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—— Abstract

As the popularity of blockchains continues to rise, blockchain platforms must be enhanced to support
new application needs. In this paper, we propose one such enhancement that is essential for financial
applications and online marketplaces — support for time-based logic such as verifying deadlines or
expiry dates and examining a time window of recent account activity. We present a lightweight
solution to reach consensus on the current time without relying on external time oracles. Our
solution assigns timestamps to blocks at transaction validation time and maintains a cache reflecting
the effects of recent transactions. We implement a proof-of-concept prototype, called TimeFabric, in
Hyperledger Fabric, a popular permissioned blockchain platform, and experimentally demonstrate
high throughput and minimal overhead (approximately 3%) of maintaining trusted time. We also
demonstrate a 2x performance improvement due to the cache, compared to reconstructing account
histories from the ledger.
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1 Introduction

Blockchain systems have received substantial interest due to their ability to maintain a
trusted transaction log in a decentralized environment. The earliest platform, Bitcoin [12],
allowed the exchange of digital currency among peers in a distributed network. Ethereum [20]
then introduced smart contracts, which are Turing-complete stored procedures that expanded
the applicability of blockchains beyond cryptocurrencies into finance [11] [6], supply chain
management [14] and healthcare [1]. Recently, permissioned systems such as Hyperledger
Fabric [2] have been proposed for enterprise settings in which only authenticated entities
participate in the network.

When processing transactions, blockchain systems must accomplish two goals: consensus
on the order of transactions and consensus on the validity of transactions. In early blockchains
such as Bitcoin and Ethereum, the miner selected to create a block provides consensus on
order, and validity is independently verified by each peer in the network. However, in
permissioned blockchains such as Fabric, consensus on order is obtained by using an ordering
service and consensus on validity by using a subset of peers in the network (details in
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Figure 1 Different sliding windows seen by nodes with different clocks.

Section 2).

In simple cases, transaction validity can be determined based on account balance alone.
Many blockchain systems thus use an account-based data model, in which each peer maintains
the current state of each account in a so-called state database. This allows peers to validate
transactions without having to reconstruct account balances from the entire history stored
in the ledger. However, as permissioned blockchains gain traction in enterprise settings,
blockchain systems must be enhanced to support new application needs. In this paper, we
target applications such as financial services and online auctions and marketplaces, in which
determining transaction validity is more complex and depends on time.

For example, assume a decentralized retail setting with a blockchain platform operated
by manufacturers, sellers and regulators. The platform must not allow the participating
entities to manipulate timestamps in an attempt to sell expired products. Furthermore, in a
financial setting, a bank may allow an overdraft (i.e., allow a withdrawal despite insufficient
funds) if an account is in good standing based on recent transactions. Thus, access to a time
window of recent account activity is required when executing these transactions.

To validate transactions whose correctness depends on time, a common solution is to
obtain the current time from an external trusted oracle, along with the oracle’s certificate of
the current timestamp. This allows each peer to establish validity, and for all peers to come
to the same deterministic conclusion. However, this approach breaks down when validity is
independently determined by multiple peers, as is the case in permissioned blockchains such
as Fabric or Corda [5]. In these situations, we need to obtain consensus on the current time
among the endorser peers as a precondition to obtaining consensus on validity. Otherwise,
it may be impossible to agree on the transaction outcome. For example, when processing
an overdraft transaction, peer nodes with different current times may consider a different
window of recent activity. We show an example in Figure 1, with two nodes and five recent
transactions. Node 1 considers a window with transactions tx1 through tx4. Node 2 uses a
different current time and considers a different window, with transactions tx2 through tx5.

To address the above issues in support of smart contracts with time-based logic, we make
the following contributions.

1. Trusted time for time-based transactions: Instead of relying on external time oracles, we
propose a light-weight consensus mechanism for time that assigns a trusted timestamp
to each block. Block timestamps can then be used by the network to deterministically
execute time-based smart contracts.

