
1

The ENTRAPID Protocol Development Environment
X.W. Huang, R. Sharma, and S. Keshav

Cornell Network Research Group
Department of Computer Science,

Cornell University, Ithaca, NY 14853
{xwh, sharma, skeshav}@cs.cornell.edu

Abstract
As Internet services rapidly become an essential part of the global infrastructure, it is necessary for the
protocols underlying critical Internet services to be robust and fail-safe. To achieve this goal, protocol
developers should be able to design, implement, simulate, visualize, and validate their work in a protocol
development environment before deployment in the field. In this paper we describe the ENTRAPID
protocol development environment, give examples of its use, outline its implementation, and present a
preliminary performance evaluation.

1. Introduction
A protocol is a set of rules and formats that governs communication between communicating peers
[Zimmerman 80]. It provides the abstraction of a service to higher-level protocols and ultimately to
network users. Developing correct, efficient, scaleable, and robust protocols greatly challenges protocol
designers. They can be helped in this quest by a protocol development environment (PDE). This controlled
environment allows developers to implement, simulate, visualize, and verify their work before deployment
in the field.

We motivate the need for a good protocol development environment from the following thought
experiment. Consider a researcher who wants to study the performance effect of various modifications to
TCP. In the absence of a good PDE, the researcher must modify the source code for TCP in an OS kernel,
then painstakingly reboot the machine to test different protocol features, or each time an implementation
bug is discovered. The situation is far worse if the protocol being developed (such as an in-kernel multicast
routing protocol) must run on multiple machines. Such a protocol would need multiple machines to be
rebooted to test each version of the implementation code. With an appropriate PDE, however, the
researcher could develop the code entirely in user space, without the need to modify the kernel. Moreover,
protocols that span multiple machines could be easily tested. Of course, to be useful, the code developed in
the PDE should be easily portable to an actual kernel. The environment should also accurately emulate the
services available within an OS kernel, such as device interface routines and system timers. These top-level
goals motivate our design. In this paper, we describe the ENTRAPID protocol development environment,
giving examples of its use, and outline its application to a broad range of networking problems.

Two broad trends make research into protocol development environments particularly timely. The first is
the exponential growth in the number of Internet endpoints, which requires a similar growth in the
backbone. This is good news for router manufacturers, and, not suprisingly, has led to the creation of many
router startups. However, these startups are learning that although hardware for rapid packet forwarding is
by no means easy to develop, its complexity pales in comparison to that of router software. Routers must
support a wide variety of protocols, such as RIP, OSPF, BGP, and DVMRP, each of which requires a major
implementation effort. Moreover, router software must be carefully written and tested for correctness in
face of failures both in the local router in distant routers. Lacking this, a router failure somewhere in the
Internet, which results in the generation of spurious routing packets, could potentially cause a complete
collapse of the Internet, as router after router fails [Perlman 83]. This scenario appears to be far-fetched, but
was precisely the one that brought down AT&T’s telephone network for the entire day in March 1991. One
cannot overemphasize the need for router software stability: the cost of a mistake can be catastrophically
high. However, the only way to test router software is to build small networks of routers in a lab and walk
through some test scenarios. This testing is necessarily limited by the need for each test engineer to

2

completely control his or her own network testbed. We believe that a suitable protocol development
environment, such as the one described in this paper, makes the task much easier. With ENTRAPID,
engineers can embed their routing software in a software-only test network, making it easy to generate and
test a variety of failure cases.

The second trend that motivates our work is the proliferation of new services in the Internet. Moreover,
these services, such as stock trading, weather information, audio broadcast, and electronic commerce are
far more complex than the original services of telnet, FTP, and email. Three recent developments reinforce
this trend:
• Partners in the Open Signaling initiative [Opensig 98], under the auspices of an IEEE subcommittee

[IEEE-PIN 98], are successfully pressing router vendors and switch manufacturers to support an open
programming platform for creation of third-party services.

• Recent improvements in flow matching algorithms allow flows to be identified, and flow state to be
looked up, at line speed [LS 98, SVSW 98]. Thus, future routers and switches may allow users to
customize data handling on a per-flow basis.

• Third, while the Internet’s open architecture has always been conducive to the creation of new
services, now telephone operators too are opening up their service infrastructure, allowing third parties
to develop customized services on a shared public infrastructure. Environments such as AT&T’s
Geoplex [Geoplex 98] and MCI’s Vault [MCI 98] allow creation of services that span the telephone
and the Internet, resulting in a similar proliferation of services and a similar need for protocol
development environments.

These developments indicate that not only will future networks provide more services to customers,
customers will potentially create specialized services for their own purposes. However, we do not yet
understand how to analytically model large systems of interacting protocols. Implementation details and
quirks in protocol handling code, even at lower layers of the protocol stack, can heavily influence the
behavior of such systems, particularly under failure. A protocol development environment that allows exact
emulation of protocols and networking subsystems is invaluable in the implementation and debugging of
the protocols underlying complex services.

To sum up, we believe that increases in the number of router vendors and in the number and complexity of
network services make protocol development environments increasingly valuable.

2. Requirements

We believe, based on a decade of experience in building and using network simulators, that an ideal PDE
should have the following characteristics, in order of decreasing importance:

• Ease of use
• Exact emulation
• Controllability
• Visualization
• Extensibility
• Scalability
• Verification

2.1 Ease of use
An ideal PDE should be easy to use. In particular, it should allow developers to implement, modify, and
test protocols normally resident in kernel space (such as TCP and IP) entirely in user space. It should allow
developers to intuitively specify large test topologies and their associated workloads. It should also allow
developers to easily select probe points.

