleneck is the receiver’s CPU. With Pentium-
class CPU’s on the send and receive side, we expect
nearly 100Mbps peak throughput, for a cost of only a
fifth of a dual-processor SparcStation.

9 Conclusion

This paper presents our experience in porting a
native-mode ATM stack to the FreeBSD operating
system. Qur contribution in this paper is in point-
ing out several subtle problems in porting protocol
stacks between mutually-incompatible operating sys-
tems. This may be of use to others in the field who
are undertaking similar exercises. We have also pre-
sented performance measurements that show that we
can achieve top-of-the-line workstation-class perfor-
mance with bottom-of-the-line PC hardware. We can
achieve a throughput of 54 Mbps with reliable service,
and 56 Mbs with best-effort or guaranteed service.

The source code for the protocol stack is avail-

contains the PID of the lock’s holder. On abnormal
termination, the function remove_lock, called during
a kernel-initiated close of a communication pseudo-
device, checks all locks to see if they are held by the
process being killed, and unlocks all held locks. If
the process being killed is holding a Queue lock, the
procedure also wakes one of the processes waiting for
it.

4.6 Timeout computation

The reliable service component of the transport
layer uses a strategy similar to the one in TCP-Reno
for dynamically determining an optimal window size.
It maintains a threshold called the slow-start threshold
initialized to half the largest allowed window size. The
flow-control window size starts at 1 and doubles every
round trip time (RTT) if the window size is smaller
than the slow-start threshold. The window increases
by one every RTT once it increases past the slow-start
threshold. In case of a loss, the window size and the
slow-start threshold are halved. The window size is
also halved on the occurrence of a timeout.

Timeout periods are calculated as a multiple of the
smoothed measured RTT value. In FreeBSD the res-
olution of the clock is 10 ms. So, if the true RTT is
smaller than this value, the transport layer computes
the smoothed value of RTT, and thus the timeout,
as zero. This leads to timeouts being called at every
scheduler period, so that the window size never in-
creases beyond 1 or 2 TPDUs and throughput plum-
mets.

We remedied this by making the smallest possible
timeout twice the scheduler period (of 50 ms). Since
packet are almost always acked within this time, with
this change, window sizes grow to their optimal values.
While this coarsening of the timeout value might usu-
ally affect performance, our transport layer uses the
SMART retransmission strategy, which is essentially
independent of timeouts [4]. Thus, choosing a coarser
timeout value does not affect protocol performance.

5 Page size issues

The Brazil OS guarantees physical contiguity of
memory buffers. Thus, when a device driver wants to
send an AALbS frame contained in a buffer, it merely
hands the ATM interface card the physical address
of the start of the buffer and the card does the rest.
FreeBSD does not guarantee physical contiguity for
buffers larger than one FreeBSD page. Thus, we had
to modify our code to detect non-contiguous buffers
and segment them into physically contiguous areas,
each of which 1s passed to the card in a separate de-
scriptor.

6 Send-side buffer pools

Incoming data from the ATM interface must be
written into host-memory. While the device driver
could do a malloc on every receive to obtain mem-
ory, this is inefficient. To achieve high throughput,
the Fore device driver maintains its own a pool of
free buffers. We discovered that a substantial part
of the transmit-side latency was in acquiring a buffer
using malloc on the send side. Moreover, the al-
located buffer is not guaranteed to be page-aligned,
which means that even buffers smaller than one page
may need to be split on page boundaries to guaran-
tee physical contiguity. For these reasons, we decided
to introduce our own page pools for send-side buffers.
These are allocated at boot time and are managed en-
tirely by our stack. Memory allocation requests from
the page pool return page-aligned buffers, so that they
need not be further fragmented in the device driver.

Access to the memory pool becomes a point of con-
tention when a host has tens or hundreds of active
connections. We need to put an application to sleep
when no more pool buffers are available and wake it
up when buffers are released. This requires a counting
semaphore. Since FreeBSD does not provide one, we
implemented a standard PV counting semaphore in
the kernel. We had to take great care in using these
semaphores to avoid deadlocks when large numbers
of applications are simultaneously active, and one or
more could be holding other kernel locks.