2. Data layer support for time-based transactions: We extend the account-based data model
to store a sliding window of recent states, effectively maintaining a cache reflecting the
effects of recent transactions. If a peer node needs to examine the recent history of an
account, it can access the cache instead of reconstructing the account history from the
ledger.
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3. Implementation and experimental evaluation: We implement our solution, called Time-
Fabric, in Fabric 1.4, and experimentally verify that the overhead of maintaining trusted
time is low (under 3%) and that the cache reduces the time to retrieve a window of recent
history by a factor of two. Notably, we make minimal changes to Fabric’s transaction
processing methodology and we preserve Fabric’s modular design, which allows different
consensus algorithms to be plugged in without affecting transaction execution. The
TimeFabric source code is publicly available at https://github.com/aritramitral4/
fabric/tree/timefabric.

While we use Fabric in our proof-of-concept implementation, our solution generally applies
to any blockchain in which multiple entities independently judge the validity of transactions.
Thus, we allow a migration path for these types of blockchains if they do not wish to trust
an external oracle to validate time-based transactions.

The remainder of this paper is organized as follows. Section 2 provides background
information, including an overview of Hyperledger Fabric, Section 3 presents our solution,
Section 4 discusses the experimental results, Section 5 reviews previous work, and Section 6
concludes the paper with directions for future work.

2 Background

Blockchain platforms can be categorized as public, or permissionless, and private, or permis-
sioned; the former allows anyone to join the network whereas a private blockchain, commonly
used in enterprise collaborations, includes a membership service that only allows authentic-
ated entities to participate in the network. However, the authenticated entities do not have
to fully trust each other.

Public blockchains such as Bitcoin and Ethereum follow an Order-Ezecute (OE) trans-
action model. Transactions are first ordered using a protocol such as Proof of Work, and
then are executed sequentially by each node. In contrast, Fabric follows an Ezecute-Order-
Validate (EOV) model, alternatively referred to a Simulate-Order- Validate-Commit model
[17], in which transactions are executed in parallel in a sandboxed environment, ordered,
and validated before being committed to the ledger. We explain the details below, and we
summarize the transaction processing workflow in Figure 2 (ignore the steps marked in red,
which correspond to our modifications in TimeFabric and will be discussed later).

2.1 Hyperledger Fabric Overview

Entities participating in a Fabric network are called nodes and can be categorized as peers
and orderers. Peers execute smart contracts, called chaincode in Fabric. Orderers, collectively
referred to as the ordering service, are responsible for transaction ordering and creation of
blocks. Each peer maintains a local copy of the ledger as well as a state database (LevelDB
by default), which is a key-value representation of the current state of the ledger. A record
in the state database contains three pieces of information: a key (e.g., account ID), a value
(e.g., the current account balance), and a version number. The state database is used during
transaction processing; for example, it can be used to determine whether a given account
has a sufficient balance to make a purchase without having to retrieve all the transactions
for this account from the ledger. Whenever a transaction (i.e., the execution of a smart
contract) is committed to the ledger, the effects of the transaction are persisted in the state
database. That is, the new values are written to the database and the corresponding version
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numbers are incremented. Old versions are eventually discarded from the state database by
a background garbage-collection process.
Fabric’s Execute-Order-Validate transaction processing protocol proceeds as follows.

2.1.1 The Execute Step

Client applications submit transaction proposals to the Fabric network (step 1 in Figure 2).
A subsets of peers, called endorsers, concurrently simulate the execution of the corresponding
smart contracts in a sandboxed environment, i.e., without persisting the effects in the state
database. Two such endorsers are shown in Figure 2. Each endorser then sends a response
to the client application if the corresponding smart contract was successfully simulated. The
response contains the endorser’s signature as well as a read set and write set, which consist
of the keys and their version numbers that were read from the state database, and keys
(plus their new values) that were updated, respectively, during the simulated execution of
the transaction proposal. The write sets thus capture the effects of transactions that must
eventually be reflected in the state database.

2.1.2 The Order Step

An endorsement policy, set by the network, specifies the number of endorsements a transaction
needs. After a client application receives the required number of endorser responses (step 3
in Figure 2), it sends the transaction proposal, with endorsements attached, to the orderers
(step 4 in Figure 2). The orderer nodes run a consensus protocol to determine the order
of transactions received from various client applications. Fabric allows various consensus
protocols to be plugged into the ordering stage (e.g., Kafka or Raft), with crash-fault
(rather than Byzantine fault) tolerant protocols used in practice since the participants in a
permissioned blockchain system are known and incentivized to behave honestly. Transactions,
with endorsements attached, are segmented into blocks; a block is created if the maximum
number of transactions per block (set by the application) arrive or if a block timeout period is
exceeded (the default block timeout in Fabric is two seconds). Blocks are then disseminated
to the peers (step 5 in Figure 2). Note that orderers are only responsible for ordering the
transactions and batching them into blocks; they do not examine transaction contents for
correctness or validity.