3

2.2 Exact emulation
To allow rapid development, it should be easy for protocol developers to move code from the PDE to the
Internet and vice versa. This imposes two subsidiary requirements. First, the PDE should support an
Application Programmer Interface (API) that is identical to APIs commonly used on the Internet (typically
Berkeley sockets and Winsock32). Second, PDE components that interact with the protocol under test
should behave exactly the same as their counterparts in the Internet. The first requirement is relatively
simple. The second requirement, however, is both subtle and difficult to implement. It requires, for
example, that an application should experience the same packet loss, flow control, routing, and link outages
as it would were it running on the Internet. In this sense, the PDE should be ‘transparent’ to the application
developer. Although no practical PDE can achieve exact emulation, we believe that a PDE should be
judged by the degree of emulation it can achieve.

2.3 Controllability
The PDE should allow a developer to set up complex network scenarios. In particular, it should allow
developers to model an existing configuration, such as the one in a campus Intranet or an ISP backbone.
Moreover, developers should be allowed to induce controlled errors, such as packet losses, packet
corruption, line failures, and routing protocol corruption, to stress the protocol under test.

2.4 Visualization
Protocols tend to be hard to design, and inexperienced developers have difficulty understanding them, and
especially their interactions. We believe that good visualization can play a key role in developing correct
and efficient protocols. For instance, HTTP 1.0 opens one TCP connection per inline image. This is
extremely inefficient, and it took a major effort to change HTTP, in version 1.1, to use a single connection
to fetch multiple images. We conjecture that one reason for this design flaw was that HTTP designers did
not realize the performance penalty paid by TCP’s slow start algorithm. With a good visualization tool, the
performance impact of this design decision would be immediately apparent.

2.5 Extensibility
From our experience, we have found that developers tend to highly customize their development
environment. This customization helps them to quickly solve routine tasks. Besides allowing customization
of the user interface, an ideal PDE should allow developers to add protocol components as required. For
example, if a developer is interested in studying new multicast routing protocols that interoperate with
existing multicast forwarding algorithms, the PDE should allow the developer to quickly port an existing
multicast forwarding algorithm from the Internet into the PDE. The PDE should also allow developers to
add new link types, such as wireless links, or even new network types, such as the telephone network, cable
modem networks, and satellite networks.

2.6 Scalability
Some protocol design problems show up only in large networks. These scaling problems are often the most
insidious ones, and designing scaleable protocols is almost always a matter of instinct and good judgement
rather than scientific design. Good judgement, however, is a rare commodity, so we would like an ideal
PDE to scale to large networks, so that scaling problems can be identified in a controlled setting.

2.7 Verification
Where possible, the PDE should allow developers to verify that their protocol does not suffer from obvious
problems such as deadlock and livelock. Thus, the PDE should incorporate formal verification tools, such
as those described in References [Holzmann 98, SECH 98].

4

3. State of the art

Protocol developers in the Internet today can choose from one of four options: (a) develop directly on the
Internet, (b) use kernel extensions, (c) use a network simulator, and (d) use a router-oriented simulator. We
describe these options in greater detail next.

3.1 Protocol development directly on the Internet
A developer can implement and test a protocol directly on the Internet. This is acceptable for services and
protocols that do not modify the transport layer protocol (TCP) or below. For example, it is an acceptable
alternative for protocols layered above HTTP. For such protocols, developing on the Internet provides ease
of use, exact emulation and extensibility. However, there is little or no support for controllability (for
example, changing the number of clients or servers dynamically), visualization, scalability (for example,
adding a large number of clients), or verification. Thus, even in this limited environment, direct
development on the Internet is not easy.

Things are harder when a protocol tries to modify or exploit the details of TCP, IP, or the MAC layer. For
these types of protocols, such as the load distribution protocol in a cluster-based server [BFHR 97],
wireless snoop protocols [BSK 95], or various extensions to TCP, direct development on the Internet
requires extensive kernel modifications. Such modifications are not only complex, they are also non-
portable and require specialized knowledge of the kernel environment. This difficulty is reflected both in
the paucity of such services, and with the frequency with which implementation bugs are detected in such
services (practically every TCP implementation, even after years of experience, seems to be buggy [Paxson
97]!). For such protocols, the Internet protocol development environment offers exact emulation and little
else.

3.2 Kernel extensions
A second approach to protocol development is to insert ‘hooks’ into a kernel and expose these hooks in
user space, so that the kernel-resident protocol behavior can be customized at the user level. This general
idea has been exploited in a number of systems including U-Net [VBBV 95], the USC TCP-Vegas testbed
[ADLY 95], and the NIST emulator [NIST 98]. The key benefit of the approach is that it allows protocol
developers who want to modify or exploit TCP, IP, or a MAC protocol the same ease of development as
protocol developers dealing with higher layer protocols. There is some loss of emulation, because the exact
timing of events is lost, but for most purposes the emulation is sufficiently accurate. The system is also
extensible, since the same hooks can be used for a variety of purposes. However, this environment fails to
meet our other criteria. First, the PDE is not controllable or scalable, since it does not allow developers to
develop protocols that span multiple kernels: such protocols must be developed on two separate machines.
Moreover, most of these environments have little or no support for visualization and verification.

Recently, developers at Torrent Networks have built an extension to FreeBSD that provides exact
emulation, extensibility, controllability, and scalability [Torrent 97]. In their approach, a single FreeBSD
kernel maintains multiple copies of the kernel’s networking state. While this still requires a protocol
developer to deal with kernel-level debugging, protocols that span multiple kernels can be developed and
tested on a single machine. This greatly eases the development of routing protocols, which, by their nature,
span multiple machines.

3.3 Network simulators
A typical network simulator provides the programmer with the abstraction of multiple threads of control
and lightweight inter-thread communication. Threads implement protocols described either by a finite-state
machine, native C or C++ code, or a combination of the two. Simulator packages typically come with a set
of pre-coded modules, with the ability to customize these modules or add new ones. Some network
simulators provide extensive support for visualization and animation (such as the nam package used with ns
[ns 98]). Examples of widely used network simulators include, in the public domain: ns [ns 98], VINT
[VINT 98], REAL[Keshav 97], and MARS[ASDM 94], and commercially: OPNET[MIL3 98] and BONeS
[Cadence 98].