7 Packet-level and cell-level smoothing

From our work with Brazil, we knew that the bot-
tleneck in the system is the receive side CPU. If the
sender sends data in a burst, the receiver cannot keep
up with 1t, and cells get dropped. This leads to
AALS frame loss. It makes sense for the sender to
smooth out its transmission to the extent possible, so
that the receiver does not have to deal with packet
bursts. We use both packet and cell-level smoothing
to achieve this goal. For guaranteed service, the trans-
port layer schedules a task that periodically drains
packets from the user’s application-level buffer. This
provides packet-level smoothing. These packets are
then smoothed at the cell level using a facility pro-
vided by Fore’s ATM adaptor card. Essentially, for
each AALD frame, we can ask the card to introduce
pauses of length X cells for every 16-X cells it trans-
mits at the line speed (of 155 Mbps). We adaptively
choose X to maximize smoothing gains without affect-
ing the transmit performance.

Our algorithm involves computing, at each schedul-
ing activation, the number of bytes being transmitted
during the current activation. The idea is that the

bind to authenticate itself. Since no application can
read or write from the channel without a bind oper-
ation, this effectively secures the channel from unau-
thorized access.

4.3 Transport layer scheduler

The communication task-scheduler needs to run as
a separate kernel thread and should be called peri-
odically. We also need to put the scheduler to sleep
when it cannot acquire a lock to a shared data struc-
ture. Thus our requirement was a scheduler which
would run in kernel space, but could be put to sleep
like a user-process when it could not acquire a lock.
We solved this problem by implementing the scheduler
as a user-space process which writes once to a special
pseudo-device. The write initiates the scheduler in the
kernel, which is simply an infinite loop that schedules
tasks, then puts itself to sleep (using the tsleep call)
for 50 ms.

The problem with the first implementation of this
scheme was that the scheduler process could not be
terminated on system shutdown. This happened be-
cause of the way signals work in FreeBSD (or similar
Unix-like kernel). The action on a signal is taken only
when a process enters the kernel due to a trap, a sys-
tem call, etc. However the scheduler-process enters
the kernel only once and then spends its entire life in
the kernel (hibernating for long periods so that other
processes get their fair share of CPU). As a result the
action on a kill signal would never be taken. This
resulted in the system hanging when we tried to call
a shutdown, because shutdown would endlessly wait
for the scheduler to die. The hard part was detect-
ing the reason for such a behaviour but the solution
was simple 1.e, on every wakeup the scheduler checks
for pending signals and in case there are any it takes
the actions on those signals before proceeding with its
normal tasks.

4.4 Locking

User application can do a read or write at any time.
A write results in enqueueing a message in the trans-
port layer’s send queue, and a read leads to dequeuing
of a message from the transport layer’s receive queue.
Since these reads and writes are asynchronous with
respect to the operation of the transport layer, we
need to lock these queues with a per-VC Send lock
and Receive lock. Each change in the send queue
is locked with a Send lock, and every modification in
the receive queue is locked using the Receive lock for
that connection. This lets us synchronize between the
read and write operations of a user application and
the transport layer.

In addition to the Send and Receive locks discussed

above, there is another conflict that we needed to re-
solve. Though we allow only one application to be
associated with a connection, which ensures that two
applications cannot simultaneously do a read or write
on the same connection, the signaling entity can mod-
ify the connection state while a read or write is in
progress. Thus we have to avoid any reads or writes on
data connections when the signaling entity is chang-
ing the connection status. This problem is simply a
readers-writers problem with a write by the signal-
ing entity corresponding to a writer, and all other ac-
cesses being operations by readers. In Brazil, we used
a RWlock data-structure for proper locking of these
reads and writes.

An application is put to sleep when it tries to do
a read and the next message for the application is
not yet completely received. Similarly, an applica-
tion is put to sleep if it tries to do a write when the
transmission queue of the application is full. However
we cannot put the application to sleep while it holds
the RWlock, since this will prevent the signaling en-
tity from doing any communication with the kernel.
Hence, the readers-writers lock is released if the appli-
cation is put to sleep, and reacquired on wakeup.