2.1.3 The Validate Step

Finally, peers serially validate (endorser signatures and read-write sets of) transactions in a
block, and, upon successful validation, persist the effects of transactions in the local state
database and append the block to the local copy of the ledger (step 6 in Figure 2; committer
peers are the non-endorsing peers). Transaction validation succeeds if the version numbers
of the keys in the transaction read sets are the same as the current version numbers in the
state database.

Validation is required because transaction proposals are executed in parallel during the
initial Execute stage, and thus transaction conflicts may arise. For example, suppose two
client transactions wish to withdraw money from the same account, with key 123, whose
current version number in the world state is 100. Suppose no other transactions in this block
touch this key. The read sets of both of these transactions include key 123 with version
number 100. During validation, the first of these transactions will be committed because key
123 still has version number 100 in the state database (it has not been modified by any other
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transaction from this block). After the first transaction is committed, the new version of key
123 will be 101. Now, the second transaction fails because the version number of key 123 in
its read set is 100, but it is 101 in the state database. Failed (or aborted) transactions are
marked as such and remain in the block.

Transaction validation prevents read-write and write-write conflicts. In a given block,
at most one transaction can write to a key, and if another transaction only reads this key
without writing to it, this transaction must be ordered before the one that writes to this key
(otherwise, the version numbers will not match). This prevents double-spending, but may
also prevent legitimate transactions from being committed. In the above example, even if
there is sufficient balance in account 123 for both withdrawals, only the first transaction will
succeed. The second transaction will need to be re-submitted by the client application for
re-endorsement, and will be put in a new block for validation.

Note that once the transactions in a block have been ordered, they are sequentially
validated by each peer in the same order. As a result, each peer makes the same transaction
commit (or not) decisions, and thus each peer stores the same version of the ledger and the
state database. Also note that smart contracts are not re-executed during validation; only
their effects are persisted in the state database.

2.2 Timestamps and Account Histories in Hyperledger Fabric

We now outline existing Fabric functionality related to transaction timestamps and transaction
histories. Clients can set transaction timestamps when creating transaction proposals, which
are recorded in the transaction header and ultimately appear in the blockchain. Fabric
exposes a method GetTzTimestamp(transaction_id) for chaincode to access transaction
timestamps. However, transaction timestamps are not endorsed during the execute step or
verified during the validate step.

Furthermore, chaincode can call GetHistoryForKey(key) to obtain a history of all values
for a given key, along with the transaction timestamps corresponding to each update (querying
a specific time window is not supported). This is done by consulting an index that points to
(the blocks containing) transactions that have modified a given key. These transactions are
then retrieved from the blockchain to compute the history, which is expensive. This index is
stored in the state database, in addition to the keys and their latest values.

3  Our Solution

In this section, we present our solution to support smart contracts with time-based logic.

Our design goals are:

1. to provide a trusted and consistent time reference for peers that validate transactions,
without the need to consult external oracles,

2. to process transactions that reference this trusted time efficiently, with minimal overhead,

3. and to preserve the underlying blockchain system architecture as much as possible while
making minimal modifications.

We address goal #1 in Section 3.1 and goal #2 in Section 3.2. We then describe
implementation details of our proof-of-concept, TimeFabric, which is based on Hyperledger
Fabric 1.4 (Section 3.3), followed by a discussion of TimeFabric’s failure model compared to
the underlying Fabric (Section 3.4).
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3.1 Trusted Time

Our approach to maintain trusted time consists of the following steps.

1. Validation of transaction timestamps. Peers that validate transactions are given
an additional responsibility: to ensure that the transaction timestamp is within § time
units of the current trusted time (this will be defined shortly). Thus, transactions with
timestamps too far into the past or the future will be rejected. The value of § can be set in
the corresponding smart contract code, and we will discuss how to choose an appropriate
value for 0 in Section 3.3.