5

Although network simulators are usually used to test protocol performance, they can also be used as
protocol development environments. Given a sufficiently accurate emulation of a network and protocol
stack, developers can leverage this controlled, reproducible environment to stress-test protocols using
microbenchmarks. However, most current network simulators omit many details, thus losing exact
emulation, to gain ease of use, controllability, extensibility, and scalability. Thus, transitioning ‘real’ code
into a simulator is not trivial. For example, porting TCP into any network simulator package is hard, and it
is reasonable to question how accurately a simulator’s TCP implementation matches the behavior, of say,
the implementation of TCP in the NetBSD kernel (which is the de facto industry standard). Thus, network
simulators are very close to the ideal protocol development environment: their main failing is the lack of
support for exact emulation. Some of the simulators listed above also do not scale beyond a few hundred
nodes.

3.4 Router simulators
Router simulators are special-purpose network simulators that allow routing configurations to be tested
before deployment and we include them in this survey only for the sake of completeness. Examples of such
simulators are the NetSys simulator from Cisco [Cisco 98] and the MRT simulator from Merit [Merit 98].
We note that these simulators are not extensible: they are meant to test routing, and that is all they do. Thus,
they are not useful for general purpose protocol development. On the other hand, they appear to be easy to
use, provide an exact emulation, support visualization, and are scaleable.

The relative merits of the four approaches are compared in the table below. Note that no single approach
satisfies all the criteria for an ideal protocol development environment.

Develop directly
on the Internet

Kernel
extensions

General-purpose
simulators

Router
simulators

Examples NIST
emulator,
Torrent
simulator

ns, REAL, MARS,
OPNET, BONeS

NetSys

Ease of use * * *
Exact emulation * * *
Controllability * (Torrent) * *
Extensibility * * *
Visualization * *
Scalability * (Torrent) * *
Verification *

4. Design
Our design for the ENTRAPID protocol development environment can be viewed as combining the best
features of the multi-kernel approach from Torrent and general-purpose network simulation. Figure 1
outlines the architecture of the system. At the top level, ENTRAPID can be viewed as a process that runs
entirely in user space, and can interact both with other processes and with physical network interfaces. Its
switch box component listens for commands and supplies status information. Developers connect to the
switch box with a telnet connection to give configuration commands in a simple language (described in
Section 5). The switch box also generates status and monitoring information for use by an external
visualization engine.

The ENTRAPID process supports multiple Virtualized Networking Kernels (VNKs). Each VNK
(pronounced ‘vink’) exactly implements the networking services found in the 4.4 BSD kernel. Multiple
virtualized processes can run on each VNK. Each virtualized process carries out a user-level protocol and
redirects its system calls to the VNK. VNKs can be connected using wires that represent communication
links. Examples of wires are Ethernet busses and point-to-point links. The final abstraction in ENTRAPID

6

is that of an external process. An external process is not virtualized, but is able to communicate both with
virtualized processes and with other external processes by means of a proxy process.

From a developer’s perspective, ENTRAPID provides the abstraction of a ‘network in a box’. Each VNK
corresponds to a machine on the Internet, and each virtualized process corresponds to a process running on
that machine. Since ENTRAPID can support several thousand VNKs, developers can work with large
topologies when developing and testing protocols. A developer can instantiate new protocols either directly
on a VNK, or as an external process, and test its behavior when interacting with other network protocols
already implemented within ENTRAPID. Note that because ENTRAPID is entirely in user space, a
developer with access to the source code can monitor or modify any aspect of the entire protocol stack
without having to make any changes to the kernel.

Much of ENTRAPID’s power comes from our design of a VNK. As stated earlier, the VNK is derived
from 4.4 BSD networking code. Applications built using the BSD socket API can be ported immediately to
a VNK. More importantly, even applications that need to use non-standard lower-level APIs such as the
kvm_read interface can be ported to ENTRAPID with no modification. This allows us to directly port
common commands and protocols such as mrouted, gated, routed, ping, netstat, and
ifconfig to ENTRAPID. Consequently, the set of commands used to configure one of the VNKs is
identical to the set of commands used to configure an actual BSD machine.

User space

Kernel space

ENTRAPID
External
process

Commands in

Status out

Physical
network device

To the Internet

Message
exchange
subsystem

Switch box

Virtualized
process

Virtualized
networking
kernel (VNK)

Wire

TCP
connection
to proxy
process

Java
interface

Java
applet

Figure 1: ENTRAPID architecture

7

While ENTRAPID is written in C++, it can interoperate with Java applets. A Java interface component
links calls in the net class to a proxy virtualized process. This allows all Java applications to use the
ENTRAPID infrastructure with no change.

Finally, ENTRAPID can directly control a physical network device through a VNK. ENTRAPID therefore
interfaces seamlessly with all Internet protocols at layer 3 and above. For example, if we connect a
machine running ENTRAPID to another, unmodified machine using an Ethernet hub, the unmodified
machine cannot distinguish between packets forwarded among ENTRAPID VNKs and packets forwarded
on the Internet. Thus, a program like traceroute can be used to find the path to a destination within a
simulated network, and an HTTP server running within ENTRAPID can be used to serve web pages to a
browser running on an external machine. We can also use this interface to link multiple ENTRAPID
processes together, allowing us to emulate large topologies.

5. Example
Perhaps the best way to understand how ENTRAPID works is to step through a simple example. Suppose
we wanted to simulate the exchange of messages between a TCP client and a TCP server that are running
as virtualized processes. The client sends a stream of characters to the server, which prints them out on
standard output.