Locks are not available in the FreeBSD kernel, so
we ported the Brazil locking code to FreeBSD. This
involved porting both spin locks (which are trivial,
once we had the test-and-set primitive), and Queue
locks, which are similar to monitors. A process sleeps
on the Queue lock, if the lock 1s not available, and is
awakened by the holder on an unlock. The sleep is
implemented using FreeBSD’s tsleep primitive. Un-
fortunately, the kernel automatically wakes up a a
process waiting on a tsleep if the process receives
a signal. If this case is not carefully handled, two pro-
cesses may simultaneously hold a lock (because the
newly awakened process thinks that it was awakened
by the lock-holder). We solved this problem by replac-
ing tsleep with a new call, Tsleep. Tsleep looks at
tsleep’s return value. tsleep returns 0, if awakened
up , EWOULDBLOCK, if timed out, EINTR if awakened by
a signal and needs to be interrupted, and ERESTART
if awakened by a signal and needs to be restarted.If
tsleep returns 0 or EWOULDBLOCK Tsleep returns the
same. If tsleep returns EINTR then the action on the
signal is taken by explicitly calling postsig. If the
process survives EINTR or return value is ERESTART
then Tsleep restarts tsleep with a smaller timeout.

4.5 Abnormal termination

If a process terminates abnormally, the kernel must
release all the locks it holds, otherwise the system will
hang. Each lock descriptor has a ‘holder’ field that

schedule tasks on the basis of the resources allocated
to a VO, and, in turn, can reserve time from the CPU
scheduler.

3 Porting requirements

Our first task was to identify the parts of the
code that required major changes. These correspond
to features in the Brazil operating system absent in
FreeBSD. The modules that need to be changed are
briefly listed below, and described in more detail in
subsequent sections.

1. TPC module for communication between ulib and
sigd
In Brazil all inter-process communication takes
place with named files. In FreeBSD, we replaced
this with Unix-domain sockets.

2. Channel driver
The channel driver i1s used by the application to
send and receive data to and from the kernel-
resident transport layer. In Brazil the user space
to kernel space communication is again through
named files. We decided to replace these with
pseudo-devices (for reasons explained below).

3. Task scheduler
In Brazil the task scheduler runs as a separate
kernel thread. FreeBSD has no such counterpart.
Thus, we had to come up with a way to emulate
kernel-threads.

4. Locking
There are many data structures which are ac-
cessed and modified both by the application and
the transport layer scheduler. This calls for
locking, which is built into Brazil but not in
FreeBSD. We, therefore, implemented locking in
the FreeBSD kernel.

5. Abnormal termination of applications
Brazil has an error-handling exception stack
which allows the kernel to automatically undo
commands (such as held locks) in case an excep-
tion occurs. In the absence of the exception stack,
we had to explicitly handle unlocking due to ex-
ceptions in the FreeBSD kernel.

6. Page size issues
To send an AAL b5 frame, an ATM device driver
loads the device with the physical address of a
memory buffer containing the frame. Brazil guar-
antees that all memory allocations occupy adja-
cent pages in physical memory. Thus, the de-
vice driver needs to compute only one physical

address per memory buffer. In FreeBSD, mem-
ory buffers larger than one page may occupy two
separate physical pages. Thus, we had to ex-
plicitly fragment large memory buffers into page-
sized chunks, and compute a physical address for
the start of each chunk.

4 Porting experience
4.1 TIPC module
The TPC module hides the OS-specific details of

inter-process communication from the user-library
(ulib) and signaling entities. In Brazil it is based
on named pipes and in FreeBSD we used Unix do-
main sockets. Unfortunately, on closing a socket, the
Unix file names are not automatically deleted. We
got around this problem by explicitly keeping track of
allocated file name, and deleting them on a close.

4.2 Channel driver and channel manager

We had a choice of mechanisms for user-kernel data
transfer. One is the standard socket mechanism [5]. A
socket allows an application to obtain a file descriptor
to which a connection can be bound, and data can
be transferred with standard read and write system
calls. The main problem with sockets is that they are
shared by all protocol stacks, and cannot be cleanly
specialized for the native-ATM stack. In particular,
when data is copied out to user space on a read, the
socket layer simply frees the associated mbuf. We
would like, instead, to return the mbuf to the device
driver’s buffer pool for reuse by the host-adaptor card.
Thus, we decided to use a special-purpose pseudo-
device instead of sockets.