2. Assigning trusted block timestamps. Additionally, peers that validate transactions
need to assign block timestamps. In particular, they set the block timestamp to be the
most recent or the median transaction timestamp within the block, among transactions
that have been validated and have not been rejected!. However, if this timestamp is older
than the timestamp of the previous block, then the timestamp of the new block equals
the timestamp of the previous block plus a small constant € (in our implementation, € = 1
millisecond). To do this, when validating transactions within a block, each peer must
keep track of the latest transaction timestamp seen, and finally append it to the block.
Block timestamps become part of the blockchain and are included in the block hash for
immutability.

3. A heartbeat mechanism. Suppose no transactions arrive for some time, say, one
minute. Then, when a transaction finally arrives, its timestamp would be a minute into
the future relative to the timestamp of the latest committed block. To ensure that trusted
time moves forward, we require a “dummy” client that sends mock transactions even
during periods of inactivity. A mock transaction updates a reserved “dummy” account
with a random value, and its transaction timestamp equals the local time of the client.
We will discuss how often these mock transactions need to be sent in Section 3.3.

Time thus advances one block at a time, based on wvalidated transaction timestamps,
giving every peer a common time reference. At any point, the current trusted time, or block
time, as required for transaction validation, is the time of the latest block that has been
committed to the ledger. The block time is used for any reference to time in a smart contract.

Our solution uses one timestamp per block rather than one timestamp per transaction
for several reasons. The first is efficiency: in general, obtaining consensus on a value in a
decentralized setting is expensive. The second is to ensure a monotonically increasing time
reference: transactions within a block may not be ordered by their timestamps.

3.2 Data Layer Support

Given our notion of trusted time, we create three methods that are accessible to smart
contracts.

1. GetTimenow() returns the current block time.

2. GetHistoryRangeForKey(key, start, end) returns a history of values for a given key with
block timestamps in the interval [start, end].

3. GetStateWindow(key,window__length) is a wrapper over GetTimenow() and GetHis-
toryRangeForKey(). It obtains a history of values for a given key with block timestamps
in the interval [current_time — window__length, current__time].

! 'We will discuss the choice between maximum and median transaction timestamps in Section 3.3.
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GetTimenow() can be used when validating transaction timestamps, which can then
be used during smart contract execution, e.g., to verify if deadlines are met. A simple

implementation of this method is to extract the timestamp from the latest block in the ledger.

Another option is to cache the block time at the validating peers.

GetHistoryRangeForKey() is meant to be used during smart contract execution to retrieve
recent histories. A naive implementation is to reconstruct the account history from the
ledger, which is expensive. Our solution is to maintain a cache capturing the effects of recent
transactions. First, we assume that validating peers use the account-based data model and
already maintain a key-value state database with the current account states. Additionally,
we require each validating peer to maintain a cache database. Each record in the cache
database is a key-value pair. The key is a concatenation of the corresponding key in the state
database and the block timestamp of the transaction that updated the key. The value is the
corresponding updated value. For example, suppose that key 123 is updated to have value 50
by a transaction belonging to a block with Unix timestamp 1607994614. The corresponding
key-value pair in the state database is (123, 50), plus the version number. The key-value pair
in the cache database is (123 : 1607994614, 50).

To populate the cache database, we make another modification to the validating peers.

In addition to writing key-value pairs to the state database, we require the validating peers

to write key-value pairs (with timestamps concatenated to the key) to the cache database.

GetHistoryRangeForKey() can then be answered via a range query on the key against the
cache database. For example, a query for the history of key 123 between Unix timestamps
1600000000 and 1607994614 becomes a range query against the cache database for keys in
the range from 123 : 1600000000 to 123 : 1607994614.

There is one important distinction between the state database and the cache database.

In the former, values of existing keys are updated since only the most recent value needs to
be stored. In contrast, the cache database is append only: an update of the state database
results in a new key added to the cache database since keys in the cache database include
block timestamps. Thus, if not pruned, the cache database will grow indefinitely.

To avoid this problem, we borrow a common solution, similar to the calendar queue, used
by data stream management systems to maintain sliding windows [7]. The idea is to partition,
or shard, the cache database by time, and, instead of deleting individual records over time,
periodically drop the oldest part. For example, suppose that an application requires a 7-day
history. Peers may partition the cache database by day. Every day, a new part is added to
store new records generated that day, and the oldest day is dropped. The window length
and the number of shards are parameters that may be decided by the network along with
other blockchain configuration parameters.