The first step is to start ENTRAPID and tell the switch box which port to listen to, say port 15000:

ensim% ENTRAPID 15000

We now need to create two VNKs and a wire that links them. We first connect to the switch box using a
standard telnet connection, then give it the appropriate commands:

ensim% telnet ensim 15000
switch>> new machine m1
switch>> new machine m2
switch>> new wire w1

To set up a machine, its network interfaces need to be created and configured with IP addresses, and the
machine needs to be given a routing table. VNK interfaces are configured using the standard ifconfig
command, and routes are set up using the standard route command, as shown below. We first connect to
the VNK through the switch box, as shown next:

switch>> connect m1

Next, we add interface vx0 to the machine and configure it:

m1>> addif vx0
m1>> ifconfig vx0 inet 128.84.254.1 netmask 255.255.255.0

We now connect this interface to the wire we previously created:

m1>> wireup m1 vx0 w1

Our next step is to start the TCP server application on m1:

m1>> echoserver&
m1>> exit
switch>>

Machine m2 is symmetrically configured, with IP address 128.84.254.2. Finally, we need to connect to the
other machine and start the TCP client application. The client application is given the IP address of the
server, and, using the standard socket library, a socket between the client and server is established.

8

switch>> connect m2
m2>> echoclient 128.84.254.1

From this point on, every character typed into machine m2 is sent, using TCP, to the echo server, which
prints every data packet it receives.

As a second example, let us return to the researcher who wanted to study the effect of TCP modifications
and see how ENTRAPID can be used for this purpose. Since ENTRAPID includes TCP source code, the
researcher would start with this existing code and modify it, creating a new VNK type. ENTRAPID allows
users to instantiate different VNK types using the new command and to link them up with the wireup
command. Thus, arbitrary test topologies can be set up with simple shell scripts. The researcher can now
test the features of the modified VNK. If there is a bug in the code, a standard debugging environment
(capable of handling multiple threads of execution) will suffice to find and fix the bug. The researcher can
also use the visualization features described in Section 6.5 to customize packet traces, animate these traces,
and set and remove breakpoints on multiple VNKs. We believe that this approach to studying TCP
modifications is far more efficient than traditional ones.

These examples point out several important aspects of ENTRAPID.
• Note that the set of commands needed to configure the network is identical in every way to the

ones used in the real Internet. This reflects the fact that the underlying VNK exactly emulates a
BSD kernel, down to the data structures accessed by the ifconfig and route commands.

• The source code for the TCP client and server are identical to what would be written in the
Internet. This means that code developed in ENTRAPID can be ported, with no change, to the
Internet, and vice versa.

• The new machine and wireup commands allow us to create arbitrary topologies of VNKs,
mimicking arbitrary configurations. This makes the environment controllable.

• The switch box can monitor the actions of any VNK and report this to a logging process external
to ENTRAPID. By separating the emulation and visualization engines, we can develop arbitrarily
complex visualization methods without modifying the emulation engine. The communication link
between the visualization GUI and the switch box allow it to make arbitrarily complex changes to
a running emulation.

To sum up, ENTRAPID is easy to use (completely in user space), provides exact emulation, is controllable
and extensible, and supports visualization.

6. Implementation

The core technologies underlying ENTRAPID are kernel virtualization, process virtualization, direct
control of physical network devices, external process support, and visualization. We discuss each of these
below.

6.1 Kernel virtualization
Virtualization is the combination of multiplexing and indirection to allow a physical resource to be shared
among multiple entities without their knowing it [Keshav 97a, pp106]. For example, with virtual memory,
programs share physical memory, but are never aware of the existence of other address spaces: as far as
each program is concerned, it is the sole owner of the entire physical memory. The key to virtualization is
the ability to trap every reference to a physical resource and map it through an appropriate indirection table
to a managed partition. For instance, with virtual memory, every memory reference is mapped by a
memory manager to a physical address in the range actually owned by the process.

Virtualizing a kernel or, more precisely, the networking portion of the kernel is accomplished by carefully
extracting the networking code from the kernel, then determining every non-local reference. Each such
reference is mapped through an indirection table to the appropriate portion of the shared resource. It turns
out that the FreeBSD networking subsystem is closely tied together and makes only a few external

9

references, (primarily to the network device for I/O, to the scheduler for timed sleep events, and to user-
level processes to read and write data streams). Thus, with some care, it is possible to virtualize the
networking portion of a kernel with no change to its functionality. We caution that the actual process is not
for the faint-hearted! It requires a deep understanding of kernel functionality and a series of interlocking
decisions about which portions of the kernel should be virtualized, and which should be left alone.

In order to support multiple VNKs within a single process, we make heavy use of threads, which are
available in most modern operating systems. The ENTRAPID process is associated with a pool of ‘worker’
threads that are dynamically assigned to VNKs. Requests for service by a VNK are translated to a task
request that is registered with the ENTRAPID thread scheduler. At a future time, an available worker
thread handles the request. In order to minimize race conditions, we ensure that only a single thread is
within a particular VNK at any given moment. (If it should prove necessary, we can allow multiple threads
within a VNK by remapping the splhi and splx calls in the virtualized code.)

One of the more troublesome aspects in kernel virtualization is dealing with interactions with the file
system. BSD sockets and regular files allocate file descriptors from the same space. Since we do not wish
to virtualize the entire file system, calls by a process on non-socket file descriptors must be passed to the
actual kernel (suitably massaged, as described next), and calls to socket file descriptors should be passed to
the associated VNK. We distinguish between socket and non-socket file descriptors using a hash table that
is updated appropriately by the socket and close calls. We also associate each VNK with its own
virtual ‘root’ in the actual file system. All calls to the file system that contain an absolute path are
prepended with this root string. This allows multiple VNKs to cleanly share a common file system.