The system is initially populated with a number of
pseudo-devices, which are managed by a channel man-
ager. When an application wants a new communica-
tion endpoint, the ulib routine contacts the channel
manager (using TPC) and obtains the file descriptor
for a free pseudo-device. User reads and writes to the
pseudo-device are directed to the transport layer as
usual. Since the user-network interactions are hidden
inside ulib, this change to the communication mech-
anism results in no change to Brazil applications.

The channel manager performs bookkeeping on
open and available channels. It is informed by the ker-
nel (via another pseudo-device) when an application
terminates, and uses this information to keep track of
which channels are available. On receiving a request
from ulib through IPC it allocates a free channel,
generates a cookie (capability) and passes the (chan-
nel_number, cookie) pair to the user application as well
as the kernel (transport layer) so that it can initialize
the connection. The cookie is used by the ulib during

Application entity %]SP Timers
Application User | K%w~~~~>§>| S Spens ‘;
Library! p |/ = !|p| I Support Signaling :
it | A P! Sg Entity |
(uib) i . Lilcl2 :
I awn L
_____ schduler Kemd
A 77777777777777777 4/’//
''''' Y User
Channel Driver schd_driveq |- anand Channel Driver ; Kernel
) R) !
Trangport |
Nt '>| 0S
Layer Support
S >
K
| \ﬁ
ATM Device Driver
ATM Adaptation Layer (on card) P

<—> Daa

IPC: Inter Process Communication

Figure 1: Overview of the ATM stack. The stack con-
sists of three entities: the application entity, the signaling
entity, and the transport entity.

ring the data through the kernel down to the host-
adaptor. (We will assume that the host-adaptor pro-
vides AALb-frame transport, as is the case with all
modern host-adaptors.) Tt also performs call admis-
sion and allocates resource to VCIs for guaranteeing
QoS (bandwidth and delay). Since the transport en-
tity must provide high performance and arbitrate be-
tween multiple user requests, we decided to put it in
the OS kernel. However, in order to make it portable,
our design makes minimal assumptions about the OS
kernel. For example, we provide our own memory
management code to handle operating systems which
don’t support BSD-style mbufs [5]. We also provide
our own timers and task management. The only sup-
port needed from the OS is a way to handle packet-
arrival interrupts, a way to read time, a memory allo-
cation utility, and a way to occasionally call the task
scheduler. These functions are available in all modern
operating systems.

The three components of the transport entity are
the transport layer, the device driver, and an OS sup-
port module (Figure 2). The OS support module in
turn consists of a task scheduler and a resource man-
ager for managing local resources.

The transport layer provides simplex virtual cir-
cuits, error control, and flow control. In addition, it
segments application layer buffers into TPDUs and
reassembles them on the receive side. The layer is
described in more detail in [1]. The transport layer is

End System
Application entity .~ Transport entity: Sgw

User User library Signali Jonali
o | gnaing Signaling
application (ulib) Support Protocol

Device Transport
OS Support Layer

Driva/\

Task scheduler Resource Manager

Figure 2: Components of the ATM stack.

implemented as a set of interface procedures and tasks.
An interface procedure handles asynchronous events
such as packet arrival, user read or write request, or
completion of packet transmission. An interface pro-
cedure is designed to complete quickly, scheduling a
task for handling any CPU-intensive work. A task
i1s a C-language function that is non-preemptively ex-
ecuted by a procedure call from the task scheduler.
Each task finishes in a known time and can schedule
other tasks to complete its work.

In the Brazil kernel, the task scheduler is a ker-
nel thread that periodically (in our case, every 50 ms)
handles any expired timers, and then calls any sched-
uled tasks with two arguments: the VCI to act on and
the maximum amount of work, in number of units,
it can do in the call. The function does its process-
ing and returns the amount of work it actually did
in that call. In our implementation, processing one
transport protocol data unit (AAL 5 frame) is defined
as one unit of work. The scheduler can implement any
scheduling discipline in order to allocate the process-
ing resources to different tasks. Currently we have a
weighted-round-robin scheduler; that can assign differ-
ent weights to different VCIs. Hence we can allocate
a different QoS to different connections.