Technically, there is no limit on how much history can be stored in the cache database.

However, to ensure high transaction throughput, it should be ensured that the cache database
(and, of course, the state database) fits in memory.

3.3 TimeFabric Implementation

We now discuss the implementation details of TimeFabric, which is based on Hyperledger
Fabric 1.4. Our modifications to Fabric’s transaction validation pipeline are shown in red in
Figure 2 and are explained below.
In the validation step, peers have two additional tasks:
1. In Fabric, transactions are validated by committer peers once a block is received from
the ordering service. Each transaction in the block is unpacked and validated by the
committer peer in parallel using multiple Go routines. At this stage, we additionally
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Figure 2 Transaction flow in Hyperledger Fabric. In TimeFabric, we make changes in steps 2
and 6, shown in red.

identify the maximum or median timestamp across the valid transactions, and we insert
this timestamp into the block metadata.

2. We add a cache database that must by maintained by the peers over time (i.e., periodically
create new shards and drop old shards). We modify the block commitment stage to add
this new database (which is a hashmap in our implementation). Each transaction in a
block is unpacked to extract the write-sets. We then compute new keys to be written to
the cache database by concatenating the timestamp to the original key, and we insert
this key-value pair to the cache database.

In the execute step, endorsing peers have one additional task: validate transaction
timestamps by comparing them to the current block time (via the new method GetTimenow()).
We implemented this method in the Fabric RPC server by querying the ledger to retrieve
the latest block, and extract the block timestamp from the block metadata. We considered
caching the block time at the endorsers, but the performance gains were minimal since the
latest block is already cached in memory by Fabric.

Additionally, smart contracts have access to recent histories via GetState Window(),
which queries the cache database (and the state database for the latest value). In our
implementation, the partitioned cache database consists of separate instances of hashmaps,
and GetHistoryRangeForKey() is handled by issuing a range query against each instance.

We note a subtle but important issue related to read set validation in TimeFabric. Assume
a transaction that fetches a window of recent account history, including the current balance,
for account 123, and updates the account balance if the account history satisfies some
condition. This transaction can use GetHistoryRangeForKey(), which fetches a window of
recent history of key 123 from the cache database. However, we wish to re-use Fabric’s
transaction conflict logic during transaction validation. For example, this transaction should
not be committed if another transaction from the same block had updated account 123. To
identify these types of conflicts, we modify GetHistoryRangeForKey() to also fetch the latest
key-value pair from the state database (in addition to fetching the history of this key from
the cache database). Next, only the records read from the state database are validated to
make sure the version numbers match; records in the cache database are never updated
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(only new keys are added), so their version numbers are always ‘1’ and do not need to be
validated. In our example, only the latest version of key 123 obtained from the state database
is validated, and the window of recent history of key 123 obtained from the cache database
is not. However, the transaction’s read set contains all keys read from the state database
and the cache database for auditability (recall that the read and write sets becomes part of
the blockchain).

Finally, there are no modifications to Fabric’s ordering step. This satisfies design goal
#3: Fabric’s modular design suggests that orderers should only be responsible for ordering
transactions. To maintain compatibility with various plug-and-play consensus algorithms for
the ordering step, our modification are restricted to the endorsers and the validators.

In addition to the above changes to Fabric, our implementation of TimeFabric requires
the addition of a dummy client for heartbeats (recall Section 3.1). To decide when to send a
heartbeat, we observe that Fabric orderers disseminate a new block when it is full (contains
the maximum number of transactions) or if it contains at least one transaction and no other
transaction has arrived for two seconds (the default timeout period). Thus, we configure the
dummy client to send a mock transaction every two seconds.