We note that although the current version of ENTRAPID virtualizes the networking portion of the
FreeBSD protocol stack, we can use an identical approach to virtualize any kernel, or, more generally, the
implementation of any API. To virtualize an implementation, we determine, for each call in the API,
whether access is made to a shared resource. If it is, then the call is redirected, using a library, to an
indirection routine that uses the virtual instance identifier to appropriately remap the call. So, for example,
we can extend our approach to support a virtualized Windows NT kernel or a virtualized Solaris kernel.
Thus, with our approach, we can leverage network protocol implementations in a variety of existing
development environments. We can also emulate heterogeneous protocol development environments.

6.2 Process virtualization
Process virtualization allows us to run multiple copies of a program within a single ENTRAPID process.
As with kernel virtualization, it requires modifications of the process source code to remap all accesses to
shared resources. We have automated some of these modifications by providing a virtualization library that
massages the most common system calls that access shared resources. Within the virtualization library,
these system calls are mapped to messages that are relayed to the ENTRAPID task scheduler, which carries
them out in due course. For instance, consider a virtualized process that makes the read system call on a
socket file descriptor. Since the process is linked with our library, the read system call is remapped to a
procedure that serializes the parameters of the system call, encapsulates the serialized stream in a message,
and schedules the message for eventual handling by the ENTRAPID task scheduler. The task scheduler, on
seeing the message, dispatches a worker thread to execute the read function in the appropriate VNK. If this
read accesses a simulated interface, then data arriving on the simulated interface are available to the read
with no further intervention. Otherwise, the read call is shepherded by another worker thread to the actual
OS kernel for further handling. When the OS call succeeds, the reply is returned to the appropriate VNK,
and eventually to the calling process.

6.3 External process support
While process virtualization is easy for some processes, it is much harder for those that make use of
advanced system services such as sysctl, or those that are written as non-reentrant code (because a
VNK cannot simultaneously execute multiple copies of non-reentrant code). In such cases, it turns out to be
easier to run the process externally, and, instead, set up a connection between the external process and a
proxy virtualized process running within ENTRAPID (see Figure 1). External processes have the added
advantage that process state is external to the simulator, so implementation bugs are contained. We create

10

an external process by linking unmodified source code with a proxy library that converts networking and
file system calls to messages sent to a proxy virtualized process (each external process is associated with its
own proxy virtualized process). The proxy virtualized process simply decodes the message and executes
the appropriate system call in the ENTRAPID context. For concreteness, consider a read system call made
by an external process. When linked to the proxy library, the read call is converted to a read message that is
sent, via the switch box, to the appropriate proxy virtualized process. The proxy decodes the message and
carries out the read. The results of the read are then forwarded, via the switch box, to the external process.
As far as the external process is concerned, it cannot distinguish between this read, and a read done on an
actual FreeBSD kernel. We have also modified a standard Java virtual machine to run as an external
process, so that ENTRAPID can support unmodified native Java bytecode.

6.4 Direct control of physical network devices
The ENTRAPID process can directly control a physical network device. This allows it to capture incoming
IP packets on that interface and forward them to virtualized interfaces. VNKs can also create IP packets
that are forwarded to the Internet. Thus, the network simulated within ENTRAPID becomes
indistinguishable from the actual Internet. We can attach an unmodified machine to a machine running
ENTRAPID with an Ethernet cable, then proceed to ping ENTRAPID nodes, or traceroute to internal
nodes.

We implemented direct control in Windows NT by adding a custom NDIS shim to the operating system. It
was relatively simple to add the shim because it did not need to deal with security issues. We also
implemented a simple DNS name resolver as an external process. This allows external machines to
transparently resolve internal ENTRAPID names to internal IP addresses.

6.5 Visualization
The ENTRAPID visualization environment provides:

• Hierarchical topology creation and network configuration
• Packet-trace generation and animation
• A graphical front end for simulation control
• Shared visualization environments

We now describe these features in more detail. A screen shot of the visualization tool is shown in Figure 2.

6.5.1 Topology creation and configuration
Simulating a network requires a developer to describe the set of machines being simulated, their interfaces,
their default routes, and their interconnection. Moreover, each machine may need to be customized with
parameters such as the TCP receive window size and the socket buffer size. Our visualization environment
allows a developer to view these parameters at a glance. Nodes and links can be created using a graphical
topology editor. The environment also allows subnets to be collapsed into a single node, thus presenting a
hierarchical view of the topology. All configuration parameters are available as drop-down windows keyed
off nodes and links.

6.5.2 Trace generation and animation
Each VNK supports several trace points: points in the VNK code where significant events happen. The
default set of trace points are packet arrival, packet departure, and packet loss (additional code points can
be added by a developer). On reaching a trace point, the VNK executes a packet filter on the packet header.
If the filter declares a match, then an associated handler is executed. The handler can create a log event (the
default) or carry out arbitrary protocol actions. This general mechanism allows a developer to create highly
customized event logs, or even intervene in protocol actions to simulate events such as packet loss, packet
corruption, or packet reordering. The ENTRAPID animator reads and animates trace logs. By default, the
animator shows color-coded packets moving along network links. It also displays buffer contents at each
router, color-coded according to user-specified filters. However, this behavior can be customized by a
developer to show other events.

11

6.5.3 GUI for simulation control
By simulation control we mean the ability for a developer to load and store network topologies; to stop and
start simulations based on specific events; to graph a time series of values of a simulation variable; and to
step through event sequences in order to debug them. In a sense, this extends the debugging metaphor of a
tool like dbx to a network of machines. In addition to the capabilities listed above, the ENTRAPID
visualization environment allows developers to insert breakpoints at any VNK trace point. A breakpoint
can be asynchronous, so that other VNK threads are allowed to execute while a breakpoint is active; or it
can be synchronous, so that all VNK threads are stopped when any breakpoint is active. Synchronous and
asynchronous breakpoints, in conjunction with a rich set of trace points, make protocol debugging much
easier.

6.5.4 Shared visualization
ENTRAPID provides a ‘whiteboard’ feature for teaching network operations and management. When
placed in ‘shared’ mode, the actions taken by any of a set of simultaneously active front-ends is visible to
all other front ends. In this way, an instructor can show students what commands to type to configure a
network, and monitor what a student does. The combination of hands-on learning with instantaneous
guidance from an instructor can greatly improve training of network managers.