The resource manager is responsible for admission
control at the time of call setup. This admission test
requires the manager to know the amount of CPU re-
source available to the transport layer, and the frac-
tion of the resource that is already consumed. While
our performance measurements allow us to determine
exactly how much CPU processing time each Trans-
port Protocol Data Unit (TPDU) needs, since our ker-
nel 1s not real-time, we do not as yet have a way to
reserve CPU time for the transport layer from the ker-
nel. Thus, the current implementation of the resource
manager does not do admission control. Further work
needs to be done to implement admission control in
conjunction with improvements in the task scheduler
and the CPU scheduler, so that the task scheduler can

Native-mode ATM in FreeBSD: Experience and Performance

A. Jain and S. Keshav
AT&T Bell Laboratories, 600 Mountain Ave. Murray Hill NJ 07974 USA

ankur, keshav@research.att.com

Abstract

We describe our experience in porting a native-mode
ATM protocol stack from Plan 9 to the FreeBSD op-
erating system. We discuss problems with implement-
ing: (a) in-kernel locks, (b) a lightweight task sched-
uler, (¢) burst and cell-level smoothing, and (d) user-
kernel communication, and present a number of tech-
niques to work around deficiencies in the FreeBSD ker-
nel. Our performance results are comparable to that
achieved with high-end workstations, but at a fraction
of the cost: a user-to-user latency of 650 microseconds
for small messages, and an end-to-end throughput of
over b4 Mbps with reliable service.

1 Introduction

We believe that in order to exploit the end-to-
end QoS capabilities of future ATM networks, end-
systems must not-only provide QoS-sensitive operat-
ing systems, but also make per-connection QoS avail-
able to applications. Unlike IP-over-ATM, where the
IP layer hides and fritters away ATM-level QoS, we
have designed and built a Native-mode ATM protocol
stack that makes ATM-level QoS visible to applica-
tions [7, 1]. The stack includes not only a transport
layer that adds reliability and flow control to AALDb,
but also signaling and operating system support for
connection management, handling abnormal termina-
tion, and end-system resource management. We refer
the reader to reference [1] for further details on our
stack, and to reference [2] for a survey of related work
in the area of next-generation transport-layer proto-
cols.

This paper describes our experiences in porting
the native-mode ATM stack to the FreeBSD oper-
ating system and its performance on that platform.
The first implementation of the stack was on a net-
work simulator, which allowed us to debug the pro-
tocol stack in a controlled environment. From there
we ported 1t to MS-DOS, and subsequently a Plan
9-variant called Brazil [6]. Each of these platforms
has its problems: DOS has minimal support for ap-
plication development, and Brazil is neither generally

available nor widely used outside Bell Labs. We chose
to use FreeBSD as our platform because it is cheap,
and runs on relatively cheap platforms (x86 PCs), yet
has the full functionality of a multitasking operating
system. Moreover, the source code for the system is
freely available. Though 1t is not a real-time OS, its
other attributes still make in an excellent choice for
networking research. Thus, we believe that our expe-
riences in modifying the FreeBSD kernel to add in a
native-mode ATM stack would be of interest to the
networking community.

The paper is laid out as follows: in Section 2 we
present an overview of the stack. Section 3 describes
the major sections of the stack that are OS-dependent
and required porting effort. In Section 4, we outline
the problems we ran into in carrying out the port.
Finally, Section 5 gives a detailed performance evalu-
ation.

2 Overview

An end-system 1implementing our stack i1s shown in
Figure 1. The ATM stack consists of three main enti-
ties: the application entity and the signaling entity in
user space, and the transport entity inside the kernel.

The application (user program) is linked to an OS-
specific user library (ulib) that provides network ac-
cess, session layer services (such as duplex channels)
and 1solates the application from the underlying OS
and hardware platform. The services provided by
ulib are similar to the Berkeley socket interface [7, 5],
except that applications can specify QoS parameters
during connection set-up. This allows us to easily
port applications written for Berkeley sockets - typ-
ical ports take only a few minutes to complete.

The signaling entity establishes connections on be-
half of user applications and tears down connections
either when requested by an application or in the event
the application crashes. Since the signaling entity
must survive application crashes, it cannot be part
of the user library. All applications on an end-system
share a single signaling entity.

The transport entity is responsible for transfer-