Now, recall the  parameter for transaction timestamp validation. In our implementation,
block time is permitted to be two seconds in the past in the worst case, if no new transactions
have arrived and a heartbeat transaction was just generated. To account for this delay and
network delays between clients and the Fabric/TimeFabric network, we set § to two seconds
plus the expected network delay. Large values of § should be avoided to prevent malicious
clients from submitting transactions with future timestamps and therefore advancing the
block time too quickly. On the other hand, delays must be taken into account to ensure
that legitimate transactions are not rejected, although a client who experiences an unusually
long delay can always resubmit its transaction. Note that in a permissioned blockchain, even
malicious clients need permission to access the blockchain by requesting access credentials
from a membership service. Hence, clients exhibiting malicious behaviour can be ejected
from the system. Nevertheless, if one wishes to err on the side of caution, malicious behavior
can be reduced by setting the block timestamp to the median value of the timestamps in a
block, rather than the maximum, since the median is harder to manipulate.

Finally, recall that our solution assigns one timestamp per block rather than one timestamp
per transaction. However, observe that block timestamps alone produce totally ordered key
histories in TimeFabric because Fabric’s validation step ensures that a key can be updated
at most once per block (recall Section 2).

3.4 TimeFabric Failure Model

In this section, we discuss the impact of our modifications on the failure model of the system.
In Fabric, the membership service that authenticates the participating entities must be
fault-tolerant, and this does not change in TimeFabric. Similarly, we do not change Fabric’s
ability to plug in various ordering algorithms, which can be crash-fault or Byzantine-fault
tolerant, as desired by the application.

We also retain Fabric’s endorsement policies, specifying the number of endorser responses
required by a client transaction. Having to collect multiple endorser responses prevents
collusion between client applications and an endorser, and this extends to TimeFabric’s
endorsement of transaction timestamps.

Furthermore, the ledger is replicated among the peers, each block contains a hash pointer to
the previous block to ensure immutability, and every peer independently validates transactions
and appends new blocks to the chain, as in Fabric. TimeFabric adds block timestamping
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to each peer’s responsibilities, resulting in the same failure model: any inconsistencies at
one peer can be easily detected by comparing other peers’ ledgers. In contrast to Fabric,
TimeFabric peers also maintain a cache database. In case of a crash fault, a peer can rebuild
its cache database by unpacking transactions from recent blocks. (Similarly, a peer (in Fabric
and TimeFabric) recovering from a failure can rebuild its state database from the ledger).

Finally, as for the mock client that implements the heartbeat mechanism, we install one
such client at each endorser for crash-fault tolerance.

4 Experiments

In this section, we experimentally evaluate TimeFabric, which we implemented in Fabric
version 1.4 (our modifications remain compatible with the recent release of version 2 since we
do not change Fabric’s modular design). We use six local servers connected through a 1Gbit/s
switch. In practice, Fabric deployments may be geo-distributed, but our experiments focus on
commit overhead and database access times at individual peers, which are independent of how
the peers nodes are distributed. Each server is equipped with two Intel Xeon CPU E5-2620
v2 processors at 2.10 GHz, and 64 GB of RAM. Our experiments are conducted using Fabric
binaries and we only use docker containers for the chaincode runtime environment. All tests
are conducted with non-conflicting and valid transactions to ensure that all transactions go
through the entire lifecycle (endorsement, ordering, validation and commit) without being
aborted. This helps us to evaluate the worst-case performance of the system in terms of
transaction throughput.

Our experiments have two goals: 1) evaluating our implementation of trusted block time
and 2) evaluating the performance of the new API to obtain the current block time and a
recent history for a given key. To evaluate the implementation of block time, we measure the
overhead introduced by our changes to the Fabric transaction processing lifecycle, specifically,
the overhead incurred by committer peers. To isolate this overhead, we send pre-endorsed
transactions to the orderer and measure the transaction throughput at committer peers. We
also measure the latency of the block time, i.e., how far back it is compared to the wall clock,
for various block sizes. To evaluate the performance of the new API, we measure the runtime
overhead of our new method GetTimenow(), and we compare our method GetState Window()
to Fabric’s GetHistoryForKey().

4.1 Block Time Implementation

Committer Overhead: In this experiment, we compare the transaction throughput at
the committer peer for Fabric 1.4 and TimeFabric. We use a single endorser and a single
committer peer, a solo orderer, and four client machines that generate transaction proposals.
We first send 25,000 transaction proposals from each client to the endorser and obtain the
proposal responses. We then set up 25 threads in each client (totaling 100 threads) to send
a total of 100,000 transactions to the orderer. Subsequently, we measure the total time by
the committer peer to commit all the blocks to the ledger and then derive the throughput.
Following prior work on improving the throughput of Fabric [8], we set the block size to 100.
We conduct 30 runs and report the mean throughput and the standard deviation in Table 1.
This experiment shows that our changes only add about 3% overhead to the block validation
and commit process.