7.Performance
In this section, we present a preliminary performance evaluation of our system. At this time, we have not
optimized its performance in any way. These numbers, therefore, serve primarily as a baseline against
which we will compare future improvements. They also give a sense for the overheads inherent in exact

Figure 2: Screenshot of visualization GUI

12

emulation and virtualization. The performance results are of two kinds. The first type of results measure
the overheads in using the simulator, instead of directly developing a protocol on the Internet. The second
type of results examines the limits to scaling the simulator.

7.1 Overhead
Virtualization necessarily increases the time to make a system call. The table below compares the time to
make a null system call in the Solaris and Windows NT operating system with the time for a virtualized and
an external process to make a similar null system call to a VNK. Note that the external process’s system
call time includes the overhead in communicating to a virtualized proxy process over a TCP/IP socket.

Null system call to a
kernel by a normal
process

Null system call to
VNK from a
virtualized process
(slowdown ratio)

Null system call to
VNK from an external
process (slowdown
ratio)

Solaris 3.6 us 221 us (61) 1870 us (519)
Windows NT 14 us 134 us (9.6) 1700 us (121)

These measurements were made on two different systems (both high-end PCs but with differing cache
architectures and CPU speeds). Thus, the relevant number is the absolute cost of a system call from a
virtualized or external process, and its ratio to ‘normal’ system call on the same operating system. Note
that, despite the overhead of socket communication, the cost of an external system call is under 2 ms for
both operating systems. Virtualization causes an order of magnitude degradation in the cost of a system
call, and external process communication adds another order of magnitude overhead. While we believe that
this degradation is an acceptable tradeoff, we intend to investigate techniques to reduce this ratio in future
work.

The second test for overhead compares the throughput achieved between a TCP client and a TCP server
that are trying to exchange data as fast as possible. The measurements were conducted on a 300 MHz
Pentium II PC running Windows NT with 128 Mb main memory and 512 Kb on-chip cache for multiple
runs of a 100-million byte transfer. The client sends data as 1024-byte packets and always has a packet to
send, regulated only by TCP’s window flow control mechanism. The results of this measurement are shown
in the table below.

Configuration Throughput
in Mbps

Ratio

Client and server are regular NT processes on the
same NT kernel

2.7 1.0

Client and server are virtual processes on the same
VNK

2.1 0.78

Client and server are virtual processes on two
VNKs connected by a wire

1.6 0.59

Client and server are virtual processes on two
VNKs separated by two wires and a VNK acting
as an IP router

1.0 0.37

We see that the degradation in going from two processes on the same NT kernel to two virtualized
processes on a VNK is rather small. Although each system call is an order of magnitude costlier, the bulk
of the work in the data transfer is in copying data from user space to kernel space, from kernel space to the
device and the same process in reverse. Thus, the two virtualized processes achieve nearly 80% of the
throughput between to two normal processes. However, as we increase the number of active kernels and
start simulating wires and routers, the overall throughput decreases. With a single wire connecting to
VNKs, the throughput drops to a little under 60%. This is because we must now simulate not only two
entire VNKs, but copy packets from the VNK to the wire and out again. Not suprisingly, adding a router
VNK adds two more copies, and brings the throughput down to just about a third of the original rate. The

13

main lesson here is that data copying is expensive. We propose to use well-known copy avoidance
techniques to deal with this problem [EM 95, VBBV 95, TNML 93].

7.2 Scaling
It is hard to quantitatively measure the scalability of a protocol development environment. The number of
VNKs that can be supported is a function not only of the protocols run at each VNK, but also the number of
messages exchanged, and the degree to which the working set of pages fits in the processor’s memory
hierarchy. Here, we present a preliminary attempt to characterize the scaling properties of our system.

Figure 3 plots the size of the ENTRAPID process as a function of the number of VNKs. Each VNK is
supporting zero virtualized processes, so this represents the most optimistic scaling possible. Note that the

Memory vs. Number of VNKs

0

10

20

30

40

50

60

70

1 42 83 12
4

16
5

20
6

24
7

28
8

32
9

37
0

41
1

45
2

49
3

53
4

57
5

61
6

65
7

69
8

73
9

78
0

82
1

86
2

90
3

94
4

Number of VNKs

M
em

o
ry

 (
m

ill
io

n
s

o
f

b
yt

es
)

Figure 3: Memory scaling as a function of number of VNKs

0

10

20

30

40

50

60

0 10 20 30 40 50 60

Figure 4: Ping time as a function of hop count

14

system allows up to nearly a thousand VNKs. The memory required by each additional VNK, after the
initial few, is about 60 Kbytes.

In practice, we do not expect the limit on scaling to be from the memory size required for the process, but
from the CPU time required to emulate several hundred VNKs and associated virtualized and external
processes. We attempt to capture this overhead with the following experiment. We set up a linear network
topology, where each VNK has either one or two neighbors, and all the VNKs are in a row. We send ping
packets from an external process to each of the VNKs in the topology and compute the mean time to ping
each VNK. Figure 4 shows the mean time taken to ping a VNK from an external process as a function of
the number of hops needed to reach that VNK. We see that the ping time increases linearly with VNK
distance (the straight line in the plot is the trend curve and the variations in the ping time are due to the
large context switch times in the Windows NT kernel). Since VNKs not on the path do not consume any
CPU, this leads us to believe that the time to simulate a large topology will scale linearly both with the
number of nodes and with the number of packets exchanged in the network.

To sum up, we have shown that ENTRAPID creates an order of magnitude increase in the time for a
system call, though this increase does not necessarily result in an order of magnitude degradation in
protocol performance. Moreover, the system scales to a large number of nodes, and we believe that the
scaling is linear both with number of VNKs and with number of packets exchanged. (We will have a more
exhaustive analysis of the overhead and scaling performance in the final version of this paper.)

8. Applications
Besides the obvious application of protocol development, ENTRAPID serves as the foundation for a
variety of applications, some of which we outline next.

8.1 Service creation
As discussed in Section 3.1 the controllability of a protocol development environment makes it useful even
for services that do not explicitly make use of TCP or the layers below it-- it is indispensable for creating
the ones that do. The ease of use, exact emulation, scalability, and visualization features in ENTRAPID
remove much of the drudgery in creating new Internet services. By adding a telephone network simulation
component to ENTRAPID, we believe that telephone service providers can also use ENTRAPID to rapidly
develop new telephony services.

8.2 Testing routing protocols
Router vendors currently develop and test their routing software by connecting to a small network testbed
comprising of a few physical routers and communication links. This is costly and time consuming. By
using ENTRAPID’s “network in a box” approach, routing protocol developers can rapidly simulate even a
large testbed environment on a single system. Moreover, our emulation approach allows developers to port
their code to the real environment with essentially no change. Thus, we believe that this approach has the
potential to dramatically increase the reliability of routing software.

8.3 Configuration and capacity planning
At present, it is very difficult to predict the performance or even the behavior of a network component
without actually inserting it into the network. In the absence of good tools and a standard network
engineering process, network planners rely on a “trial-and-error” approach to network configuration and
capacity planning. This often results in non-optimal or incorrect configurations. ENTRAPID allows
network managers and planners to test an emulation of their network before deployment. This allows them
to scientifically plan their network topology, configure network components, and test their services before
rolling them out to their customers.

8.4 Testing and benchmarking
With the proliferation of networking equipment, it is difficult to compare alternative choices without trying
them out in a specific network. Equipment benchmarking and testing labs as well as network planners in
individual companies can use ENTRAPID to write benchmarks simulating different network

15

configurations. Since ENTRAPID connects to the Internet at the IP layer and above, equipment can also be
tested by connecting it to a machine running ENTRAPID and observing its behavior and performance.

8.5 Training and research
ENTRAPID can be used for hands-on training in network configuration and management. It can also be
used to learn the behavior of specific components and protocols without having to use expensive real world
equipment. We believe that it is an ideal research environment because it allows researchers to model the
system to an arbitrary level of detail.

9. Discussion
The key idea in ENTRAPID is kernel virtualization. While other systems have virtualized device drivers
(as in U-Net [VBBV 95]) and entire operating systems (as in IBM’s Virtual Machine from the 1960’s [SG
97]), our choice of virtualizing only the networking component of an operating system gives us almost the
same power as a virtual machine, but with far less development overhead. Kernel virtualization gives us
exact emulation with ease of use, two of the main requirements for an ideal PDE. The other requirements
are met by adding a ‘switch box’, a clean metalanguage, and an external visualization GUI. These
components synergistically interact to enhance the system.

In Section 1, we motivated the need for protocol development environments from two fronts: routing
protocol testing and service creation. In Section 2, we presented the requirements of an ideal protocol
development environment. We now discuss the degree to which we believe ENTRAPID has met its goals.

We believe that ENTRAPID provides an ideal tool for router testing. By running routing protocols as
external processes, we can exactly emulate large routing topologies, testing protocol behavior in nearly
arbitrary configurations. While we cannot test packet-forwarding speeds, we believe that packet forwarding
is often the easy part in building a router. ENTRAPID does help in the difficult problem of routing protocol
design and testing. Similarly, we believe that ENTRAPID is an ideal environment for protocol
development. It allows developers to create code that can be directly ported to the Internet. Moreover, any
user-level protocols not already present in ENTRAPID can be imported with little work. A developer can
test his or her protocol in large topologies, looking for sensitivity to byte- and packet-level errors.

As discussed earlier, we think that ENTRAPID meets many of the requirements of an ideal protocol
development environment.

• It is easy to use, since developers have essentially a zero learning curve in learning the packet
send/receive API.

• It provides exact emulation of the entire set of kernel services. While it does not model specific
Internet impairments, the impairments found in any particular impairment can be easily added to
the code base.

• ENTRAPID is controllable. The ENTRAPID topology control language allows developers to set
up arbitrary network topologies. Moreover, source code changes in user-level programs allow the
behavior of the entire environment, including the behavior of kernel-level components such as
device drivers and IP, to be easily modified.

• The ENTRAPID visualization and animation engine allows developers to use a GUI to set up
topology and simulation parameters, and to visualize the results of simulation runs.

• The environment can be extended with new protocols either as virtualized processes or as external
processes. This allows arbitrary customization of the simulation environment.

• The current version of the simulator scales to several hundred nodes. Scaling is determined
essentially by the available memory and CPU. As these increase exponentially over time, so will
the size of the simulations. We also hope to investigate some techniques for session-level
simulation to increase scalability.

• Finally, while ENTRAPID does not currently support verification, we hope to add it shortly.

16

10. Future work

Although ENTRAPID meets many of the requirements for an ideal protocol development environment,
there are still several areas that need improvement. In this section, we outline these problems and point out
areas for future work.

First, we would like to improve overall performance by reducing packet copy costs. At the moment, data
from a user is copied to a VNK, from the VNK to the wire, from the wire to the receiving VNK, and from
the receiving VNK to the receiving process. Thus, each packet incurs four copies, which is a considerable
drain on CPU. We can get rid of these copies using a zero-copy architecture such as the ones described in
[EM 95, VBBV 95, TNML 93].

Second, ENTRAPID does not scale well when emulating networks with large bandwidth delay products.
Such networks require substantial per-node buffers. Since ENTRAPID exactly emulates routers, its
memory usage is the sum of the memory sizes of WAN routers, which limits simulation scaling. We hope
to exploit techniques to collapse router buffers, such as those described in Reference [AD 92], to reduce
this overhead.