Block Time Latency: In this experiment, we record the time difference between an
endorser’s local clock and the block time, i.e., the time assigned to the latest committed
block. We expect lower latencies for smaller block sizes, with size corresponding to the
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Table 1 End to End Throughput

Fabric 1.4 | TimeFabric
2927 + 136 2831 + 196

Table 2 Block time latency for various block sizes

’ Block Time Latency ‘

| Block Size || 50 75 100 125 150 \
Mean (ms) 97 186 192 244 480
Median (ms) || 90 131 175 223 285
Range (ms) || 51-2343 | 85-2445 | 103-2591 | 104-2603 | 164- 2670

number of transactions per block. Since we want to measure the latency from the point of
view of a single endorsing peer, we use a single peer with a solo orderer and one client node.
We execute a smart contract that calls our method, GetTimenow(), to obtain the current
block time. The smart contract then calculates the difference between its local clock and
the block time, and writes this difference to a new key in the state database. That is, the
sole purpose of this smart contract is to record block time latencies. We execute 25000 such
transactions for varying block sizes, and we compute the mean and median latencies as well
as the latency range, as seen by these transactions.

We show the results in Table 2. We observe that mean latency increases with the block
size. However, as we noted earlier, prior work observed the highest throughput at a block
size of 100. Given this block size, the mean block time latency is under 200 milliseconds.
Note that these result correspond to a scenario in which transactions arrive continuously and
blocks fill up naturally, without the need for heartbeat transactions to create new blocks. As
we discussed earlier, if transactions stop arriving, then the block time latency increases to
just over two seconds, which is the timeout period plus the time to commit the block with
the heartbeat transaction.

4.2 Time Query Performance

Endorser Overhead of GetTimenow(): In this experiment, we measure the performance
of GetTimenow() by monitoring the endorsement time for transactions on a single peer. For
this, we implement a smart contract that corresponds to a retail purchase transaction for a
perishable product. The transaction is endorsed if its timestamp is earlier than product expiry
date; if so, the chaincode additionally decrements the available quantity of the product, which
involves one key read and one key write. In TimeFabric, the chaincode calls GetTimenow()
to obtain the time. In Fabric, the chaincode simply obtains the local time at the endorser.
We send a series of transactions to the endorsing peer from a single client and calculate the
total time for obtaining all the responses. We repeat this experiment by varying the number
of transactions and recording the endorsement time.

We show the results in Figure 3, which reveals that the performance overhead of GetTi-
menow() is statistically insignificant.

Endorser Overhead of GetStateWindow(): We compare the performance of Get-
State Window() in our implementation against GetHistoryForKey() in Fabric 1.4. Since Fabric
fetches key histories directly from blocks, we expect a performance improvement in our
implementation that uses the cache database for recent history. We start by loading the state
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database with 500 keys, and then each key is updated between 10 an 200 times, depending
on the experiment. The chaincode for this experiment corresponds to a financial overdraft
transaction: it reads the full history of the key (between 10 and 200 values, depending on
the experiment, to simulate different window lengths) and writes a new value for this key if
the history shows that this account has maintained some minimum balance. We use a single
client to execute the transactions for all 500 keys and we record the total time for collecting
all proposal responses from a single endorser.

We show the results in Figure 4. The performance of Fabric’s GetHistoryForKey()
degrades as the window length increases since there is more history to retrieve. On the other
hand, the running time of our implementation of GetState Window() increases only slightly
as the window length increases. For a window of 200 historical values, TimeFabric is nearly
twice as fast as Fabric 1.4.
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5 Related Work

Hyperledger Fabric is actively being developed and various performance optimizations have
recently been proposed, including adding parallelism and caching to the transaction processing
pipeline[8, 17]. Our solution is compatible with these optimizations since our modifications
leave Fabric’s modular structure intact.

Perhaps the closest work to ours is that of Zan and Xu [22], which proposes to add a
separate global clock node to Fabric, whose purpose is to periodically synchronize the local
clocks of endorsers, orderers and committers during the transaction lifecycle. Although this
approach can improve the accuracy of local clocks, it cannot fully synchronize them, as we do
using block time. Additionally, our solution goes one step further to ensure that time-related
operations such as sliding windows can be done efficiently.

FabricSharp [16] is a proposal to add timestamp-based optimistic concurrency control to
Fabric. However, instead of using physical time, FabricSharp uses block sequence numbers

and it does not solve our problem of maintaining trusted time for use by smart contracts.

This precludes, for example, applications that depend on a time window.

LineageChain [15] extends Fabric by exposing provenance information, i.e., key histories,

to smart contracts. For efficiency, LineageChain maintains an index over the provenance tree.

This is conceptually similar to our use of the cache database to speed up sliding window
queries. However, LineageChain does not offer a notion of time and its provenance queries
do not support sliding windows.

An index to speed up temporal queries in Fabric was proposed in [9]. Account histories
are stored in blocks on the file system and the index consists of pointers stored in the
state database. The pointers identify blocks that contain transactions for a given account
whose timestamps are within a given interval. The index is meant for off-line analytics over
account histories. In contrast, our solution maintains an in-memory time window of the
effects of recent transactions for use by smart contracts. Furthermore, our solution includes a
notion of trusted time, whereas the index proposed in [9] was based on unverified transaction
timestamps.

Next, we review time-related concepts in permissionless blockchains such as Bitcoin and
Ethereum. In systems that use Proof of Work for consensus, block timestamps are usually
set by the miners when forming new blocks. Ethereum enforces a protocol to not accept a
new block if the timestamp provided by the miner is earlier than timestamp of the previous
block. Additionally, if a block timestamp is set in future, other mining nodes may not want
to build on that block, resulting in forks. Bitcoin’s protocol is to not propagate a block
whose miner-assigned timestamp is earlier than the median of the previous 11 blocks or more
than two hours into the future. We incorporate similar constraints in our solution: block
timestamps must be monotonically increasing, and they are based on verified transaction
timestamps that cannot be too far in the past or the future.

While protocols exist in permissionless systems to reject blocks with suspicious timestamps,

there has also been work describing attacks related to time manipulation [19],[4],[21],[3].

These works highlight vulnerabilities but do not propose solutions, except [18] — in that work,
focusing on Bitcoin, a verifier node requests a timestamping authority (TSA) to validate
block timestamps. The verifier node unpacks the block header, has the TSA timestamp the
block, and includes the hash of the data in a subsequent transaction that is included in the
next block. The next block header is again unpacked, timestamped by TSA and returned
to the verifier. As a result, any discrepancy in block time can be found by comparing the
block time (set by the miner) against the two timestamps obtained from the TSA. Our
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solution avoids a timestamping authority and instead leverages the additional trust inherent
in permissioned blockchains by using client transaction timestamps (properly verified) as a
basis of trusted block timestamping.

Finally, other studies such as [13] and [10] argue that block sequence numbers are intrinsic
to blockchains and best represent the temporal progression of a blockchain. Reference [13]
specifically states that any reference to an external time oracle violates the decentralized
property of a blockchain network. Our solution avoids the use of external time oracles,
and, again, leverages the additional trust inherent in permissioned systems to assign block
timestamps.

6 Conclusions

In this paper, we presented a method to support smart contracts with time-based logic
referencing current time or a time window of recent history. We showed that existing solutions
such as querying an external time oracle, break down for systems in which multiple peers
independently validate transactions. Instead, our solution assigns trusted block timestamps
at transaction validation time, which can then be used by all peers to reach consensus on
time-based transaction validity. To ensure that time-based smart contracts can be executed
efficiently, our solution also adds a cache database storing a window of recent transactions.
We implemented a proof-of-concept prototype, TimeFabric, on top of Hyperledger Fabric.
Experimental results show that our modifications add little overhead to the transaction
processing pipeline in Fabric and that time-based smart contracts can be executed efficiently
by fetching account histories from the cache.

In future work, we plan to investigate new applications that can leverage trusted time
and access to sliding windows of account histories enabled by TimeFabric, in areas such as
finance, retail, supply chains and online auctions.
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