Third, ENTRAPID does not deal well with process failure. In a normal FreeBSD machine, when a process
terminates unexpectedly, its state is cleaned up by the kernel, which releases resources such as held locks
and open file descriptors. This is hard for a VNK to emulate, because, unlike a BSD kernel, it does not
maintain an exhaustive per-process descriptor. Moreover, currently a VNK is not notified on process
failure. We plan to deal with process failure by incorporating a garbage collector into ENTRAPID. This
would periodically scan all resources and reclaim those held by dead processes. The alternative, which is to
explicitly track all resource usage, strikes us as requiring too much bookkeeping overhead.

11. Conclusions
The ENTRAPID protocol development environment satisfies all the requirements of an ideal protocol
development environment. It presents programmers with the abstraction of a ‘network in a box’. This
allows rapid protocol development and testing. We believe that the environment can be used for a wide
range of applications that build on this core technology.

12. References

[AD 92] J.S. Ahn, P. B. Danzig, D. Estrin, and B. Timmerman, A Hybrid Technique for Simulating High
Bandwidth--Delay Product Computer Networks, USC CS Technical Report 92-528, 1992.

[ADLY 95] J.S. Ahn, P.B. Danzig, Z. Liu, and L. Yan, Experience with TCP Vegas: Emulation and
Experiment, Proceedings of ACM SIGCOMM ‘95, Boston, August 1995.

[ASDM 94] C. Alaettinoglu, A. U. Shankar, K. Dussa-Zieger, and I. Matta. Design and Implementation of
MaRS: A Routing Testbed, Journal of Internetworking: Research & Experience, vol. 5, no.1, 17-41 (1994).

[AT&T 98] AT&T Geoplex, AT&T Labs Internet Platforms, http://www.geoplex.com

[BSK 95] H. Balakrishnan, S. Seshan, and R.H. Katz., Improving Reliable Transport and Handoff
Performance in Cellular Wireless Networks, ACM Wireless Networks, 1(4), December 1995.

[BFHR 97] K. Birman, R. Friedman, M. Hayden, and I. Rhee. Middleware Support for Distributed
Multimedia and Collaborative Computing. To appear in Proc. MMCN 1998, 1998.

[Cadence 98] Cadence Inc., BONeS simulator, http://www.cadence.com/alta/products/
bonesdat.html

[Cisco 98] Cisco Inc. NetSys performance tools, http://www.cisco.com/warp/public/734/

17

toolkit/performance/

[EM 95] A. Edwards and S. Muir, Experiences Implementing a High-Performance TCP in User-Space,
Proceedings of ACM SIGCOMM ‘95, Cambridge, September 1995, pp. 196-205.

[Holzmann 98] G.J. Holzmann, The Model Checker Spin, IEEE Trans. on Software Engineering, Vol. 23,
5, pp. 279-295, May 1997, (Special issue on Formal Methods in Software Practice).

[IEEE-PIN 98] IEEE P1520 Proposed IEEE Standard for Application Programming Interfaces for
Networks, http://www.ieee-pin.org/

[Keshav 97a] S. Keshav, An Engineering Approach to Computer Networking, Addison-Wesley, 1997.

[Keshav 97b] S. Keshav, REAL 5.0 Network Simulator, http://www.cs.cornell.edu/
skeshav/real/overview.html

[LS 98] T.V. Lakshman and D. Stiliadis, High Speed Policy-based Packet Forwarding Using Efficient
Multi-dimensional Range Matching, Proc. ACM SIGCOMM ’98, 1998.

[Merit 98] The Multi-threaded Routing Toolkit, http://www.merit.edu/research.and.
development/mrt/html/

[MIL3 98] Opnet Network Simulator, http://www.mil3.com

[MCI 98] MCI Corp, Vault press release, http://www.mci.com/mcisearch/aboutyou/
interests/technology/ontech/vault.shtml

[NIST 98] NIST Network emulator, http://www.antd.nist.gov/itg/nistnet/

[ns 98] ns network simulator, http://www-mash.cs.berkeley.edu/ns/

[Opensig 98] Open Signaling Initiative, http://comet.ctr.columbia.edu/opensig/
documentation/

[Paxson 97] V. Paxson, , Automated Packet Trace Analysis of TCP Implementations, ACM SIGCOMM
’97, September 1997, Cannes, France.

[Perlman 83] R. Perlman, Fault-Tolerant Broadcast of Routing Information, Computer Networks, Vol. 7,
1983, pp. 395-405.

[SECH 98] F. Schneider S.M. Easterbrook J.R. Callahan and G.J. Holzmann, Validating Requirements for
Fault Tolerant Systems using Model Checking, Proc. International Conference on Requirements
Engineering ICRE, IEEE, Colorado Springs Co. USA, April 1998.

[SG 97] A. Silberschatz and P. Galvin, Operating Systems Concepts, Addison-Wesley, November 1997.

[SVSW 98] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, Fast Scalable Algorithms for Level
Four Switching, Proc. ACM SIGCOMM ’98, 1998.

[TNML 93] C.A. Thekkath, T.D. Nguyen, E. Moy, and E.D. Lazowska, Implementing Network Protocols
at User Level, Proceedings of ACM SIGCOMM’93, San Francisco, September 1993.

[Torrent 97] Torrent Networks, Multi-kernel Network Emulator, Personal Communication, 1997.

[VBBV 95] T. von Eicken, A. Basu, V. Buch, W. Vogels, U-Net: A User-Level Network Interface for
Parallel and Distributed Computing, Proceedings of ACM Symposium on Operating Systems Principles,
December 1995.

18

[VINT 98] VINT home page, http://netweb.usc.edu/vint/

[Zimmerman 80] H. Zimmerman, OSI Reference Model—The ISO Model of Architecture for Open
Systems Interconnection, IEEE Transactions on Communications, Vol. 28, No. 4, April 1980, pp. 425-432.

